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Heat Stress Biomarker Amino Acids and Neuropeptide

Afford Thermotolerance in Chicks
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With global warming, heat stress is becoming a pressing concern worldwide. In chickens, heat stress reduces

food intake and growth, and increases body temperature and stress responses. Although it is believed that young

chicks do not experience heat stress as they need a higher ambient temperature to survive, our series of studies in

young chicks showed that they are sensitive to heat stress. This review summarizes current knowledge on amino acid

metabolisms during heat stress, with special emphasis on the hypothermic functions of L-citrulline (L-Cit) and L-

leucine (L-Leu), and the functions of neuropeptide Y (NPY) in terms of body temperature and heat stress regulation in

chicks. Amino acid metabolism is severely affected by heat stress. For example, prolonged heat stress reduces

plasma L-Cit in chicks and L-Leu in the brain and liver of embryos. L-Cit and L-Leu supplementation affords ther-

motolerance in young chicks. NPY expression is increased in the brains of heat-exposed chicks. NPY has a hypo-

thermic action under control thermoneutral temperature and heat stress in chicks. The NPY-sub-receptor Y5 is a

partial mediator of the hypothermic action of NPY. Further, NPY stimulates brain dopamine concentrations and acts

as an anti-stress agent in heat-exposed fasted, but not fed chicks. In conclusion, young chicks can serve as a model

animal for the study of heat stress in chickens. L-Cit, L-Leu, and NPY were identified as biomarkers of heat stress,

with the potential to afford thermotolerance in chicks.
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Introduction

The earth’s surface temperature in 2017 ranked the second

warmest since 1880 according to an analysis by the National

Aeronautics and Space Administration, USA (NASA, 2017).

The potential of such increasing ambient temperature to

enhance heat stress issues is a serious concern globally. Heat

stress threatens the commercial poultry sector in tropical and

sub-tropical countries as well as in temperate countries ex-

posed to summer heat waves. It can reduce food intake, live

weight gain, and food efficiency in broilers (Howlider and

Rose, 1987; Siegel, 1995; Niu et al., 2009; Azad et al.,

2010), and can affect egg production in laying hens (Marsden

et al., 1987; Peguri and Coon, 1991; Yahav et al., 2000;

Sterling et al., 2003; Lin et al., 2004; Franco-Jimenez and

Beck, 2007; Ajakaiye et al., 2010). In chickens, high am-

bient temperature (HT) can lead to an increase in deep body

(rectal) temperature (Yahav and Hurwitz, 1996) and may

cause heat stress (Bartlett and Smith, 2003; Soleimani et al.,

2010). It is generally believed that young chicks are not

prone to heat stress as they need HT for their survival.

However, limited attention has been paid to young layer

chicks with respect to heat stress issues, and several of our

recent studies suggested that both layer and broiler chicks are

sensitive to HT (Chowdhury et al., 2012a, b, 2014, 2017; Ito

et al., 2014, 2015; Han et al., 2017, 2018, Eltahan et al.,

2017). When young chicks were exposed to 35℃ for 3 h,

their food intake decreased and their rectal temperature

increased (Bahry et al., 2017). Further, 3- and 5-day-old

chicks were less sensitive to heat stress (40℃ for 4 h) when

the control thermoneutral temperature (CT) was 30℃, while

chicks of 7 days or older were sensitive to heat stress

(Chowdhury et al., 2012b).

Mammals are also very sensitive to heat stress. For ex-

ample, like chickens, pigs do not have functional sweat

glands (Ensminger et al., 1990). In pigs, thermoregulatory

responses for avoiding heat stress are activated above 25℃

(Quiniou and Noblet, 1999). Heat stress increases rectal

temperature in swine (Dou et al., 2017), cattle (Kamal et al.,

2018), and chickens (Chowdhury et al., 2014). Further, a
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significant reduction in voluntary feed intake is generally

observed in swine (Dou et al., 2017), cattle (Kamal et al.,

2018), and chickens (Chowdhury et al., 2012) during heat

stress. This response is considered the main adaptation

mechanism for reducing metabolic heat production (Nyachoti

et al., 2004), which has negative effects on growth perform-

ance in mammals (D’Allaire et al., 1996; Kamal et al., 2018)

and chickens (Mashaly et al., 2004).

Amino acids play important roles in growth (Li and Wu,

2018) and might be critical in controlling food intake (Tran et

al., 2015, 2016) and behavior (Kabuki et al., 2011; Ikeda et

al., 2014; Tran et al., 2015). Several free amino acids were

found to be significantly increased in the blood, brain, and

skeletal muscle of chicks within 15 or 30min of exposure to

HT (35℃; Ito et al., 2014); however, most of these amino

acids in the brain and plasma declined when chicks were

exposed to prolonged HT (35℃ for 48 h; Chowdhury et al.,

2014). Based on these findings, we subsequently found that

L-citrulline (L-Cit), which was increased in the plasma of

chicks following short-term heat exposure and decreased

after long-term heat exposure, has a hypothermic function

when administered orally in chicks (Chowdhury et al., 2015,

2017). In addition, thermal manipulation (TM) during em-

bryogenesis resulted in a reduction in brain and liver con-

centrations of L-leucine (L-Leu). Interestingly, in ovo feed-

ing of L-Leu affords thermotolerance in broiler chicks (Han

et al., 2017, 2018). Thus, certain amino acids that decrease

or increase in chicks depending on the length of exposure to

HT and its magnitude may serve as biomarkers of heat stress.

The central nervous system is thought to be a critical

center of behavioral motivation. Therefore, brain function

has been meticulously studied. Hypothalamic neuropeptides

are important in the regulation of food intake (Furuse, 2007;

Cline and Furuse, 2012) and stress (Carrasco and Van de

Kar, 2003; Madaan and Wilson, 2009; Alldredge, 2010;

Schank et al., 2012; Lin, 2012; Catena-Dell’Osso et al.,

2013). Hypothalamic neuropeptides are also important in the

regulation of body temperature. The thermoregulatory cen-

ter is widely reported to be located in the hypothalamus. In

particular, the hypothalamic preoptic area (POA) contains

neurons that are sensitive to warmth and trigger hypothermia

(Hammel, 1968). Tan et al. (2016) reported that brain-derived

neurotrophic factor and pituitary adenylate cyclase-acti-

vating polypeptide have important roles in body temperature

regulation in the POA. Recent studies have focused on

hypothalamic neuropeptide Y (NPY) in an attempt to unravel

its role in the regulation of body temperature and heat stress

in chicks (Bahry et al., 2017; Eltahan et al., 2017).

In this review, I will summarize the effects of heat stress

on amino acid metabolism, with special emphasis on the

hypothermic functions of L-Cit and L-Leu. Moreover, the

functions of NPY in terms of body temperature and heat

stress regulation in chicks will be described.

Amino Acid Metabolism in Embryos

and Chicks under Heat Stress

Twenty amino acids are commonly found in animal pro-

teins. In growing chicks, 11 of these (arginine (Arg), his-

tidine, isoleucine, leucine (Leu), lysine, methionine, phenyla-

lanine, threonine, tryptophan, valine, and glycine) are es-

sential amino acids, while the others are nonessential amino

acids (Banerjee, 1998). These 20 amino acids which have

codon, cannot be stored as free molecules and must follow

anabolic routes to peptides, proteins, hormones, and other

bioactive molecules or catabolic pathways to glucose, ketone

bodies, or uric acids in birds. Heat stress causes catabolic

activity to increase in organisms (Maeda et al., 2017) to

provide energy to counter the heat stress. Protein turnover

has a high energy cost: it requires 4.5-7 mol of ATP per mole

of peptide bond formed and 1-2mol of ATP per mole of

peptide bond breakage (Bequette, 2003). Therefore, the

increase or decrease in free amino acids that occurs under

heat stress (Ito et al., 2014, 2015; Chowdhury et al., 2014;

Eltahan et al., 2017) can be assumed to be the result of

catabolic processes. Inter-organ amino acid flux is important

for determining the sites where amino acids are ultimately

used (Seal and Parker, 2000). All tissues contain enzymes

for amino acid catabolism and synthesis, but their expression

and activity levels vary depending on the metabolic needs or

functions of the tissue. Catabolism involves deamination/

deamidation reactions followed by either reamination of the

resulting carbon skeleton to form non-essential amino acids,

or channeling of the carbon skeleton into the tricarboxylic

acid cycle, where it is oxidized, channeled towards gluco-

neogenesis via pyruvate carboxylase, or converted from

pyruvate into acetate for fatty acid synthesis. Amino acids

act not only as constituents of proteins but also as regulators

of various physiological and/or pharmacological functions.

Substantial attention has been paid to the regulation of

physiology and behavior, including stress responses (Asechi

et al., 2006; Hamasu et al., 2009a, b; Kurauchi et al., 2010;

Kurata et al., 2011; Erwan et al., 2014). Bird diets have

been supplemented with amino acids, especially essential

amino acids, to overcome the problems caused by heat stress

(Mendes et al., 1997; Rose and Uddin, 1997; Brake et al.,

1998; Daghir et al., 2003; Willemsen et al., 2011; Dai et al.,

2012). Although there have been fewer investigations into

the changes in amino acid concentrations in chickens under

heat stress, Ito et al. (2014) reported that while several free

essential as well as nonessential amino acids increased in the

blood, brain, and skeletal muscle following short-term heat

stress (less than 30min), the levels of some other amino acids

were significantly reduced.

The reason for the increases in various amino acids is still

unknown, but it is possible that the increased plasma amino

acids may have been derived from proteins from the liver or

some other soft tissues that are more labile than myofibrillar

proteins in skeletal muscle. Interestingly, the levels of free

amino acids induced during short-term heat stress (35℃, 15

or 30min) were nearly inversely correlated with those in-

duced by long-term heat stress (35℃, 24 or 48 h), upon

which most of the free amino acids were reduced. For in-

stance, tryptophan, Cit, and Orn were reduced in the plasma

of chicks exposed to long-term heat stress (Chowdhury et al.,
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2014), whereas they increased during short-term heat stress

(Ito et al., 2014).

Various free amino acids in the chick brain and breast

muscle are also altered upon heat exposure. Interestingly,

the free amino acids in the brain and skeletal muscle were

mostly different from those found in the plasma. All the

altered free amino acids in the various parts of the brain,

except for proline and cystathionine, were different. These

findings indicate that alterations in free amino acid contents

may be tissue-specific, which is in accordance with the fact

that enzymatic activity related to amino acid metabolism and

protein synthesis is tissue-specific. In chick breast muscle,

the concentration of 3-methyl histidine, a marker of pro-

teolysis (Young and Munro, 1978; Nishizawa, 1983), was

significantly (P＜0.05) declined upon short-term heat stress

(Ito et al., 2014), suggesting that protein degradation was

reduced in this condition. As protein synthesis and de-

gradation are balanced in the body, it can be predicted that

protein synthesis would decrease and the pool of free amino

acids in the tissue would increase during heat stress.

TM is applied during embryogenesis to increase the

incubation temperature, resulting in the acquisition of ther-

motolerance by neonatal chicks (Moraes et al., 2003) and

chickens (Loyau et al., 2014) under HT. Recently, we found

that several amino acids, including Leu, lysine, and phe-

nylalanine, were significantly reduced in the brain and liver

in embryos that were exposed to TM (Han et al., 2017). In

summary, amino acid metabolic activity can be affected by

heat stress in embryos and chicks.

Hypothermic Amino Acids in Heat-Exposed Chicks

Intracerebroventricular (i.c.v.) administration of L-Cit, L-

Orn, and L-Arg did not cause a reduction in rectal tem-

perature (Chowdhury et al., 2015). However, orally admini-

stered L-Cit, but not L-Arg or L-Orn, did reduce rectal tem-

perature (Chowdhury et al., 2015). Further, it caused a sig-

nificant (P＜0.0001) reduction in rectal temperature in heat-

exposed chicks, comparable to that observed in non-heat-

exposed control chicks (Chowdhury et al., 2017). These find-

ings suggested L-Cit has a hypothermic function.

In mammals, nearly all L-Arg supplied via the food is with-

drawn from the portal blood by the liver for conversion to

urea (Curis et al., 2005). However, L-Cit can bypass the

liver, as the liver is unable to uptake L-Cit from the portal

circulation (Windmueller and Spaeth, 1981). This bypassed

L-Cit is converted to L-Arg in the kidneys and is released into

the blood to make it available for the whole body. Birds lack

carbamyl phosphate synthetase, one of the enzymes of the

urea cycle necessary for the synthesis of L-Cit from L-Orn

(Tamir and Ratner, 1963). Hence, they cannot synthesize L-

Cit or L-Arg from L-Orn, although they can synthesize L-Orn

from L-Arg (Suenaga et al., 2008). Fig. 1 shows the L-Cit

metabolic pathways in chickens.

Nitric oxide (NO), produced during the conversion of L-
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Fig. 1. Diagram showing the L-Cit metabolic pathway. Enzymes for all

steps of the biochemical pathway are shown. Notably, chickens lack carb-

amoyl phosphate synthetase, which is necessary for the synthesis of L-Cit from

L-Orn (Tamir and Ratner, 1963). Therefore, chickens cannot synthesize L-Cit

from L-Orn (indicated with a cross). L-Arg, L-arginine; L-Cit, L-citrulline; NO,

nitric oxide. This image was reprinted from Journal of Thermal Biology, 69:

163-170 with permission from Elsevier as the authors’ right.



Arg to L-Cit by the enzyme NO synthase (Palmer et al.,

1987), may act as a hypothermic agent in chicks, and ther-

moregulation has been proposed as one of the main physi-

ological functions of NO (Szabo, 1996). However, we

recently found that NO may not be the main factor in L-Cit-

dependent hypothermia and thermotolerance (Chowdhury et

al., 2017). Plasma glucose has been found to be lower in L-

Cit-treated chicks at both 30 and 90min. Somehow, L-Cit

causes an abrupt reduction in plasma glucose, and this may

be connected in some way with hypothermia (Chowdhury et

al., 2017). Hypothermia reportedly is related to hypoglyce-

mia in mammals and amphibians. In mammals, an acute

reduction in circulating glucose normally causes the body

temperature to decrease (Mayer-Gross and Berliner, 1942;

Freinkel et al., 1972; Buchanan et al., 1991). Similarly, hy-

poglycemia causes hypothermia and is considered to be an

adaptive response in rats (Buchanan et al., 1991). Doerfler

et al. (1998) reported that hypoglycemia occurred in turkeys

when hypothermia was detected. It is worth mentioning here

that the blood glucose level may be connected in some way

with the high body temperature in birds. For example, the

blood glucose level in domestic canary (Serinus canaria

domestica), whose body temperature is 42℃, is ~236mg/100

ml. The common swift (Apus apus), a medium-sized bird,

has a blood glucose level of ~305mg/100ml and a body

temperature of 44℃. The house sparrow (Passer domesti-

cus) has 288mg/100ml blood glucose and a body tempera-

ture of 41.4℃, which is close to that of chickens, whose body

temperature is 41.5℃ and blood glucose ~260mg/100ml

(Flindt, 2002). In comparison, the blood glucose level in

humans is ~100mg/100ml and body temperature 37℃.

Further experiments are needed to clarify this potential link.

We can conclude that NO production may not contribute

significantly to L-Cit-dependent hypothermia; instead, hypo-

glycemia appears to be one of the factors that play a role in

this process. Because oral administration of L-Cit affords

thermotolerance in chicks, this amino acid might be a novel

nutritional candidate for enabling poultry to cope with heat

stress.

Leu is significantly reduced in the embryonic brain and

liver as a result of TM. Supplementation of L-Leu through in

ovo feeding led to hypothermia in both male and female

chicks at hatching; however, females could better reduce

their body temperature at hatching than males (Han et al.,

2017). Metabolic activity was significantly (P＜0.05) in-

creased following in ovo administration of L-Leu during

embryogenesis. Lipid metabolism in embryos and in male

but not female chicks significantly (P＜0.05) increased as a

result of in ovo feeding of L-Leu. The enhanced lipid meta-

bolic rate might have been the result of increased mito-

chondrial activity, as Liang et al. (2014) reported that L-Leu

and its metabolites [α-ketoisocaproate and β-hydroxy-β-

methylbutyrate] are able to stimulate mitochondrial biogene-

sis and oxidative activities. Levels of plasma tryacylglycerol

(TG), non-esterified fatty acids (NEFA), and ketone bodies

were higher in L-Leu-treated male chicks under heat stress

than in heat-exposed control chicks. Broiler chicks would

benefit from L-Leu in ovo feeding because fat produces less

heat, and the beneficial effects of fats in hot-weather feeding

programs are well documented (Daghir, 2008). Han et al.

(2018) have suggested that L-Leu-dependent prenatal im-

printed lipid metabolic memory might have a gender-

specific metabolic response to active lipid metabolic func-

tions. Methylation or acetylation on the ‘Z’ chromosome as

a result of in ovo feeding of L-Leu might have a stronger

influence in males (ZZ) than in females (ZW), explaining the

differences in lipid metabolism that afford gender-specific

thermotolerance. Further research is needed to clarify this

matter.

The high level of plasma ketone bodies found in chicks fed

L-Leu in ovo indicates that the liver generates and releases

more ketone bodies into the bloodstream (Han et al., 2018).

Consequently, there might be increased demand for acetyl-

CoA in the liver, which might in turn stimulate the β-

oxidation of fatty acids to produce more acetyl-CoA (Fig. 2).

Unlike fatty acids, ketone bodies can cross the blood-brain

barrier to provide energy to the brain when glucose is limited

(Botham and Mayes, 2015). Fatty acid oxidation is highly

exergonic in comparison with glucose oxidation, yielding

numerous ATPs (Voet and Voet, 1995). The high levels of

plasma NEFA and TG might support the lipid metabolism

and ketogenesis that take place in the liver, similar to the

findings during embryogenesis. Yahav (2015) suggested

that reduced energy investment in high meat-producing

broilers could be the reason for hyperthermia under heat

stress; thus, the greater availability of energy produced by

lipid metabolism in male chicks injected with L-Leu might be

beneficial by affording thermotolerance under heat stress. In

summary, in ovo feeding of L-Leu stimulates O2 consump-

tion, HP, and lipid metabolism during embryogenesis, pos-

sibly causing a prenatal sex-specific metabolic imprinting to

activate lipid metabolism in male, but not female broiler

chicks under heat stress. Future study is needed to reveal the

molecular mechanisms by which sex-dependent L-Leu ac-

tivity confers thermotolerance.

Neuropeptide Expression in Heat-Exposed Chicks

Heat stress causes profound alterations at the cellular level

(Morera et al., 2012). These alterations include changes in

gene expression and biochemical adaptation responses, and

are characterized by metabolic reprogramming of cells

(Lindquist, 1986). Brobeck (1960) reported that hypothala-

mic neurons are able to perceive body temperature increases

and as a result, influence the cells that are responsible for

controlling food intake. Neuropeptides are important in the

regulation of food intake in chicks (Cline and Furuse, 2012).

For example, central injection of ghrelin has been found to

inhibit food intake in birds (Furuse et al., 2001; Saito et al.,

2002). A significant increase in brain ghrelin mRNA ex-

pression has been observed in layer chickens chronically

exposed to heat (31±1.5℃, 7 days) (Song et al., 2012).

Thus, heat stress might upregulate anorexigenic peptide

expression, which in turn suppresses food intake. In an

attempt to verify this, first we examined the mRNA expres-
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sion of a number of anorexigenic neuropeptide genes, in-

cluding pro-opiomelanocortin (POMC)-derived melanocor-

tin peptides (Kawakami et al., 2000; Honda et al., 2012),

cholecystokinin (CCK; Furuse et al., 2000), ghrelin (Furuse

et al., 2001), and corticotropin-releasing hormone (CRH;

Furuse et al., 1997b), in the acute heat-exposed chick brain.

Second, we examined the orexigenic neuropeptides NPY

(Kuenzel et al., 1987; Kuenzel and McMurtry, 1988; Furuse

et al., 1997a) and gonadotropin-inhibitory hormone (GnIH,

Tachibana et al., 2005; McConn et al., 2014, 2016). The

abundant amounts of POMC, CCK, ghrelin, and CRH pre-

cursor mRNAs were not affected by heat stress (40℃, 5 h).

However, diencephalic NPY and GnIH mRNA expression

was increased by heat stress in chicks (Chowdhury et al.,

2012a; Ito et al., 2015). Surprisingly, when food intake was

also suppressed, there was no significant alteration in the

plentiful supply of anorexigenic neuropeptides in the acute

heat-exposed chick brain (Ito et al., 2015). Interestingly,

however, hypothalamic NPY precursor mRNA expression

was upregulated when food intake was suppressed under heat

stress. Similarly, we observed elevated expression of hypo-

thalamic GnIH precursor mRNA in heat-exposed (35±1℃,

24 or 48 h) chicks (Chowdhury et al., 2012a). We theorized

that the increased GnIH expression could be a consequence

of food-intake suppression during heat stress (Chowdhury et

al., 2012a), because Boswell et al. (1999) demonstrated that

food restriction in growing broilers was associated with an

increase in the steady-state abundance of NPY mRNA in the

hypothalamus. However, alternative functions of NPY and

GnIH were considered, as reduced food intake is a physi-

ological adaptive mechanism of chicks experiencing heat

stress. Hence, it was subsequently found that in addition to

their role in food-intake regulation, NPY and GnIH play

major roles in stress regulation.

Anti-Stress and Hypothermic Functions

of NPY in Heat-Exposed Chicks

It has been suggested that in mammals, NPY is an anti-

stress agent (Heilig, 2004; Kormos and Gaszner, 2013;

Reichmann and Holzer, 2016; Sabban et al., 2016) with a

neuroprotective function (Malva et al., 2012), and that NPY

can affect the concentration of monoamines in the brain. For

example, central administration of NPY increased extracellu-

lar dopamine (DA) and its metabolites, norepinephrine (NE),

3, 4-dihydrooxyphenylacetic acid, and homovanillic acid

(HVA), but did not affect serotonin (5-HT) or 5-hydroxy-

indoleacetic acid concentrations in rats (Matos et al., 1996).

However, few studies have evaluated monoamine changes,

or the regulatory influence of NPY on these changes, during

heat stress. Recently, we reported that NPY does not in-
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Fig. 2. Schematic overview of a possible imprinting in the lipid metabo-

lism as a result of in ovo feeding of L-Leu between the embryonic and

young stages in broiler chicks. The broken curved line shows a possible

imprinting of lipid metabolic memory from the embryo to the young chick.

Arrows indicate the progression (→), increase (↑), or decline (↓) in metabo-

lites and metabolic processes. L-Leu, L-leucine; TG, tryacylglycerol; NEFA,

non-esterified fatty acid; HP, heat production; O2, oxygen; CO2, carbon di-

oxide.



fluence rectal temperature in fed chicks. However, rectal

temperature did change after i.c.v. injection of NPY in fasted

chicks (Bahry et al., 2017). NPY caused a significant (P＜

0.001) increase in food intake under both CT and heat stress.

Central NPY resulted in a significant decline in 5-HT (P＜

0.05) concentrations; however, 3-methoxy-4-hydroxyphe-

nylglycol and HVA were significantly (P＜0.05) increased in

fed chicks. Interestingly, a high dose of NPY significantly

(P＜0.05) increased diencephalic DA concentrations in fasted

chicks. Plasma NE and epinephrine (E) increased in chicks

treated with NPY only under heat stress. NPY has been

shown to reduce body temperature in neonatal chicks

(Tachibana et al., 2006) and mammals (Szekely et al., 2004).

NPY does not reduce rectal temperature in fed chicks but it

does significantly reduce rectal temperature in fasted chicks

under CT, but not under heat stress. However, food intake

may have caused increased metabolic heat production, and

this in turn might have masked an NPY-dependent reduction

in body temperature because the metabolic rate affects body

temperature (Webb, 1997). Furthermore, the hypothermic

function of NPY under heat stress might be masked by

norepinephrinergic activity because the sympathetic nervous

system is stimulated under stress (Cockrem, 2007; Wang et

al., 2013), and this could lead to an increase in body tem-

perature (Szekely et al., 2004). Bahry et al. (2017) showed

that NE and E concentrations were increased, while corti-

costerone levels were decreased in the plasma of fasted

chicks under heat stress. Zhang et al. (2003) reported that

central administration of NE led to a reduction in plasma

corticosterone. Thus, it is possible that NPY and NPY-

dependent increases in NE reduced the plasma corticosterone

levels under heat stress (Bahry et al., 2017). This would be

consistent with an anti-stress effect of NPY in chicks.

Eltahan et al. (2017) reported that NPY causes hypother-

mia under CT as well as under heat stress in fasted chicks

(Fig. 3A). I.c.v. injection of NPY significantly (P＜0.05)

decreased the rectal temperature in fasted chicks under both

CT and HT. The mRNA expression of NPY-sub receptors

(NPYSRs) -Y5, -Y6, and -Y7 significantly (P＜0.05) in-

creased in the brain following NPY injection under both CT

and HT. The NPY-induced decline in rectal temperature was

significantly (P＜0.05) suppressed by coinjection of CGP

71683 (Fig. 3B), an NPYSR-Y5 antagonist. Plasma glucose

was significantly (P＜0.05) reduced by NPY i.c.v. injection.

Central NPY also reduced plasma corticosterone levels under

heat stress.

NPYSRs carry out specific functions related to the stress

response. For example, NPYSR-Y1 brings about an anxi-

olytic effect, whereas NPYSR-Y2 mediates anxiogenic func-

tions (Reichmann and Holzer, 2016). The expression of
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Fig. 3. Effects of NPY and CGP71683 on rectal tem-

perature in chicks. (A) Rectal temperature in fasted

chicks following central injection of NPY (375 pmol) or

saline under control thermoneutral temperature (CT: 30±

1℃) or high ambient temperature (HT: 35±1℃) for 1 h.

(B) Rectal temperature in chicks following central injection

of NPY (375 pmol), saline or NPY (375 pmol) plus CGP

71683 (3750 pmol) under CT for 1 h. Different letters indi-

cate significant differences at P＜0.05 between groups.

Values are the mean±SEM of 12-15 chicks in A and 8-10

chicks in B. This image was reprinted from Physiological

Reports, 5 (23): e13511. 69 with permission from Wiley

Periodicals, Inc. on behalf of the Physiological Society and

the American Physiological Society Wiley as the authors’

right.



NPYSRs-Y5, -Y6, and -Y7, but not -Y1, -Y2, and -Y4, is

stimulated by NPY, which indicates that the hypothermic

functions of NPY are mediated by all or any of these re-

ceptors. The finding by Eltahan et al. (2017) that coinjection

of CGP71683 with NPY slightly lessens NPY-induced hy-

pothermia suggests that NPYSR-Y5 is partially, but not

entirely, involved in hypothermia. The functions of NPYSRs-

Y6 and -Y7 in chickens remain unknown. There are cur-

rently no antagonists are available for NPYSRs-Y6 and

-Y7. Previous reports (Boswell et al., 1998; He et al., 2016;

Gao et al., 2017) have indicated that the mRNA expression

patterns of NPY and its receptors closely resemble those of

protein expression; however, further analysis of such cor-

relation will be needed in future.

Plasma glucose is lower in NPY-treated chicks, and this

might be a result of the anabolic function of NPY. Hy-

poglycemia is a well-known phenomenon that occurs con-

comitantly with hypothermia in mammals (Buchanan et al.,

1991) and amphibians (Branco, 1997; Rocha and Branco,

1998), as discussed above. Thaxton et al. (1974) reported

that oral administration of glucose increased the body tem-

perature of chicks that were exposed to a cold environment

and the authors proposed the involvement of carbohydrate

metabolism in the physiological regulation of body tempera-

ture. Kuenzel and McMurtry (1988) reported that central

injection of NPY increased plasma insulin. Therefore, it is

possible that central NPY injection causes an increase in

peripheral insulin and reductions in blood glucose and body

heat.

In summary, central injection of NPY has an anti-stress

effect and causes hypothermia in fasted chicks. I.c.v. injec-

tion of NPY affords thermotolerance, along with increased

mRNA expression of HSP-70 and -90 and of NPYSRs (-Y5,

-Y6, and -Y7), in heat-exposed chicks. Results obtained

with the NPYSR-Y5 antagonist CGP71683 suggest that

NPYSR-Y5 may partially mediate NPY-induced hypother-

mia. Decreased levels of plasma glucose, corticosterone, and

E further suggest that central NPY may control thermal stress

and body temperature to afford protective thermotolerance.

Conclusions and Future Prospects

Heat stress affects amino acid metabolic activity and

neuropeptide expression in chicks. Certain amino acids‒

namely, L-Cit and L-Leu‒appear to be useful as biomarkers

of heat stress because their concentrations are affected by

heat stress, and administration of these amino acids has been

found to afford thermotolerance in chicks. NPY has been

considered as a food-intake regulator; however, our studies

have revealed a novel role for NPY in reducing stress and

body temperature in chicks under heat stress. As heat stress

is a serious concern for the present and future poultry

industry, our and other studies (Furukawa et al., 2015; Nanto

et al., 2015; El-Deep et al., 2016; Mahmoudi et al., 2018)

will contribute to overcome this serious, global challenge.
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