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Abstract: Aging of oocytes and eggs diminishes their reproductive and developmental potential. It
has been demonstrated previously that reactive oxygen species (ROS) contribute to accelerated aging
of various cells. In the present study, we measured intracellular levels of ROS and investigated effects
of several selective antioxidants (AOXs) on the viability and functional activity of aging oocytes
and eggs of the African clawed frog Xenopus laevis. The fluorescent cell-permeable dye DCFDA,
which is widely employed for ROS detection in cultured mammalian cells, was used to monitor
ROS levels in the fresh and bench-aged oocytes and eggs by an optimized protocol. It was found
that intracellular ROS contents were increased in frog oocytes and eggs aged for 48 h. It was further
demonstrated using selective cell-permeable AOXs targeting different ROS-generating mechanisms,
that the major source of ROS in Xenopus oocytes and eggs is the plasma membrane NADPH oxidase,
and that mitochondrial generation contributes to the intracellular ROS content to a lesser extent.
Targeted inhibition of NADPH oxidase with a natural organic compound apocynin reduced ROS
levels significantly in Xenopus oocytes and eggs, maintained their normal phenotype and supported
their functional competence. To our knowledge this is the first report concerning beneficial effects of
apocynin on the isolated gamete cells, such as oocytes and eggs.
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1. Introduction

Aging of oocytes and eggs profoundly affects their reproductive and developmental
potential. It is thought that the progressive age-associated worsening of oocyte and egg
quality represents one of the major causes of infertility and abnormal embryo development
in different organisms [1–4]. Moreover, it was found that postovulatory aging of oocytes
also reduces reproductive capacity and longevity of offspring [5,6]. Aging of fully-grown
immature oocytes occurs in the ovary during the physiological process called “ovarian
aging” [7,8], whereas mature postovulatory oocytes age outside the ovary in the oviduct
(in vivo aging) or out-of-body environments (environmental or in vitro aging) [2,9].

Both in mammalian and frog species, immature grown-up oocytes reside in the ovaries
arrested at the prophase of the first meiotic division. Hormonal stimuli initiate oocyte
maturation and ovulation, leading to release of fertilization-competent MII-arrested oocytes
from ovarian follicles. These oocytes can be successfully fertilized within several hours
following ovulation. In the absence of fertilization, ovulated mammalian oocytes gradually
deteriorate in the process of postovulatory aging, undergo spontaneous fragmentation and
ultimately die by apoptosis [10,11]. Cytological changes associated with postovulatory
aging of mammalian oocytes include partial exocytosis of cortical granules, hardening
of the zona pellucida, chromatin disorganization, disruption of the meiotic spindle or its
abnormal location, mitochondrial dysfunction, increase in the number of large autophagic
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lysosomes and apoptotic fragmentation [2,3,9,12]. These changes lead to decreased rates of
fertilization, polyspermy, parthenogenesis and abnormal development of embryos. Other
established hallmarks of oocyte aging include decrease in maturation-promoting factor
(MPF) and mitogen-activated protein kinase (MAPK) activities, disruption of multiple
protein kinase signaling pathways, abnormal calcium response and homeostasis, reduced
levels of Emi2, decrease in the mitochondrial membrane potential and intracellular ATP
content, reduced contents of Bcl-2 mRNA and protein, decrease in glutathione/glutathione
disulfide ratio, disruption of lysosome biogenesis, increase in senescense-associated beta-
galactosidase (SA-β-gal) activity, multiple epigenetic modifications and elevated levels of
reactive oxygen species (ROS) [3,13–16].

At present, the free radical theory of aging is widely accepted to explain deterioration
of aging oocytes [13,17,18]. Oxidative stress was demonstrated to impair oocyte quality,
cause alterations in the metaphase spindle structure, modulate meiotic cell cycle and induce
morphological features characteristic of apoptosis in mammalian oocytes [19–21]. Increased
intracellular levels of ROS were reported to damage fertilization-initiated calcium signaling
and promote age-associated spontaneous activation of mammalian eggs [15,22,23]. Further,
extracellular hydrogen peroxide was found to induce intracellular calcium-mediated activa-
tion and overactivation of frog eggs [24,25]. It has been hypothesized that oxidative stress
may act as the de facto initiator of the events that cause aging of postovulatory oocytes [9].
It was proposed that the major mechanism underlying the age-related reduction of oocyte
quality is accumulation of mitochondrial damage arising from mitochondria-produced
ROS [26].

The reactive oxygen species contribute to accelerated aging of various cells. Generally,
the major intracellular sources of superoxide (O2

•−) are the electron transport chain of the
mitochondria and the NADPH oxidase system in the cellular plasma membrane [27,28].
Various enzymatic and non-enzymatic agents are employed by cells to detoxify intracellular
ROS, including superoxide dismutase (SOD), catalase, peroxidases, glutathione, etc. ([29],
Figure 1A). In addition, different antioxidants (AOXs) can be added to culture media to
protect oocytes and eggs from oxidative stress.

In the present study, we employed oocytes and eggs of the African clawed frog Xenopus
laevis to measure intracellular levels of ROS and investigate effects of several selective
AOXs on the in vitro aging of these gamete cells. Xenopus oocytes and eggs have been
widely used in reproductive and cell cycle studies due to their large size, exceeding 1mm
in diameter, and superb biochemical tractability. The oocytes and eggs can be obtained
abundantly from living female animals and handled in vitro as a primary cell culture. The
term “egg” is conventionally used in the frog model for ovulated matured oocytes arrested
in the metaphase of the second meiotic division by high activity of cytostatic factor (CSF)
and maturation promoting factor (MPF). The meiotic metaphase arrest prevents cell cycle
progression and parthenogenesis after meiosis and allows eggs to await fertilization. It has
been reported that unfertilized Xenopus eggs spontaneously exit the MII arrest and degrade
by a well-defined apoptotic process, both in aqueous environments and in the genital tract,
within 48 h after ovulation, whereas fully-grown immature Xenopus oocytes are remarkably
resistant to apoptosis [30,31]. The AOX compounds used in the present study included both
the extracellular cell-impermeable agents, such as SOD and catalase, and the intracellular
cell-permeable drugs, such as butylated hydroxyanisole (BHA), apocynin, EUK 134 and
MITO-TEMPO. The functional targets and molecular structures of these AOXs are detailed
in Figure 1B,C.



Antioxidants 2021, 10, 1068 3 of 14Antioxidants 2021, 10, x FOR PEER REVIEW 3 of 15 
 

 
Figure 1. Conversion of reactive oxygen species (ROS) and selectivity of applied antioxidants (AOXs). Panel (A) shows 
the pathways of intracellular conversion of ROS. Panels (B,C) describe functions and chemical structures, respectively, of 
the selective AOXs examined in this study. 

2. Materials and Methods 
2.1. Reagents 

Water-soluble progesterone (PG), anesthetic MS-222 and apocynin were obtained 
from Sigma (St. Louis, MO, USA). Collagenase (280 U/mg) and catalase (11,000 U/mg) 
were purchased from Wako (Osaka, Japan), hCG was from Teikoku Zoki (Tokyo, Japan). 
Fluorogenic caspase-3 substrate IV was purchased from Calbiochem (La Jolla, CA, USA). 
Hydrogen peroxide colorimetric/fluorometric assay kit was from BioVision (Milpitas, CA, 
USA). Polyclonal anti-MAPK and anti-pMAPK antibodies were from Cell Signaling (Bev-
erly, MA), biotinylated anti-rabbit IgG was from Vector Laboratories (Burlingame, CA, 
USA). The Streptavidin Biotin Complex Peroxidase Kit, protein assay CBB solution, SOD 
(5000 U/mg) and BHA were from Nacalai Tesque (Kyoto, Japan). 2′,7′-dichlorofluorescein 
diacetate (DCFDA) Cellular ROS Detection Assay Kit was obtained from Abcam (Cam-
bridge, UK), EUK 134 and MITO-TEMPO were ordered from Santa Cruz (Santa Cruz Bi-
otechnology, Dallas, TX, USA). Other chemicals were obtained from Wako and Nacalai 
Tesque. 

2.2. Animals and Cells 
Adult wild-type female frogs Xenopus laevis were purchased from Shimizu (Kyoto, 

Japan) and maintained in dechlorinated water at the ambient temperature of 21–23 °C. 
The experiments with the animals were conducted according to the Kyoto Sangyo Uni-
versity Animal Experimentation Regulations under the permission N 2018-20. The exper-
iments with oocytes and eggs were carried out at the ambient temperature of 21–23 °C. To 
isolate oocytes, the frogs were anesthetized in 2 mg/mL solution of MS-222, then the 

Figure 1. Conversion of reactive oxygen species (ROS) and selectivity of applied antioxidants (AOXs). Panel (A) shows the
pathways of intracellular conversion of ROS. Panels (B,C) describe functions and chemical structures, respectively, of the
selective AOXs examined in this study.

2. Materials and Methods
2.1. Reagents

Water-soluble progesterone (PG), anesthetic MS-222 and apocynin were obtained from
Sigma (St. Louis, MO, USA). Collagenase (280 U/mg) and catalase (11,000 U/mg) were
purchased from Wako (Osaka, Japan), hCG was from Teikoku Zoki (Tokyo, Japan). Fluoro-
genic caspase-3 substrate IV was purchased from Calbiochem (La Jolla, CA, USA). Hydrogen
peroxide colorimetric/fluorometric assay kit was from BioVision (Milpitas, CA, USA). Poly-
clonal anti-MAPK and anti-pMAPK antibodies were from Cell Signaling (Beverly, MA, USA),
biotinylated anti-rabbit IgG was from Vector Laboratories (Burlingame, CA, USA). The Strep-
tavidin Biotin Complex Peroxidase Kit, protein assay CBB solution, SOD (5000 U/mg) and
BHA were from Nacalai Tesque (Kyoto, Japan). 2′,7′-dichlorofluorescein diacetate (DCFDA)
Cellular ROS Detection Assay Kit was obtained from Abcam (Cambridge, UK), EUK 134 and
MITO-TEMPO were ordered from Santa Cruz (Santa Cruz Biotechnology, Dallas, TX, USA).
Other chemicals were obtained from Wako and Nacalai Tesque.

2.2. Animals and Cells

Adult wild-type female frogs Xenopus laevis were purchased from Shimizu (Kyoto,
Japan) and maintained in dechlorinated water at the ambient temperature of 21–23 ◦C. The
experiments with the animals were conducted according to the Kyoto Sangyo University
Animal Experimentation Regulations under the permission N 2018-20. The experiments
with oocytes and eggs were carried out at the ambient temperature of 21–23 ◦C. To isolate
oocytes, the frogs were anesthetized in 2 mg/mL solution of MS-222, then the ovaries were
surgically removed and placed into OR-2 solution containing 82.5 mM NaCl, 2.5 mM KCl,
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1 mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, 5 mM HEPES, pH 7.6. The ovaries were man-
ually dissected into clumps of 50–100 oocytes and extensively washed with OR-2 solution.
Oocytes were treated with 5 mg/mL collagenase in OR-2 at 21 ◦C for 3 h by shaking at
60 rpm, extensively washed in OR-2 solution and left for stabilization over 4 h. Undamaged
defolliculated oocytes of stage VI were manually selected and used in experiments. The
selected cells ranged in size from 1.2 to 1.3 mm. In vitro oocyte maturation was induced
by addition of 5 µM PG and monitored by the appearance of a white spot (WS) on the
animal hemisphere of oocytes. To obtain eggs for in vitro fertilization experiments, female
frogs were injected with 500 IU per animal of hCG and maintained overnight in deionized
water complemented with 100 mM NaCl. Ovulation normally began within 10 h after hCG
injection. Ovulated or gently squeezed eggs were extensively washed with OR-2 solution
and used within 3 h of spawning. Sperm suspension for in vitro fertilization was obtained
by macerating one testis surgically removed from an anesthetized frog male in 1 mL of
OR-2 and stored on ice until use. Upon fertilization, 0.5 mL of the sperm suspension and
10 mL of 0.2 × OR-2 solution were simultaneously added to the monolayer of eggs placed
in a 110-mm-diameter plastic dish. Oocytes and eggs were bench-top aged at the ambient
temperature of 21–23 ◦C in 110 mm dishes for up to 96 h.

2.3. Microscopic Observations

Observations of oocyte and egg morphology and cell imaging were carried out using
SZX16 stereo zoom microscope (Olympus, Tokyo, Japan) equipped with the high-frame
digital microscope CCD camera DP73, CCD interface U-TV0.5XC-3, wide-angle objective
SDF PLAPO 1 × PF. The CellSens Standard software (Olympus) was used for image
acquisition. Acquired images were further processed with the ImageJ software of the
National Institute of Health [32].

2.4. ROS Detection with DCFDA

In the present study, a cell-permeant compound 2′,7′-dichlorofluorescein diacetate
(DCFDA) was employed to evaluate intracellular ROS contents in Xenopus oocytes and
eggs. DCFDA is a fluorogenic indicator that measures hydroxyl, peroxyl and other ROS
compounds within cells. After diffusion into a cell, the drug is deacetylated by cellular
esterases to a non-fluorescent product, which is further oxidized by ROS into a highly
fluorescent 2′,7′-dichlorofluorescein (DCF). DCF fluorescence is detected by fluorescent
microscopy at 495/529 nm excitation/emission wavelengths. Initially, the protocol for ROS
detection with DCFDA was optimized to gain a stronger fluorescent signal. The durations
of drug upload and intracellular oxidation were varied, as presented in Figure 2, and
the optimal periods of incubation were determined to be 1 h and 2 h for each procedure,
respectively. A final concentration of DCFDA in the incubation media was 20 µM. The
fluorescent images of oocytes and eggs were taken with the optical interference filters for
detection of GFP fluorescence at Ex = 460–495 nm and Em > 510 nm, and the fluorescent
signal was quantified using the image acquisition/processing software, as described above
in the Section 2.3. The fluorescence from the non-pigmented vegetal hemisphere of oocytes
and eggs was quantified.

2.5. Treatment of Oocytes and Eggs with AOXs

Defolliculated Xenopus oocytes and in vitro matured eggs were incubated in OR-2
at 21 ◦C with the AOXs used at the following concentrations: catalase and SOD—200
U/mL each, apocynin 0.2—5 mM, as indicated in the figure legends, BHA—100 µM, EUK
134—25 µM, MITO-TEMPO—20 µM. AOX concentrations administered in the present
work correspond to those used in previous studies. The incubation times are specified in
figure legends.
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detection of GFP fluorescence. In panel (B), DCFDA was uploaded for 30 min, the drug was 
washed off, and the oocytes were further incubated in its absence over the oxidation period (0–18 
h). Panel (C) shows fluorescent images of the oocytes that were analyzed in panel (B). 
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Figure 2. Optimization of ROS detection in Xenopus oocytes. In panel (A), the oocytes were incubated
in the presence of 20 µM DCFDA for the indicated times (0–120 min). At the end of incubation, the
indicator was washed off and oocyte fluorescence was observed with the filters used for detection of
GFP fluorescence. In panel (B), DCFDA was uploaded for 30 min, the drug was washed off, and the
oocytes were further incubated in its absence over the oxidation period (0–18 h). Panel (C) shows
fluorescent images of the oocytes that were analyzed in panel (B).

2.6. Immunoblotting

To monitor MAPK phosphorylation levels, supernatant fractions of eggs and oocytes,
obtained by centrifugation at 10,000× g, 4 ◦C for 15 min, were incubated at 95 ◦C for 5 min
in the presence of SDS-sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 100 mM DTT,
0.01% BPB, 10% sucrose). The samples were subjected to SDS PAGE in 10% polyacrylamide
gels and transferred to PVDF membranes using a semidry blotting apparatus (BioRad).
The membranes were blocked in T-TBS buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl,
0.05% Tween 20) containing 3 mg/mL bovine serum albumin and incubated at RT for
2 h with 100-fold diluted anti-phospho MAPK or 200-fold diluted anti-MAPK antibodies.
The membranes were extensively washed with T-TBS buffer and treated with biotinylated
anti-rabbit IgG, at a thousand-fold dilution, then with peroxidase-conjugated streptavidin,
in accordance with the manual for the Streptavidin Biotin Complex Peroxidase Kit. Color
development was catalyzed by the addition of hydrogen peroxide and diaminobenzidine
tetra-hydrochloride.
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2.7. Statistical Analysis

Quantified data in figures are presented as means ± SD values of four to six measure-
ments taken in single batch experiments. All experiments were repeated with the separate
batches of oocytes and eggs obtained from at least three different animals. From 50 to
100 oocytes were observed in the experiments that concerned counting oocyte and egg
phenotypes, and the signals from 8 to 14 cells were quantified in fluorescent analysis.

2.8. Other Methods

Intracellular concentration of hydrogen peroxide was determined using the hydrogen
peroxide colorimetric/fluorometric assay kit (BioVision), according to the manufacturer’s
manual. Caspase activity assay was performed as described previously [30]. Protein content
in the cytosolic fraction of oocytes and eggs was determined with the CBB protein assay.

3. Results
3.1. Aging of Xenopus Oocytes and Eggs Is Accompanied by ROS Increase

In this study, the fluorescent cell-permeable indicator DCFDA was used for detection
of intracellular ROS in frog oocytes and eggs. The protocol for ROS detection with DCFDA
was optimized in the context of this study (Figure 2) to gain a stronger fluorescent signal.
The durations of drug upload and intracellular oxidation were determined to be 1 h and
2 h, respectively. Next, we confirmed that the drug can adequately monitor ROS levels in
this model. It was found that intensity of the fluorescent signal generated by the indicator
correlates significantly with the intracellular content of hydrogen peroxide (Figure 3A),
as measured by an alternative method (for details, see Section 2). Then, we investigated
whether intracellular ROS contents change during aging of frog oocytes and eggs. Oocytes
used in these experiments were surgically removed from the ovaries, defolliculated by
collagenase treatment and aged on bench at the ambient temperature. Eggs were obtained
by in vitro maturation of the defolliculated oocytes in the presence of progesterone and
aged under the same conditions as the oocytes. It was found that intracellular ROS contents
were increased in frog oocytes and eggs aged on bench for 48 h (Figure 3B,C). ROS increase
in the eggs (i.e., progesterone-treated oocytes) was more prominent than that in the oocytes,
however both of the changes were statistically significant (Figure 3C).
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ROS levels in both oocytes and eggs (Figure 4A,B). However, the cell-permeable SOD/Cat 
mimetic EUK 134 and selective inhibitor of NADPH oxidase apocynin effectively reduced 
ROS levels in oocytes and eggs. On the other hand, the mitochondria targeted AOX MITO-
TEMPO exerted little effect in oocytes (Figure 4A), but it significantly decreased the fluo-
rescent signal in eggs (Figure 4B). These results indicate that the major source of intracel-
lular ROS in Xenopus oocytes and eggs is the plasma membrane NADPH oxidase, and the 
mitochondrial generation contributes to the intracellular ROS content to a lesser extent. 
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Figure 3. Detection of intracellular ROS in Xenopus oocytes and eggs with DCFDA. Oocytes and eggs were preincubated in
the presence of 20 µM DCFDA for 1 h followed by incubation in the absence of the dye for 2 more hours. Fluorescence of
DCFDA was observed with the filters used for detection of GFP fluorescence. Panel (A) demonstrates correlation of DCFDA
fluorescence with the intracellular level of hydrogen peroxide. Panel (B) shows optical and fluorescent images of oocytes
and eggs aged on bench for 48 h, and quantification of DCFDA fluorescence is presented in panel (C). Asterisks in panel (C)
indicate statistical difference from the control (p < 0.05).
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3.2. Modulation of Intracellular ROS Levels by Selective AOXs

Next, we investigated the effect of several selective antioxidants targeting extracellular
and intracellular ROS produced by different ROS-generating mechanisms, as detailed in
Figure 1. Defolliculated Xenopus oocytes and naturally ovulated dejellied eggs were treated
with the specified AOXs and loaded with DCFDA, then the indicator-specific fluorescent
signal was detected. Markedly, extracellular, i.e., cell-impermeable AOXs, such as catalase
(Cat) and superoxide dismutase (SOD), had no effect on intracellular levels of ROS. More-
over, the general cell-permeable free radical scavenger BHA could not affect ROS levels in
both oocytes and eggs (Figure 4A,B). However, the cell-permeable SOD/Cat mimetic EUK
134 and selective inhibitor of NADPH oxidase apocynin effectively reduced ROS levels
in oocytes and eggs. On the other hand, the mitochondria targeted AOX MITO-TEMPO
exerted little effect in oocytes (Figure 4A), but it significantly decreased the fluorescent sig-
nal in eggs (Figure 4B). These results indicate that the major source of intracellular ROS in
Xenopus oocytes and eggs is the plasma membrane NADPH oxidase, and the mitochondrial
generation contributes to the intracellular ROS content to a lesser extent.
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Figure 4. The effect of selective AOXs on ROS levels in oocytes and eggs. Defolliculated Xenopus
oocytes (A) and freshly ovulated dejellied eggs (B) were treated with the indicated AOXs, at the
concentrations specified in Section 2 “Materials and Methods” for 2 h, then DCFDA fluorescence
was detected as described in the legend to Figure 2. Asterisks indicate statistical difference from the
control (p < 0.05).

3.3. Modulation of Age-Associated Oocyte Phenotype and Function by Selective AOXs

Further, the effect of intracellular ROS level modulation on oocyte morphology and
function was investigated in aging populations of oocytes treated with the selective AOXs.
The three major categories of oocytes observed in the aging populations were normal,
mottling and decolored morphological phenotypes (Figure 5A). Evidently, the mottling
and decolored phenotypes are associated with aging as they were not present in the batches
of freshly obtained oocytes, and their proportion increased with time. It was found that
the proportion of the mottling phenotype was reduced, and the proportion of the normal
phenotype was elevated in the oocytes aged on bench for 96 h in the presence of apocynin
(Figure 5B). Other cell-permeable AOXs, such as BHA, EUK 134 and MITO-TEMPO, also
reduced the content of mottling to some extent, but they also elevated the percentage
of decolored oocytes, resulting in decreased proportions of the normal phenotype. As
expected, extracellular AOXs, Cat and SOD had little effect on the morphological changes
in aging oocytes (Figure 5B). Notably, the effect of apocynin on the morphology of aging
oocytes was dose-dependent; it manifested at the drug concentrations exceeding 1 mM
(Figure 5C; Supplementary Figure S1). To examine the functional state of oocytes aged
in the presence or absence of apocynin, their response to PG was investigated. Markedly,
apocynin was noticed to exert an inhibitory effect on oocyte maturation when present
in the incubation media (Supplementary Figure S2), so it was extensively washed out
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one hour before hormone administration. It was found that the oocytes aged on bench
for 72 h in the absence of the drug did not respond to PG, whereas some oocytes aged
in the presence of apocynin responded to the steroid (Figure 5D). Of note, although the
proportion of morphologically normal oocytes was quite high in the oocyte populations
aged on bench for 72 h (≥60%), only less than 10% of these cells were maturation-competent
(Figure 5D), suggesting that oocyte aging and loss of functional competence can progress
in the absence of visible phenotypical changes. A higher rate of in vitro maturation was
otherwise reported for Xenopus oocytes cultured for 72 h [33], however, the oocytes were
incubated at a lower temperature of 18 ◦C in the previous study.
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an elevated level of MAPK phosphorylation (Figure 6B,C), suggesting that a sizeable frac-
tion of these cells still maintained the meiotic metaphase arrest. Other AOXs tested had 
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Figure 5. Effect of selective AOXs on the morphology of in vitro aged defolliculated Xenopus oocytes.
Optical images of normal, mottling and dead oocytes are presented in panel (A), proportion of these
cell phenotypes in aging oocyte populations treated with the indicated AOXs for 96 h is shown in
panel (B). Panel (C) shows percentage of normal oocytes in the oocyte populations treated with
the indicated concentrations of apocynin for 72 h, and panel (D) presents occurrence of germinal
vesicle breakdown (GVBD) in the aged PG-treated oocytes, as estimated within 12 h of hormone
administration. In panel (D), apocynin was extensively washed out for 1 h before PG addition
to oocytes.

3.4. Modulation of Age-Associated Egg Phenotype and Function by Selective AOXs

Next, we investigated the effect of modulating intracellular ROS on egg morphology
and function in aging populations of eggs treated with selective AOXs. It should be
noted that Xenopus eggs age in vitro much faster than oocytes [30], and the age-dependent
increase in the intracellular ROS content is more prominent in the eggs than in the oocytes
(Figure 3). It has been reported that the majority of naturally ovulated unfertilized frog
eggs spontaneously exit meiotic metaphase arrest and degrade by a well-defined apoptotic
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process within 48 h of ovulation [30]. Accordingly, it was found that only about 20% of
control untreated eggs were able to retain the maturation marker WS by 32 h after PG
administration (Figure 6A,D). Apocynin at 1mM increased significantly the WS incidence
in the aged eggs by about 50% (Figure 6A,D). Moreover, apocynin-treated eggs displayed
an elevated level of MAPK phosphorylation (Figure 6B,C), suggesting that a sizeable
fraction of these cells still maintained the meiotic metaphase arrest. Other AOXs tested
had little effect on WS occurrence in aged eggs, and phosphorylation level of MAPK was
low in the eggs incubated with these compounds (Figure 6A–C). In addition, apocynin
inhibited, in a dose-dependent manner, activation of the apoptosis effector caspase, caspase
3/7, that occurs in aging unfertilized Xenopus eggs after the meiotic exit (Figure 6E).
These data strongly suggested that the proportion of functionally capable fertilization-
competent eggs aged in the presence of apocynin would be higher than that in the control
egg population untreated with the drug. However, our experiments failed to confirm
this suggestion. It was found that the fraction of eggs undergoing cortical contraction
and the first embryonic cleavage after fertilization was the same in the apocynin-treated
and untreated egg populations aged on a bench for 24 h (Figure 7A). Moreover, it was
demonstrated that apocynin, when present during fertilization, exerted a dose-dependent
inhibitory effect on furrow formation but not on the cortical contraction (Figure 7B,C). The
drug did not delay timing of the first cleavage but rather decreased the proportion of eggs
that bore the corresponding phenotype (Figure 7C).
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Figure 6. Effect of selective AOXs on the stability of in vitro aged Xenopus eggs. Defolliculated oocytes of stage VI were
matured in vitro in the presence of PG, then aged on bench in the presence of the specified AOXs. The time after PG
administration is indicated in the figure panels. Percentage of the aged eggs bearing a maturation marker, white spot (WS),
is presented in panel (A). Panels (B,C) show the activation state of MAPK in the eggs aged in the presence of different AOXs.
Proportion of WS-bearing eggs aged in the presence of the indicated apocynin concentrations for 24 and 32 h is evaluated
in panel (D), and caspase activity in the eggs aged in the presence of various concentrations of apocynin is presented in
panel (E). The left column in this panel (Con) refers to caspase activity in the eggs matured for 8 to 10 h, and the right
column (Cas I) represents caspase activity in the negative control, as measured in the presence of a specific caspase inhibitor
Z-VAD-FMK. An asterisk in panel (A) indicates statistically significant difference from the control, and asterisks in panel
(D) denote statistical difference from the egg batch incubated in the absence of apocynin (p < 0.05).
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4. Discussion

Oxidative stress and intracellular ROS are regarded as the major factors that cause
cell and organismal aging. Therefore, attenuation of their adverse effects can potentially
slow down the process of aging. Various ROS scavengers and AOXs have been tested
with the aim to mitigate oxidative stress in different types of cells and tissues. Several
studies have addressed AOX effects on the gamete cells, such as oocytes and eggs. It was
reported that supplementing the culture media with AOXs, such as caffeine, vitamin C and
E, reduced glutathione or melatonin, was protective against the postovulatory aging of
oocytes [9,18,34].

In the present work, we employed frog oocytes and eggs to investigate senescence-
associated ROS dynamics and capacity for modulation of cellular phenotypes and functions
by several selective AOXs during in vitro aging of these gamete cells. Notably, oocytes and
eggs obtained from albino Xenopus frogs lacking pigmentation are often used in fluorescent
investigations [35,36]. However, our present study utilized the pigmented gamete cells
from wild-type animals. This allowed simultaneous detection of intracellular ROS and
senescence-specific phenotypic features, such as mottling and decoloring of the animal
hemisphere in the aging oocytes, as well as disappearance of WS, a marker of MII arrest,
and progressive whitening of the aging eggs.

It was found, using an optimized protocol for intracellular ROS determination based
on the detection of DCFDA fluorescence, that both Xenopus oocytes and eggs aged on bench
for 48 h contain elevated levels of intracellular ROS (Figure 3). This result is consistent
with the previous studies reporting an increase in the intracellular ROS content in aging
mammalian oocytes and eggs [15,34,37,38]. Of note, increase in ROS contents was more
prominent in Xenopus eggs than in oocytes. Accordingly, the eggs displayed a typical
senescence-specific phenotype that was characterized by the lack of a white spot and
decoloring, whereas the oocytes still maintained juvenile morphology after 48 h of aging
(Figure 3B). These findings are consistent with our previous observations that unfertilized
Xenopus eggs spontaneously exit the MII arrest and degrade by an apoptotic process
within 48 h after ovulation, whereas fully-grown immature Xenopus oocytes are resistant to
apoptosis and remain intact for much longer time [30]. Further, it was reported that robust
all-out mRNA degradation occurs in apoptotic Xenopus eggs, but not in aged oocytes [39].
In connection with our findings, it would be interesting to investigate the content of
lipofuscin, a nondegradable complex of oxidized proteins, lipids and metals, in aging
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Xenopus oocytes and eggs. Lipofuscin accumulation is considered as a hallmark of cell
senescence and aging [40,41], and elevated levels of intracellular ROS in the aging oocytes
and eggs (Figure 2) can be expected to promote lipofuscin accumulation.

To elucidate the source of ROS in Xenopus oocytes and eggs and to alleviate, if possible,
adverse effects of intracellular ROS in the aging gamete cells, several selective AOXs were
tested in the present study. It was found that the extracellular AOXs, such as SOD and
catalase, had no effect on the intracellular levels of ROS in both Xenopus oocytes and
eggs (Figure 4). Moreover, these AOXs could not mitigate senescence-specific cellular
phenotypes observed in the aging cells (Figures 5 and 6). These findings are consistent
with the results of a previous study reporting that medium supplementation with catalase
and SOD during in vitro maturation and culture did not improve early bovine embryo
development [42]. It should be noted, however, that in vitro culture media supplemented
with SOD exerted a protective effect from oxidative stress on the development of mouse
embryos [43]. Moreover, it was found that diffused intra-oocyte hydrogen peroxide can
activate myeloperoxidase and deteriorate oocyte quality [44].

In contrast, cell-permeable AOXs used in this study affected significantly intracellular
ROS levels and/or morphological features of Xenopus oocytes and eggs. The cell-permeable
catalase/SOD mimetic, EUK 134, reduced dramatically intracellular levels of ROS in both
Xenopus oocytes and eggs (Figure 4), however it was moderately cytotoxic, eliciting the
cell death-associated phenotype (Figure 5). Quite surprisingly, the broad range free radical
scavenger BHA was ineffective in reducing ROS contents in the oocytes and eggs (Figure 4),
however it was cytotoxic too, producing distinctive death-associated phenotypes (Figure 5).
The adverse effect of EUK 134 on the oocytes may be related to the fact that certain levels
of ROS are indispensable for cell survival, and deep depletion of ROS by this drug might
be detrimental to oocyte function. It was reported that administration of broad-range
scavengers of oxidative species, such as BHA or N-acetyl cysteine, into the ovarian bursa
of mice, hormonally induced to ovulate, significantly reduced the rate of ovulation [45].
Evidently, the cytostatic effect of BHA on Xenopus oocytes observed in our study is not
related to modulation of intracellular ROS, however, it is still unclear why the drug failed
to reduce ROS levels in the oocytes and eggs.

Furthermore, our study demonstrates using the selective cell-permeable AOXs, such as
apocynin and MITO-TEMPO, that the major source of ROS in Xenopus oocytes and eggs is
the plasma membrane NADPH oxidase, and that mitochondrial generation also contributes
to the intracellular ROS content (Figure 4). Importantly, the inhibitor of NADPH oxidase,
apocynin, was found to exert beneficial effects on aging oocytes and eggs (Figures 5 and 6).
The drug alleviated, in a dose-dependent manner, senescence-specific phenotypic changes,
such as mottling and decoloring of the animal hemisphere in the aging oocytes (Figure 5).
It also helped to maintain functional activity of aging oocytes, as it was judged by their
boosted ability to respond to progesterone (Figure 5D). In the eggs, apocynin helped
to maintain the meiotic metaphase arrest, as revealed by the increased incidence of WS
and elevated MAPK phosphorylation in aging populations of eggs incubated with the
drug (Figure 6A–D). Moreover, apocynin inhibited dose-dependently caspase activation
in aging Xenopus eggs (Figure 6E), thus attenuating an apoptotic process that unfolds in
the unfertilized frog eggs after meiotic exit [30]. However, our study could not reveal
any beneficial effect of apocynin on in vitro fertilization of the aged eggs. Moreover, the
drug inhibited furrow formation, when present in media, necessitating its extensive wash
before fertilization (Figure 7). Thus, it appears that apocynin can exert both beneficial and
adverse effects on the eggs, and it is necessary to thoroughly refine the protocol of drug
administration to minimize its adverse influence.

Markedly, apocynin, a natural organic compound isolated from different plants
(Figure 1C), has been used previously in various pharmacological studies. Inhibiting
NADPH oxidase activity with apocynin was found to exert beneficial effects on skele-
tal muscle, cardiac and renal fibrosis [46–48]. The drug was reported to display anti-
inflammatory properties in acute lung inflammation [49,50] and in bronchial asthma [51]
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where oxidative stress was proven to be involved in disease pathogenesis; apocynin re-
duced ROS concentrations in exhaled breath condensate in asthmatics. More recently, it
was demonstrated that dietary supplementation of apocynin ameliorates an age-related
increase in ROS and delays mouse ovarian aging [52]. Now, our current study presents
for the first time an evidence for beneficial effects of apocynin on isolated in vitro cultured
oocytes and eggs. Identification of the novel AOX compound that can attenuate oxidative
stress and delay oocyte aging has the potential to improve fertilization success, especially,
in assisted reproduction. Another potential application of promoting oocyte longevity may
include advancement of CRISPR-mediated genome editing in Xenopus oocytes. A recently
developed method based on the use of isolated defolliculated oocytes of Xenopus laevis and
Xenopus tropicalis injected with Cas9 protein/sgRNA reported high-efficiency non-mosaic
CRISPR-mediated knock-in and indel mutation in the Xenopus model [33]. To achieve a
high frequency of mutation using this approach, the injected oocytes were incubated for as
long as 72 h, followed by in vitro maturation, thus necessitating delayed oocyte aging and
prolonged functional fitness.

5. Conclusions

In sum, our study demonstrates that (i) fluorescent cell-permeable dye DCFDA can be
employed for detection of intracellular ROS in isolated Xenopus oocytes and eggs; (ii) the
major source of ROS in the oocytes and eggs is the plasma membrane NADPH oxidase;
(iii) intracellular levels of ROS increase in aging frog oocytes and eggs; (iv) intracellular
levels of ROS in Xenopus oocytes and eggs can be efficiently modulated by cell-permeable
AOXs; (v) apocynin, the selective inhibitor of NADPH oxidase, exerts beneficial effects on
the aging oocytes and eggs.
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