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Commentary: Improving
ventricular assist device design.
Much achieved with further
innovation on the horizon
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Kumar Mondal, MSc, MPhil, PhD (right)

CENTRAL MESSAGE

Miyamoto et al present a novel
VAD design and demonstrate
preliminary acute in vivo valida-
tion. They demonstrate pulse
augmentation, easier weaning
assessment, and biventricular
possibilities.
Nandan Kumar Mondal, MSc, MPhil, PhD,a and
Ravi Kiran Ghanta, MD, FACSb

Implantable ventricular assist devices (VADs) have been a
“game-changer” in the management of end-stage heart fail-
ure as a bridge to heart transplantation, bridge to myocardial
recovery, and as destination therapy. Since the initial pivotal
REMATCH (Randomized Evaluation of Mechanical Assis-
tance for the Treatment of Congestive Heart Failure) trial in
2001, VAD use has increased, technology has continued to
advance, and biventricular options have been explored.1

Continuous-flow left VADs have become the dominant
VADs used clinically due to their favorable size, energy ef-
ficiency, and durability over pulsatile LVADs.2,3 Challenges
remain, specifically with bleeding, stroke, and pump throm-
bosis, requiring continued evolution and advancement of
VAD technology.

In this article in JTCVS Open, Miyamoto and col-
leagues4 from the Cleveland Clinic present a novel
VAD, which they call the “advanced VAD,” with prelimi-
nary validation in an acute in vivo study in calf models.
Their VAD design has a rotor that moves axially to allow
dynamic changes in aperture size based on pressure differ-
ential between the VAD inlet versus outlet. The investiga-
tors propose that this design enables performance over a
wider range of pressures and use in a right VAD and left
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VAD setting. The authors presented this novel design in
an in vitro benchtop model in 2016 and now have taken
the next step to demonstrate in vivo feasibility.5 While
this study is preliminary, the developed technology does
address 2 interesting areas of VAD development. The first
is the role of pulsatility. The physiologic implications of
loss of pulsatility are unclear, with some hypothesizing
that loss of pulsatility increases risk of gastrointestinal
bleeding, pump thrombosis, vascular stiffening, organ
fibrosis, and skeletal muscle wasting.6 Furthermore, in
bridge-to-transplant patients, the return of pulsatility may
also yield acute physiologic changes that may have impli-
cations in the post-transplant recovery period. The newest
clinically approved VAD, the HeartMate 3 LVAD (Abbott,
Chicago, Ill), creates an “artificial pulse” by software
modulation of pump parameters.7 The “advanced VAD”
by Miyamoto and colleagues provides pulse augmentation
with an aortic pulse pressure of 15 mm Hg with flow
dynamically varying from 0.2 to 6 L/min. This dynamic
pulse augmentation is an interesting feature that can be
further explored in chronic implantations. The second,
important feature is related to pump weaning. For myocar-
dial recovery, accurate assessment of underlying ventricu-
lar recovery is required to determine candidacy for VAD
removal. The VAD design in this study prevents any regur-
gitant flow through the pump, which may be an important
feature in clinical weaning assessment.
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In addition to the authors’design changes, other important
areas for future VAD development include the integration of
computer modeling and biomaterials. Circulating blood is
continuously experiencing nonphysiological elevated shear
stresses and in direct contact with VAD material surfaces.
The development of novel biomaterials may reduce throm-
bosis risk and further improve durability. A number of
research groups are targeting the role of non-physiological
high shear stress generated by VADs using computational
fluid dynamics to identify “hotspots” of shear stress to
further improve design.8 Furthermore, testing for hemolysis,
platelet activation, and platelet dysfunctions is very impor-
tant to understand how a new VAD can be responsible for
blood damage in both in vivo animal feasibility experiments
and human studies.9 Continued innovation in VAD design,
as pursued by Miyamoto and colleagues, should be pursued
to further improve clinical outcomes.
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