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Abstract

Objectives

Reduced cardiac β-adrenoceptor (β-AR) expression and cardiovascular dysfunction occur

in models of hyperglycemia and hypoinsulinemia. Cardiac β-AR expression in type-2 diabe-

tes models of hyperglycemia and hyperinsulinemia, remain less clear. This study investi-

gates cardiac β-AR expression in type-2 diabetic Zucker diabetic fatty (ZDF) rats.

Methods

Ex vivo biodistribution experiments with [3H]CGP12177 were performed in Zucker lean (ZL)

and ZDF rats at 10 and 16 weeks of age as diabetes develops. Blood glucose, body mass,

and diet consumption were measured. Western blotting of β-AR subtypes was completed in

parallel. Echocardiography was performed at 10 and 16 weeks to assess systolic and dia-

stolic function. Fasted plasma insulin, free fatty acids (FFA), leptin and fed-state insulin

were also measured.

Results

At 10 weeks, myocardial [3H]CGP12177 was normal in hyperglycemic ZDF (17±4.1mM)

compared to ZL, but reduced 16-25% at 16 weeks of age as diabetes and hyperglycemia

(22±2.4mM) progressed. Reduced β-AR expression not apparent at 10 weeks also devel-

oped by 16 weeks of age in ZDF brown adipose tissue. In the heart, Western blotting at 10

weeks indicated normal β1-AR (98±9%), reduced β2-AR (76±10%), and elevated β3-AR

(108±6). At 16 weeks, β1-AR expression became reduced (69±16%), β2-AR expression de-

creased further (68±14%), and β3-AR remained elevated, similar to 10 weeks (112±9%).
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While HR was reduced at 10 and 16 weeks in ZDF rats, no significant changes were ob-

served in diastolic or systolic function.

Conclusions

Cardiac β-AR are reduced over 6 weeks of sustained hyperglycemia in type-2 diabetic ZDF

rats. This indicates cardiac [3H]CGP12177 retention and β1- and β2-AR expression are in-

versely correlated with the progression of type-2 diabetes.

Introduction
Type-2 diabetes mellitus (DM) and associated complications are increasing globally [1]. Type-
2 DM is a risk factor for cardiovascular (CV) disease, even prior to clinical diagnosis [2]. Dia-
betic patients frequently have asymptomatic heart disease displaying subclinical diastolic dys-
function with left ventricular filling abnormalities and may develop systolic heart failure (HF)
with reduced percent ejection fraction (%EF) [3,4]. Type-2 DM is characterized by insulin and
leptin resistance, contributing to hyperglycemia and dyslipidemia, which are associated with al-
tered sympathetic nervous system (SNS) signaling and CV dysfunction [5–8].

SNS activation increases norepinephrine (NE) production and release from postganglionic
neurons into the synapse. Synaptic NE is tightly regulated, being metabolized and recaptured
via the norepinephrine-reuptake transporter (NET) [9] or binding post-synaptic adrenergic re-
ceptors. NE binding to cardiac β-adrenergic receptors (β-AR) activates adenylate cyclase in-
creasing cyclic adenosine monophosphate and calcium cycling, which elevates heart rate (HR)
and contractility [10]. Chronic activation of the SNS as indicated by elevated circulating NE
has been observed in DM and HF, and correlates with reduced NET expression and CV risk.
Small animal studies assessing NET with [11C]hydroxyephedrine and positron emission
tomorgraphy (PET) have identified a positive correlation between blood glucose, plasma NE
and subsequent reductions in cardiac NET in hyperglycemic rats [11]. Reduced post-synaptic
cardiac β-AR may also contribute to CV dysfunction in HF and DM [12–14]. The inverse cor-
relation between cardiac β-AR density and hyperglycemia is well defined in models of insulin
insufficiency like the streptozotocin (STZ) rat, but is not well characterized in models of type-2
DM [13–15]. Zucker diabetic fatty (ZDF) rats were selectively bred from the Zucker obese
strain to exhibit hyperglycemia and have a knock out for the gene encoding the leptin receptor
contributing to hyperleptinemia and increased fat mass. ZDF rats show early insulin resistance
and hyperinsulinemia and progressive hyperglycemia as pancreatic β-cell failure impairs insu-
lin secretion, similar to human type-2 DM [16,17]

4-(3-tert-Butylamino-2-Hydroxypropoxy)-Benzimidazol-2-One (CPG12177) is a non-selec-
tive β-AR antagonist [15,18]. Due to its hydrophilicity, CGP12177 binds to active receptors on
the cell surface [19]. [11C]CGP12177 PET studies in humans have shown a decrease in cardiac β-
AR in vivo in HF [12]. Reduced [3H]CGP12177 binding has been observed in the hearts of hy-
perglycemic STZ rats and corresponded with a reduction in β1-ARWestern blotting [14,15].
Echocardiographic studies indicate diastolic dysfunction develops as normal SNS signaling dete-
riorates in the hearts of STZ rats [11]. Adverse echocardiographic features have also been ob-
served in ZDF rats [20], but their association with changes in cardiac SNS signaling is not clear.
Changes in cardiac β-AR expression have not been well studied in type-2 diabetic models, such
as the ZDF rat. We hypothesize that the progression of type-2 DM in ZDF rats will correspond
with a parallel decrease in cardiac β-AR density as measured by ex vivo biodistribution studies
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using [3H]CGP12177 andWestern blotting. This downregulation is expected to develop with the
deterioration of left ventricular function measured by echocardiography.

Materials and Methods
[3H]CGP12177 (specific activity 41.6 Ci/mmol) was purchased from Perkin Elmer Health Sci-
ences (Toronto, ON, Canada). Antibodies against rat β1-AR (Ab3546) were purchased from
AbCam (Cambridge, MA, USA). Antibodies against β2-AR (SC-570), β3-AR (SC-1473), and
GAPDH (SC-32233) were purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, USA).
Secondary horseradish peroxidase conjugated IgG antibodies goat anti-rabbit (SC-2004), don-
key anti-goat (SC-2020), and donkey anti-mouse (SC-2314) were also purchased from Santa
Cruz Biotechnology.

Animals
Animal experiments were conducted in accordance with the recommendations of the Canadi-
an Council on Animal Care and with the approval of the Animal Care Committee of the Uni-
versity of Ottawa. Male Zucker lean (ZL) (n = 16) and ZDF rats (n = 22) were obtained from
Charles River Canada (Montreal, QC) between 8 and 16 weeks of age and housed individually
or in pairs and maintained on a 12h light/dark cycle with ad libitum access to food and water.
Rats were fed a diabetogenic diet (Purina 5008) consisting of 27% protein, 17% fat, and 56%
carbohydrate by kcal for the duration for the study.

Fed state blood glucose and body mass were monitored over the duration of the study. Diet
consumptions was measured and calculated at the terminal endpoints of 10 and 16 weeks of
age. Rats from each group were excluded from the [3H]CGP12177 biodistribution studies pro-
viding non-tritiated samples for Western blotting and fed-state measurements. A trunk blood
sample was collected during terminal biodistribution from fasted animals. Echocardiography
was performed at 10 and 16 weeks to assess systolic and diastolic function.

Ex vivo biodistribution
Ex vivo biodistribution experiments were performed as described elsewhere [15]. Briefly, re-
strained rats were injected via the tail vein with 8μCi (0.192 nmol) of [3H]CGP12177 in 200μL
of saline and decapitated 30 min post-tracer injection. Trunk blood was collected and used to
isolate plasma. Hearts, interscapular brown adipose tissue (BAT), and quadricep skeletal mus-
cle were rapidly excised. Hearts were dissected into left and right atria, left and right ventricular
free walls, and intraventricular septum. Samples (100mg) were processed for liquid scintillation
counting as described elsewhere [15]. Briefly isopropanol and H2O2 were added to solubilized
tissue in quaternary ammonium hydroxide (GE Healthcare, Montreal, QC, Canada) followed
by 10ml liquid scintillation fluid (GE Healthcare, Montreal, QC, Canada) with glacial acetic
acid (99+%) then counted using a Packard Tri-Carb liquid scintillation analyzer model 2100TR
(Meriden, CT, USA). Total uptake was expressed as [(cpm recovered/g tissue) / (cpm injected/
g body mass)].

Plasma markers
Plasma measures were performed in trunk plasma from fasted and/or fed animals. Insulin was
measured in fed and fasted animals using the Rat High-Range Insulin ELISA kit (ALPCO Bio-
technologies, Salem, NH, USA) [21]. Free fatty acids (FFA) were measured in fasted animals
using a colorimetric quantification kit (Biovision Research Products, Mountain View, CA,
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USA) [22]. Leptin was measured in fasted animals via radioimmunoassay (EMDMillipore, Bil-
lerica, MA, USA) [23].

HOMA-IR
Insulin resistance was estimated using the homeostatic model assessment of insulin resistance
(HOMA-IR), as defined by the equation: HOMA-IR = [(fasting glucose (mmol/L) x fasting in-
sulin (μIU/ml)] /22.5 [24].

Western blotting for β-AR subtypes
To provide a comparison for ex-vivo biodistribution experiments, and to observed changes in
β-AR subtype expression, Western blotting for cardiac β1-AR, β2-AR and β3-AR was per-
formed at 10 and 16 weeks on whole heart homogenates. Hearts were rapidly removed, frozen
in liquid nitrogen, hand-powdered and total protein lysate was extracted. Protein determina-
tion was performed by bicinchoninic acid assay. Protein was separated on 8% sodium dodecyl
sulfate-polyacrylamide reducing gels and transfered to an Immobilin-P polyvinylidene fluoride
membrane (Millipore, Belirica, MA, USA) [15]. Membranes were incubated in primary anti-
body: rabbit anti-β1-AR [15], rabbit anti-β2-AR [13], goat anti-β3-AR [13], and mouse anti-
GAPDH [15], then washed in TBST and incubated in the respective horseradish peroxidase
conjugated IgG secondary antibodies: goat anti-rabbit, donkey anti-goat, or donkey anti-
mouse. Proteins were visualized using enhanced chemiluminescence substrate for Western
blotting (Perkin Elmer Health Sciences, Toronto, ON, Canada) and the FluorChem 9900 Imag-
ing System (AlphaInnotech/Cell Biosciences, Santa Clara, CA). Blots were analyzed using
AlphaEase FC software with protein band densities normalized to GAPDH using three or
more replicates per measure [15].

Echocardiography
Echocardiography was performed at 10 and 16 weeks of age under light anesthesia (1–2% iso-
flurane) using the Vevo 770 high-resolution in vivomicro-imaging system (VisualSonis, To-
ronto, ON, Canada) with the RMV 716 probe at 23.5 MHz, to observed if changes in
cardiovascular function accompanied changes in β-AR expression and the progression of type-
2 DM. Parasternal long axis views were recorded as sequential ECG-gated M-mode sweeps
(EKV-mode) generating two dimensional cines of the left ventricle. The endocardial and
epicardial areas were traced on the two-dimensional parasternal long axis cines and used to cal-
culate left ventricular volumes at end systole and end diastole. Calculations for %EF and HR
were complete using VisualSonics software. Diastolic function was assessed using pulse-wave
Doppler across the mitral valve from the apical four chamber view. Transmitral early to atrial
flow velocity (E/A) and mitral valve deceleration (MVD) time provided an indication of dia-
stolic function [11,20].

Statistical Analysis
All data are presented as mean ± SD. Statistical analyses were carried out using two-tailed un-
paired Student’s t-tests. Significance was set as p<0.05.

Results

ZDF Rat Characteristics
Starting from 8 weeks of age, ZDF rats exhibited moderate hyperglycemia (8.9±1.7mM) com-
pared to ZL (5.9±0.27mM). During the course of the experiment blood glucose in ZDF
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gradually increased to 17±4.1 mM at 10 weeks, and began to plateau at 19±2.3 mM by 12
weeks, reaching 22±2.4 mM by 16 weeks (Fig 1A). ZDF had a significantly greater body mass
than ZL controls (259±17g versus 212±18g) starting at 8 weeks of age (Fig 1B). The increase in
ZDF body mass began to plateau and was not significantly greater than ZL by 12 weeks. At 16
weeks ZL rats were 409±31g and ZDF rats were 378±30g despite the qualitative appearance of
greater body fat in ZDF rats. Diet consumption in kcal per day was calculated at 10 and 16
weeks in line with terminal biodistribution experiments. At 10 weeks ZDF animals consumed
significantly more than ZL controls (99±8.7 versus 67±3.2 kcal/day respectively), a trend that
was exaggerated by 16 weeks (190±27 kcal/day versus 120±1.4 kcal/day) (Fig 1C). HOMA-IR
was significantly elevated in ZDF rats by 68% and 75% at 10 and 16 weeks of age respectively
(Table 1).

Plasma Insulin, FFA, and Leptin
Relative to ZL, fasted and fed state plasma insulin were significantly higher by 57 and 72% re-
spectively in ZDF at 10 weeks. These elevations in plasma insulin were no longer apparent at
16 weeks. Fasted plasma FFA and leptin were persistently elevated in ZDF animals at 10 and 16
weeks of age compared to ZL controls (Table 1).

[3H]CGP12177 Binding
At 10 weeks, uptake of [3H]CGP12177 was similar in ZL and ZDF animals across myocardial
regions. No differences in [3H]CGP12177 binding were evident in BAT or skeletal muscle,
while small but significant increases were observed in ZDF blood and plasma (Fig 2A). At 16
weeks, ZDF animals had a significant reduction in [3H]CGP12177 uptake in all myocardial re-
gions of about 16–25% relative to ZL. Uptake was also 67% lower in ZDF BAT. Consistent with
10 weeks, no changes were observed in skeletal muscle uptake and small but significant in-
creases were observed in ZDF blood (Fig 2B).

Western blot for β-AR Subtypes
Western blotting at 10 weeks of age showed no difference in cardiac β1-AR expression between
ZL and ZDF animals, but by 16 weeks β1-AR expression was reduced 32±16 in ZDF (Fig
3A,3D and 3G). ZDF cardiac β2-AR expression was 24±10% lower at 10 weeks and was de-
creased by 32±14% at 16 weeks relative to ZL (Fig 3B,3E and 3H). Cardiac β3-AR expression
exhibited modest but significant elevations in ZDF animals of 8±6% at 10 weeks and 12±9% at
16 weeks of age (Fig 3C,3F and 3I).

Echocardiography
ZDF animals exhibited persistent bradycardia (Fig 4A). No differences were apparent in %EF,
mitral E/A, or MVD at 10 weeks. At 16 weeks of age, there were trends toward reduced %EF
(p = 0.12) (Fig 4B), extended MVD time (p = 0.06) (Fig 4C), and reduced E/A (p = 0.09)
(Fig 4D) in ZDF rats, but these did not reach significance.

Discussion
Our results demonstrated that cardiac β-AR expression decreased as type-2 diabetes progressed
in ZDF rats between 10 and 16 weeks of age and before systolic or diastolic function deteriorat-
ed as estimated by echocardiography. The presentation of dyslipidemia and hyperleptinemia in
ZDF rats are also consistent with type-2 DM. Insulin resistance impairs myocardial energetics
[25] and is associated with adverse echocardiographic features and risk of HF [26]. Reduced
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Fig 1. Animal model characteristics of ZDF and ZL animals. Blood glucose (A), body mass (B), and diet
consumed (C). Data are mean ± SD. n = 7–10 per group. *p<0.05 vs ZL, Students t-test.

doi:10.1371/journal.pone.0127581.g001
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Table 1. Plasma Insulin, FFA, Leptin, and HOMA-IR Measurements.

Fed Fasted

Group Insulin (ng/mL) Insulin (ng/mL) FFA (mmol/L) Leptin (ng/mL) HOMA-IR

10 weeks 16 weeks 10 weeks 16 weeks 10 weeks 16 weeks 10 weeks 16 weeks 10 weeks 16 weeks

ZL 1.94±0.30 3.15±0.94 1.69±0.41 1.55±0.41 0.08±0.02 0.06±0.01 2.55±1.1 5.28±0.55 11.6±3.7 10.6±2.8

ZDF 6.89±1.2* 2.57±0.42 3.94±1.4* 1.88±0.68* 0.34±0.12* 0.29±0.02* 30.7±2.7* 25.1±9.0* 36.7±11* 42.8±24*

FFA: free fatty acids; HOMA-IR: homeostatic model of insulin resistance; Insulin was measured in the fed and fasted states, FFA and Leptin were

measured in the fasted state only. HOMA-IR was calculated from fasted glucose and insulin. Data are mean ± SD

*p<0.05 to ZL, Student's t-test; n = 3 in fed state and n = 4–7 in fasted state per group.

doi:10.1371/journal.pone.0127581.t001

Fig 2. Total uptake of [3H]CGP12177. Total uptake [3H]CGP12177 in RA, LA, RV, LV, IVS, Skm, BAT, blood, and plasma of 10 (A) and 16 (B) week old ZDF
and ZL. Total uptake expressed as [(cpm / g tissue) / (cpm injected / g body mass)]. RA: right atrium; LA: left atrium; RV: right ventricular free wall; LV: left
ventricular free wall; IVS: intraventricular septum; Skm: quadriceps skeletal muscle; BAT: interscapular brown adipose tissue; cpm: counts per minute. Data
are mean ± SD. n = 5–8 per group at each time point. *p<0.05 vs ZL, Student’s t-test.

doi:10.1371/journal.pone.0127581.g002
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glucose uptake occurs in the failing myocardium, even in non-diabetics [27]. As ZDF rats age,
reduced plasma insulin correlates with the progression of hyperglycemia to levels beyond those
observed in younger hyperinsulemic rats [17] and appears related to β-cell apoptosis, similar to
human type-2 DM [28,29]. Hyperglycemia is a risk factor for CV disease and inversely corre-
lated with cardiac sympathetic innervation [25]. Hyperglycemia and insulin resistance in ZDF
contribute to increased FFA mobilization and dyslipidemia, which correlate with CV risk in
type-2 DM that can be reduced with insulin sensitizers [26]. Studies underscore the importance
of hyperglycemia in altered SNS function, indicating greater plasma NE in hyperglycemic ZDF
rats than in euglycemic Zucker obese rats [27] and more extensive SNS dysregulation and CV
dysfunction in type-2 diabetics compared to glucose tolerant obese humans [6,7]. The relation
between hyperglycemia and abnormal SNS is further supported by the observation that reduc-
ing blood glucose with insulin can attenuate cardiac autonomic neuropathy in type-1 DM pa-
tients [28] as well as reduce NE and restore cardiac NET expression in STZ rats [11]. The
benefits of glycemic control on the cardiac SNS are less clear in type-2 DM [29,30]. The insulin
sensitizer rosiglitazone reduces glycosilated hemoglobin in ZDF rats improving myocardial
glucose utilization and reducing myocardial FFA uptake [31]. This work suggests that ZDF rats

Fig 3. Western blot analysis of cardiac β-AR subtypes. Expression relative to ZL of cardiac β1-AR (A), β2-AR (B), and β3-AR (C) at 10 and 16 weeks of
age. Representative 10 week blots for cardiac β1-AR (D), β2-AR (E), and β3-AR (E). Representative 16 week blots for cardiac β1-AR (F), β2-AR (G), and β3-
AR (H). Relative expression compared with ZL is combined from at least 3 Western blot analyses. n = 3 per group. Data are mean ± SD. *p<0.05 vs ZL,
Student’s t-test.

doi:10.1371/journal.pone.0127581.g003
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with intact insulin production may therefore be an excellent rat model for exploring the bene-
fits of glycemic control with insulin sensitizers on the SNS and CV function in type-2 DM.

Reduced cardiac [3H]CGP12177 retention at 16 weeks of age but not at 10 weeks suggests
β-AR expression in ZDF rats is inversely correlated with the progression type-2 DM. Reduced
myocardial β-AR expression appears to be associated with reduced binding in BAT, which
also exhibits high β-AR expression [32,33]. Expression of β2-AR on rat erythrocytes accounts
for the greater activity in the blood relative to plasma in both groups [34], but it remains un-
clear why activity is greater in ZDF blood than ZL. Increased activity in ZDF blood may indi-
cate changes in erythrocyte β-AR expression, however the absence of any apparent change in
blood activity between 10 and 16 weeks appears to indicate this is not influencing the reduc-
tion in ZDF myocardial uptake. In the heart, β1- and β2-AR exhibit stimulatory G protein-
coupling, and their downregulation is described as a compensation for hyperstimulation by
NE in DM and HF [11,35,36]. β2-AR coupling can switch to inhibitory G protein and may
thereby offer cardioprotection by limiting NE signal transduction, suggesting their reduction
may contribute to cardiotoxicity [37, 38]. While reduced β2-AR and increased β3-AR expres-
sion were evident at 10 and 16 weeks, decreased [3H]CGP12177 binding was not evident
until 16 weeks as β1-AR immunoblotting declined, indicating [3H]CGP12177 binding in the
heart depended predominantly on β1-AR expression. The redistribution of β2-AR from deep
transverse tubules in the healthy heart to the cell surface following myocardial infarction

Fig 4. Assessment of systolic and diastolic function. Echocardiographic assessment of HR (A), %EF (B), mitral valve E/A (C), and MVD (D) in ZL and
ZDF at 10 and 16 weeks of age. n = 4 per group. Data are mean ± SD. *p<0.05 vs ZL at a given time point, Student’s t-test.

doi:10.1371/journal.pone.0127581.g004
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suggests the observed decrease in β2-AR may reflect a loss of receptors expressed in the trans-
verse tubules rather than the cell surface [37, 38]. This may be why reduced β2-AR expression
observed by Western blotting did not appear to have a large impact on [3H]CGP12177 bind-
ing at the cell surface. The greater dependence of [3H]CGP12177 binding on cardiac β1-AR is
also supported by the greater relative expression of β1-AR in the healthy rat heart of about
62:30:8 compared to β2- and β3-AR [13]. In vitroWestern blotting and reverse transcription
polymerase chain reaction studies in the hearts type-1 DM STZ rats also indicate that β1-AR
displays the greatest relative reduction [13,14]. Increased specificity of CGP12177 for β1-AR
compared to β2-AR and β3-AR may also have an impact on this effect [14,18,32]. Elevations
in cardiac β3-AR expression are described in DM and HF, and β3-AR stimulation may be car-
dioprotective contributing to vasodilation through endothelial nitrous oxide production
[39,40]. STZ rats have normal [3H]CGP12177 uptake early after the induction of hyperglyce-
mia, but binding of [3H]CGP12177 to cardiac β-AR becomes reduced by up to 50% after 6 to
8 weeks of sustained hyperglycemia HHHHhjhsdjfbsdlvhbasekjfvbadsrjvkbasrejfbw[14,15].
While ZDF animals present a significant and constant elevation in blood glucose similar to
STZ rats, the increase in ZDF blood glucose is gradual and plateaus around 20mM compared
to STZ rats that rapidly become hyperglycemic with blood glucose approaching 30mM fol-
lowing STZ-treatment. Consistent with less extreme hyperglycemia, ZDF rats also have intact
native insulin production, while STZ rats are hypoinsulinemic [13,15]. The greater reduction
in [3H]CGP12177 binding in STZ compared to ZDF rats indicates that cardiac β-AR are in-
versely proportional to the magnitude of hyperglycemia, and their reduction may be further
exacerbated by the development of hypoinsulinemia in diabetic animals.

A slower HR is commonly observed in ZDF rats [27,41,42], but changes in other cardio-
vascular parameters such as left ventricular filling are less consistent. Millar catheter studies
indicate only mild diastolic dysfunction by 44 weeks of age with a small but significant in-
crease in the Tau constant [41], while echocardiography indicated prolonged MVD and re-
duced E wave velocity in 14 week old ZDF rats [20]. Similar contradictions exist in assessing
systolic function in ZDF rats, with reports showing reduced %EF by 14 weeks [20,27], while
others indicate normal systolic function in 44 week old ZDF [41] or even increased function
in 19 week ZDF animals [42]. Given the different ages at which these studies assess CV func-
tion and the relatively similar blood glucose values, it remains unclear why these contradic-
tions exist. Our findings appear consistent with a trend toward impaired diastolic and
systolic function with a tendency toward prolonged MVD (p = 0.06), reduced E/A (p = 0.09),
and reduced %EF (p = 0.12). The significant reduction in cardiac β-AR density in the absence
of a significant change in cardiac function in our study indicates that CGP12177 could offer
useful prognostic information prior to overt CV dysfunction in type-2 DM. CV dysfunction
in diabetic patients may be difficult to detect with perfusion imaging [43], but appears to cor-
relate well with markers of sympathetic function like iodine-123-metaiodobenzylguanidine
single-photon emission computed tomography [25]. This would suggest imaging with [11C]
CGP12177 PET may also be useful to identify patients at risk of cardiac events and help to de-
fine a therapeutic window for intervention before overt diastolic or systolic
dysfunction develop.

In conclusion, binding of [3H]CGP12177 to cardiac β-AR is reduced between 10 and 16
weeks of age as type-2 DM progresses in ZDF rats. Western blotting indicates that while cardi-
ac β1- and β2-AR are reduced, β3-AR expression is increased. ZDF rats have a slower HR as
early as 10 weeks of age, with no significant changes in %EF or diastolic filling by 16 weeks.
While tritium biodistribution studies underscore the potential of CGP12177 as an imaging
agent, further preclinical imaging studies using a [11C] labeled derivative are warranted.
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