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Abstract: The lamellar structure of graphene oxide and the filling effect of nano-cerium oxide particles
together provide a good barrier and stability to coating. In this paper, cerium oxide-graphene oxide
(4:1) nanocomposite was prepared by the hydrothermal synthesis method. The effect of cerium
oxide–graphene oxide (4:1) nanocomposite on the anticorrosion properties of epoxy coating in
simulated acid rain solution was studied by open circuit potential (OCP), electrochemical impedance
spectroscopy (EIS), Mott–Schottky curve, Tafel curve, and micromorphological characterization,
in order to compare it with pure epoxy coating, graphene oxide epoxy coating, and cerium oxide
epoxy coating. The obtained results showed that cerium oxide–graphene oxide (4:1) epoxy coating’s
protection efficiency was as high as 98.62%. These results indicated that cerium oxide–graphene oxide
modified anticorrosive coating had an excellent application prospect in an acid rain environment.
Meanwhile, owing to the poor protection ability of epoxy resin and unstably hydrolysis product of
CeO2 to the acidic medium, the resistance of CeO2–GO (4:1)/EP coating to acidic corrosive medium
was relatively poorer than that of neutral and saline-alkali corrosive medium.

Keywords: CeO2; nanocomposite; electrochemistry; EIS; acid rain

1. Introduction

With the continuous development of human civilization, metal materials are widely
used in different environments, such as the construction industry, the shipbuilding industry,
and the machinery manufacturing industry. Despite the excellent properties of metal mate-
rials, the corrosion is an inevitable challenge during its service life, which is bound to result
in the deterioration of the macro-performance of metal-based infrastructures. According to
the previous research, global metal corrosion costs $2.5 trillion annually, or 3.4% of global
annual gross domestic product (GDP) [1,2]. This process of the rapid development of world
economic construction was closely dependent on traditional fossil energy: oil, kerosene,
and natural gas, accompanied by considerable emissions of pollutant gas, including SO2,
NO2, carbon oxides, and sulfides. Pollutant gas can form corrosive medium in rainy and
snowy weather–acid rain [3], which is considered a global environmental problem. It is
widely accepted that acid rain not only causes acidification of surface waters and disrupts
normal metabolic and reproductive systems, but also erodes concrete buildings and metal
materials [4–6]. Basically, rainwater just provides the required electrolytes for the corrosion
of metals, and the sedimentation of rainwater also had a scouring and damaging effect
on metals, forming the electrochemical dissolution and scouring interaction between the
corrosion mechanisms of metals by rainwater [7].
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Commonly used metal anti-corrosion methods include corrosion-resistant alloys, anti-
corrosion coatings, corrosion inhibitor protection, electrochemical protection, and other
methods [1]. However, overall, considering the protection efficiency and the economic costs,
the anti-corrosion coating was the most widely used way to improve the anti-corrosion
resistance of the materials [8–11]. Essentially, the coating can act as a physical barrier
against corrosive media, which will protect the metal materials from the corrosion ions.
Anti-corrosion coatings are widely used in acid rain and acid environments. Li et al. [12]
investigated the corrosion resistance of an Ni-P coating on A3 steel in an acid rain envi-
ronment, and found that the corrosion resistance of the coating was better than that of
1Cr18Ni9Ti stainless steel. Liu et al. [13] prepared a graphene anti-corrosion coating with
a silane coupling agent and found that the coating had good corrosion resistance to salt
spray. Nagai et al. [14] studied the corrosion resistance of diamond-like carbon (DLC)
coatings in hydrochloric, nitric, and sulfuric acid solutions, and the experimental results
proved that DLC coatings reduced the elution of metal ions in each acid solution by more
than 90 percent. Wang et al. [15] developed a pH-reactive epoxy resin composite coating
that would release nano-benzotriazole to display good anti-corrosion and active repair
functions. Owing to metal cations being extremely active in an acidic environment, the
addition of the nano material modification method can show a better protective effect.

Graphene had a unique two-dimensional structure, with a high specific surface area,
high strength, toughness, good chemical stability, impermeability to most molecules, and
excellent conductivity. Graphene oxide (GO) had good compatibility, which means it can be
coated onto the metal surface in an easier way. GO can significantly improve the corrosion
resistance of substrate materials and is widely used in anti-corrosion and wear-resistant
coatings [16–19]. Ryu et al. [20] proposed electrophoretic deposition (EPD) to coat GO with
varying sizes on the surface of steel components and found that the corrosion resistance of
steel components increased with the size of GO. Verma et al. [21] used graphene nanosheets
to enhance the Al–Ti coating, while the seawater wear rate of the coating decreased from
11 × 10−14 m3/Nm to 4 × 10−14 m3/Nm. Fan et al. [22] introduced an amino group on the
surface of graphene to obtain a modified graphene oxide composite coating, and the coating
containing modified graphene oxide was 10 times more corrosive than the coating without
it. Geng et al. [23] developed a graphene-oxide-modified silane composite coating with
a thickness of 45 µm to perform good corrosion resistance, and the maximum protection
efficiency under chloride ion medium reached 99.36%.

Owing to its inherent hydroxyl groups, nano-oxides such as SiO2 and TiO2 can be
attached to the surface of GO for surface modification. The increase in oxygen-containing
functional groups on GO makes it more reactive than graphene and can improve its
properties through various reactions with oxygen-containing functional groups. The hybrid
material with a coupling effect can be uniformly dispersed in the coating to improve the
interface bonding strength [5,24,25]. Rare earth elements as corrosion inhibitors have a
positive adjustment effect on the coating structure [26–29]. Cerium oxide (CeO2) is a typical
rare earth element oxide. The coating doped with nanometer CeO2 has better corrosion
resistance and penetration resistance [30]. Wu et al. [31] discussed that the adsorption of
CeO2 on the surface of low-carbon steel can form a passivation layer and further inhibit the
corrosion of the metal. Li et al. [32] prepared a graphite/CeO2-reinforced Co-based coating
to study the synergistic effect of graphite and CeO2, which led to an improvement in the
microhardness, wear resistance, and corrosion resistance of the coating. You et al. [33]
studied the NiCo-CeO2 composite coating with excellent corrosion resistance when the
nano-CeO2 particle concentration was 10 g/L. The polarization resistance of the graphene-
p-aminobenzoic acid-CeO2 coating prepared by Li et al. [34] was four times higher than
that of the blank coating, and the corrosion resistance was greatly improved. An et al. [35]
investigated 1 wt% CeO2/epoxy and VTEO-CeO2/epoxy coatings, finding that they had the
highest system resistance value of 2.96 × 105 ohm·cm2 after being exposed to 3.5 wt% NaCl
solution for 240 h. Liu et al. [36] studied CeO2–GO nanocomposites with different CeO2 to
GO mass ratios by the hydrothermal synthesis method and indicated that the CeO2–GO (4:1)
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nanocomposite had excellent anticorrosion properties and eliminated the agglomeration of
graphene oxide to some extent. It also analyzed CeO2–GO (4:1) epoxy coating had excellent
anticorrosion properties in seawater and saline–alkali environments [37,38].

This work investigated the effect of the preparing the CeO2–GO (4:1) nanocomposite
by the hydrothermal synthesis method on the anticorrosion properties of epoxy coating
in simulated acid rain solution. The corrosion situation was observed by open circuit
potential (OCP), electrochemical impedance spectroscopy (EIS), Mott–Schottky curve, Tafel
curve, and stereo microscope. The effect of time extension on the corrosion resistance was
also evaluated and the results indicated that the CeO2–GO (4:1)/EP coating had excellent
barrier performance to the erosive medium. At the same time, the accumulation of corrosion
products and the good compactness of the coating limited the further penetration of erosive
ions and slowed the corrosion rate. The results of this work are expected to enhance the
application of cerium oxide-modified graphene oxide anticorrosive coating in an acidic
engineering environment.

2. Materials and Methods
2.1. Raw Materials

In this study, graphene oxide (SE2430W) was purchased from Changzhou Sixth Ele-
ment Materials Technology Co., Ltd., Changzhou, China. The basic performance parameters
of graphene oxide were obtained experimentally, as listed in Table 1. The epoxy (WSR6101
E-44) and epoxy AB glue were supplied by Nantong Xingchen Synthetic Material Co.,
Ltd., Nantong, China. The cerium hexahydrate nitrate ((CeNO3)3·6H2O) was an analytical
reagent obtained from Shanghai Aladdin Bio-Chem Technology Co., Ltd., Shanghai, China.
The acetone (CH3COCH3), ammonium hydroxide, sodium sulfate (NaSO4), and nitric acid
(HNO3) were supplied by Chengdu Colon Chemicals Co., Ltd., Chengdu, China. In the
experiment, Q235 carbon steel with a height of 5 mm and a diameter of 10 mm was used
to evaluate the anticorrosion performance of the developed coatings. Table 2 shows the
composition of Q235 carbon steel.

Table 1. Basic performance parameters of graphene oxide.

Solid Content (%) pH Viscosity (mPa·S) Mass Fraction of
C (%)

Mass Fraction of
O (%)

Mass Fraction of
Cl (%)

45 ± 5 1.7 ± 0.3 ≥2500 47 ± 3 42 ± 4 <1.0

Table 2. Composition of Q235 carbon steel.

Component C Mn Si S P

Mass fraction 0.15 0.49 0.29 0.042 0.026

2.2. Preparation of CeO2–GO (4:1) Nanocomposite Epoxy Coating

CeO2–GO (4:1) nanocomposites were prepared using a hydrothermal synthesis
method [39]. Previous research has illustrated that the CeO2–GO (4:1) nanocomposite
eliminated the agglomeration of graphene and prepared a graphene epoxy coating
with good dispersion. Figure 1 shows the micromorphological features of CeO2–GO
nanocomposites. Above all, in order to obtain the thin-flake GO, a certain amount of
GO slurry was weighed and dissolved in dialyzed water. Afterwards, the thin-flake GO
was stripped by an ultrasonic cell crusher(Shanghai Jingxin Industrial Development Co.,
Ltd., Shanghai, China). After this, an appropriate amount of cerium nitrate hexahydrate
was mixed with the GO solution, followed by ultrasonic stirring and magnetic stirring
for 30 min, respectively. Ammonium hydroxide was then added after the solution was
stirred for an adequate dispersion condition. Next, the obtained solution was placed
into a high-pressure reaction kettle and reacted for 24 h at 180 ◦C. Finally, the solution
was washed and filtered by deionized water and anhydrous ethanol, respectively, before
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extracting the solid phase in the solution. The extracted solid phase was dried and
grounded to obtain CeO2–GO nanocomposites. According to the above process, the
CeO2–GO nanocomposite with a mass ratio of CeO2/GO = 4:1 was prepared for further
manufacturing of CeO2–GO (4:1) epoxy coating.
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Figure 1. Transmission electron micrographs: (a) CeO2–GO (2:1); (b) CeO2–GO (4:1); (c) CeO2–GO
(6:1); (d) CeO2–GO (8:1) [36].

The cylindrical Q235 carbon steel was used for inspection work to compare the anti-
corrosion performance of each coating. The steps for preparing the sample were as follows.
Initially, the copper conductor was fixed on one surface of the steel sample, so that the
unconnected copper conductor had one side down. Then, the steel was placed in the center
of a cylindrical plastic mold with 20 mm in diameter and 15 mm in height. Next, the
AB epoxy was allowed to fill the entire mold until it covered the top surface of the steel
sample, and the mixture remained in the mold for 24 h in order to fully harden the epoxy.
After the sample was demolded, in order to expose the steel sample on the bottom surface
and obtain a relatively smooth bottom surface to improve the direct connection between
the coating and the steel sample, it is necessary to remove the excess AB epoxy resin, so
the bottom surface of the sample was grinded and polished sequentially with 400-, 800-,
1000-, 1200-, and 2000-mesh abrasive papers. CeO2–GO (4:1), 0.5% by mass of epoxy resin
(by mass), was added to 4 g of epoxy resin after a 30 min ultrasonic dispersion process.
After the above, in order to improve the mixture even futher, the mixture was heated with
magnetic stirring for 30 min, and the acetone in the mixture could be evaporated. The
prepared mixture was coated on the bottom surface of Q235 steel with a coating machine,
and the coating thickness was controlled to be 100 µm by a thickness gauge Finally, the
CeO2–GO (4:1)/EP composite coating was obtained after being cured at room temperature
for 24 h. The CeO2/EP coating and GO/EP coating were prepared in a similar manner for
comparison. Figure 2 shows the coating’s sample diagram.
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2.3. Preparation of Simulated Acid Rain Solution

In the acid rain, SO4
2− and NO3

− are the main acid-causing substances, which are
converted from sulfur oxides (SO2) and nitrogen oxides (NO, NO2). The pH of the simulated
acid rain solution was set to be 2.3 in this research. In order to prepare simulated sulfuric
acid rain and nitric acid rain, Na2SO4 solution with a concentration of 1 g/L was prepared,
and its pH was adjusted to 2.3 with HNO3.

2.4. Testing Procedures
2.4.1. Micromorphological Characterization

HIROX-KH7700 stereomicroscope (Shanghai HIROX Instrument Technology Co., Ltd.,
Shanghai, China) was used to observe the corrosion condition of the substrate coated with
each coating. Three-dimensional morphologies of corroded parts on metal substrates were
fitted. The corroded areas of metal substrates were analyzed and calculated by contour
maps of different depths, as well as the corrosion depth.

2.4.2. Electrochemical Testing

The electrochemical workstation of PARSTAT 2273 type (AMETEK Group of Compa-
nies, San Diego, CA, USA) was used for electrochemical testing. The main test methods
included open circuit potential test (OCP), electrochemical impedance spectroscopy (EIS),
Tafel curve test, and Mott–Schottky curve test. The scanning range of open circuit potential
(OCP) was −200 mV~1200 mV. The frequency range of EIS was 105~10−2 Hz, and the
amplitude was 10 mV. The scanning range of the potentiometric polarization curve was
−300~300 mV, and the scanning rate was 1 m V/s. The adopted Mott–Schottky frequency
was 1000 Hz, and the scanning interval was −1~0.5 V. Previous research indicated exces-
sive amount of CeO2 particle would gradually agglomerate together by the GO tablets,
leading to poor dispersion performance, while a minor amount of CeO2 particle could not
improve the aggregation of GO effectively to show good anticorrosion. CeO2–GO (4:1)
nanocomposites eliminated the agglomeration of graphene to some extent, as well as the
graphene, and further promoted the coating’s anti-corrosion performance. The samples of
EP coating, GO/EP coating, CeO2/EP coating, and CeO2–GO (4:1)/EP coating, denoted as
C1, C2, C3, and C4, respectively, were tested and compared.

3. Anti-Corrosion Performance
3.1. Open Circuit Potential (OCP) Analysis

Figure 3 shows the open circuit potential for C1, C2, C3, and C4 after being immersed
in the simulated acid rain solution for 1 d, 11 d, 21 d, and 31 d. It can be seen from Figure 3
that the open circuit potential of C4 was the largest, which was −580 mV after immersion
for 31 d, while the open circuit potential of C3 was −584 mV, that of C2 was −596 mV,
and that of C1 was −601 mV. Generally, the numerical value of the open circuit potential
represents the magnitude of corrosion tendency [40] and, the smaller the open circuit
potential, the lower corrosion tendency. Thus, C4 has the smallest corrosion tendency.
When considering its time-dependent performance, resulting from the penetration of the
corrosive medium, the protective performance of the coating decreases and the open circuit
potential decreases. The open circuit potentials of the coatings all tended to decrease first
and then increase. Considering that the corrosive solution is acidic with a pH of 2.3, it has
strong erosiveness to the coating, with the open circuit potentials decreased. When the
metal oxides are adsorbed on the surface of the metal substrate, the further development of
corrosion is delayed, so the open circuit potential tends to decrease and be stable. When
corrosion begins to occur, C1 is very poor in anticorrosion and the rebar corrodes severely.
Owing to the accumulation of corrosion products, the open circuit potential of C1 was
improved at 10 d, and then seriously failed.
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The open circuit potentials of the four coatings showed little difference after being
immersed for 31 d. When the pH of the solution is greater than 5, the corrosion of the
metal substrate is mainly oxygen absorption corrosion. However, in severe acid rain
environments (pH < 4.7), the main corrosion is hydrogen evolution corrosion. At the
same time, the acid corrosive medium corrodes the metal substrate more severely than the
neutral and alkaline corrosive medium, and the substrate undergoes hydrogen evolution
corrosion and generates Fe2+ at a faster rate. The open circuit potential showed that the
corrosion tendency of the four coatings was C1 > C2 > C3 > C4.

3.2. Electrochemical Alternating Current Impedance Spectroscopy (EIS) Analysis

Figures 4–7 show the Nyquist patterns of carbon steel coated with C1, C2, C3, and
C4 immersed in the simulate acid rain solution for 1 d, 11 d, 21 d, and 31 d. As can
be seen from Figure 4, the capacitive arc radius of C4 was significantly larger than that
of the other three coatings after soaking for 1 d. The results indicated that C4 had the
largest resistance value and the best anticorrosion performance. However, by observing the
curves of C1, C2, and C3, it was found that incomplete capacitive reactance arcs appeared
in the high frequency region, caused by the phase shift of high frequency capacitive
reactance. The appearance of such a high-frequency incomplete semi-circle could not
truly reflect the surface state of the coating. The reason for this phenomenon is mainly
the poor barrier and shielding performance of the coating. Thus, its impedance is small.
Meanwhile, the species and concentration of ions in the simulated acid soaking solution are
lower than those in the saline-alkali solution, and the migration rate of the ions decreases,
resulting in the conductivity of the solution [38]. In addition, owing to the existence of
the internal resistance of the reference electrode, the abovementioned three factors work
together to cause a high-frequency capacitive phase shift in the impedance spectrum. The
high-frequency phase shift end point can reflect the performance of the coating to a certain
extent. The higher the end point of the high-frequency phase shift, the higher the impedance
modulus of the starting point.



Polymers 2022, 14, 3573 7 of 16

Polymers 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

The higher the end point of the high-frequency phase shift, the higher the impedance 

modulus of the starting point. 

 
  (a) (b) 

Figure 4. Nyquist plots of coatings after immersion for 1 d: (a) Nyquist patterns for 1 d and (b) 

enlarged view of the high frequency of Nyquist patterns. 

 
  (a) (b) 

Figure 5. Nyquist plots of coatings after immersion for 11 d: (a) Nyquist patterns for 11 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  

 
  (a) (b) 

Figure 6. Nyquist plots of coatings after immersion for 21 d: (a) Nyquist patterns for 21 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  

Figure 4. Nyquist plots of coatings after immersion for 1 d: (a) Nyquist patterns for 1 d and
(b) enlarged view of the high frequency of Nyquist patterns.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

The higher the end point of the high-frequency phase shift, the higher the impedance 

modulus of the starting point. 

 
  (a) (b) 

Figure 4. Nyquist plots of coatings after immersion for 1 d: (a) Nyquist patterns for 1 d and (b) 

enlarged view of the high frequency of Nyquist patterns. 

 
  (a) (b) 

Figure 5. Nyquist plots of coatings after immersion for 11 d: (a) Nyquist patterns for 11 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  

 
  (a) (b) 

Figure 6. Nyquist plots of coatings after immersion for 21 d: (a) Nyquist patterns for 21 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  

Figure 5. Nyquist plots of coatings after immersion for 11 d: (a) Nyquist patterns for 11 d and (b)
enlarged view of the high frequency of Nyquist patterns.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

The higher the end point of the high-frequency phase shift, the higher the impedance 

modulus of the starting point. 

 
  (a) (b) 

Figure 4. Nyquist plots of coatings after immersion for 1 d: (a) Nyquist patterns for 1 d and (b) 

enlarged view of the high frequency of Nyquist patterns. 

 
  (a) (b) 

Figure 5. Nyquist plots of coatings after immersion for 11 d: (a) Nyquist patterns for 11 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  

 
  (a) (b) 

Figure 6. Nyquist plots of coatings after immersion for 21 d: (a) Nyquist patterns for 21 d and (b) 

enlarged view of the high frequency of Nyquist patterns.  
Figure 6. Nyquist plots of coatings after immersion for 21 d: (a) Nyquist patterns for 21 d and
(b) enlarged view of the high frequency of Nyquist patterns.



Polymers 2022, 14, 3573 8 of 16

Figure 7. Nyquist plots of coatings after immersion for 31 d: (a) Nyquist patterns for 31 d and
(b) enlarged view of the high frequency of Nyquist patterns.

By comparison, it can be found that the impedance modulus value at the end point
of the high-frequency phase shift of the three is C3 > C2 > C1. With the prolongation
of immersion time, the capacitive arc radius of each coating decreases continuously and
the high-frequency phase shift point keeps moving to the left, indicating that the erosive
ions continue to invade the coating. The capacitive arc radius of C4 maintained a high
level, which indicates excellent anticorrosion performance. It can be seen from Figures 4–7
that C4 exhibited a high-frequency capacitive resistivity phase shift for the first time after
immersion for 31 days and its impedance value was always large, while the capacitive reac-
tance arc and high-frequency phase shift point of the other three coatings were constantly
decreasing, showing the other three coatings’ poor resistance to acidic aggressive media.

Figure 8 shows the Bode pattern of each coating immersed for 1 d, 11 d, 21 d, and
31 d, respectively. It can be seen that, when the immersion time is 1 d, the low-frequency
impedance modulus of C4 was 1.068 × 106 Ω cm2, while for the other three coatings, the
values were 1.715 × 105 Ω cm2, 1.710 × 104 Ω cm2, and 598 Ω cm2, respectively. It was
generally accepted that a higher low-frequency impedance modulus indicates a better
anti-corrosion performance. Thus, it could be concluded that C4 can effectively protect the
metal substrate at the initial corrosion stage, and no erosive ions reach the metal substrate
at this time. The high-frequency phase shift reflected on the Bode pattern shows that the
slope of the high-frequency region curve is small and close to being parallel to the X-axis,
indicating that the phase end point has not been reached at this time. It can be found that
the low-frequency impedance modulus of C3 decreased rapidly in Figure 8b, indicating
that C3 was greatly affected by the acidic medium. However, when the coatings were
soaked for 21 days, the value of C3 changed little, and was always better than those of C2
and C1. C4 had highest impedance modulus in all four coatings. When immersed for 31
days, the low-frequency impedance modulus of the C4 decreased to 5.716 × 104 Ω cm2, and
the metal substrate was corroded. The low-frequency impedance modulus of C3 and C2
for 31 days was 1/5 and 1/10 of that of C4, while the low-frequency impedance modulus
of C1 was extremely low, and the coating had long since failed. In contrast, C4 had the best
resistance and a certain anticorrosion ability in the acidic medium.
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3.3. Tafel Curve Analysis

Figure 9 shows the Tafel curve of carbon steel coated with C1, C2, C3, and C4 im-
mersed in the simulated acid rain solution for 31 d. The characteristic parameters derived
from the curves, including the corrosion potential Ecorr, corrosion current density Icorr,
polarization resistance Rp, and coating protection efficiency η of four coatings in simulated
acid rain solution after immersion for 31 d, are listed in Table 3 for better comparison.
Though a slight difference in the corrosion potential among the four coatings can be ob-
served, C4 had the smallest corrosion current density, which was 1.526 × 10−6 A/cm2,
and the polarization resistance was 2.305 × 104 ohm. Compared with C1 in the control
group, the corrosion current density decreased by nearly two orders of magnitude, and
the polarization resistance was two orders of magnitude higher. This revealed that that the
anticorrosion performance of C4 was significantly improved after immersion for 31 days.
The corrosion current density of C3 was 8.510 × 10−6 A/cm2 and the polarization resistance
was 1.112 × 104 ohm. Compared with C4, the two were in the same order of magnitude,
but there was still a certain gap. It can be attributed to the nano-filling effect provided
by the CeO2 particles. However, the granular shape of CeO2 has a limited blocking effect
on its path during the infiltration process of water molecules. The hydrolysis of CeO2
particles is weakened under acidic conditions, and Ce(OH)4 cannot be stably generated,
resulting in a declined anticorrosion performance in the acidic medium. The corrosion
current density of C2 was 1.328 × 10−6 A/cm2, which was in the same order of magnitude
as that of C1. This is owing to the poor compatibility between GO and EP, and the serious
stacking phenomenon of the lamellae meant the prepared coating cannot effectively protect
the metal base. Then, the protection efficiency of the coating was judged by calculating
the reduction of the corrosion current density of each coating compared with C1. The EP
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coating performed poorly in acidic solutions. Among the four coatings, the protection
efficiency of C4 was the highest, which was 98.62%, indicating that adding CeO2–GO (4:1)
nanocomposite to EP can significantly improve the protection efficiency of the coating in
the simulated acid rain solution.
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Table 3. Basic performance parameters of graphene oxide.

Coating Ecorr (V) Icorr (A/cm2) η (%) Rp (ohm)

C1 −0.566 9.196 × 10−5 - 5.090 × 102

C2 −0.525 1.328 × 10−5 85.56 3.345 × 103

C3 −0.561 8.510 × 10−6 90.75 1.112 × 104

C4 −0.518 1.265 × 10−6 98.62 2.305 × 104

3.4. Mott–Schottky Curve Analysis

Figure 10 shows the Mott–Schottky curve of carbon steel coated with different coatings
immersed in the simulated acid rain solution. The slope of the Mott–Schottky curve of
C4 was the largest, and the carrier density was the smallest when soaked for 1 day [41].
Basically, a smaller number of carriers migrating inside the coating indicates a better cor-
rosion resistance. The second largest slope of the Mott–Schottky curve was C3, and its
slope had both positive and negative values, meaning n-type and p-type semiconductor
recombination [42]. The potential barriers caused by different semiconductor types make
the migration of carriers difficult. Therefore, the carrier density of C2 and C1 was small.
With the prolongation of soaking time for 11 days and 21 days, C4 still had the largest
slope. However, the slope of C2 was larger than that of C3, indicating the poor long-term
performance of C3. Although the slope of C2 exceeds that of C3, the carrier density of C2
was 1.678 × 1019 cm−3, while the carrier density of C4 was only 3.495 × 1014 cm−3 after
immersion for 31 days, widening the gap with the other three coatings. CeO2 particles do
not hydrolyze and generate volume-expanded Ce(OH)4 in a neutral or alkaline environ-
ment, but the presence of CeO2 particles in GO causes its lamellae to stretch and not stack
up. Compared with other coatings, it can better resist the intrusion of acidic media and
show relatively good protective performance.
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4. Corrosion Morphology Comparison
4.1. Corrosion Depth Analysis of Substrate

According to the above electrochemical tests, when soaked for 31 days, all of the
coatings suffered a certain degree of corrosion, and the corrosion of the EP coating in
the control group was serious. Three-dimensional stereo microscope images, 3D fitted
morphology, and stereo microscope images of metal substrate coated by EP, GO, CeO2,
and CeO2–GO (4:1) are shown in Figure 11. Three-dimensional stereo microscope images
can show the depth of erosion, while 3D fitted morphology and stereo microscope images
show the morphology of the corrosion area. It can be seen from Figure 11a that the
corrosion depth of C1, C2, C3, and C4 substrate was 133.594 µm, 115.206 µm, 97.158 µm,
and 79.407 µm, respectively. The corrosion depth of C4 was the smallest compared with
the other three coatings. There were few areas of connection corrosion pits in Figure 11d.
Only the accumulation of corrosion products on the surface was connected, and there
was no large-area connection phenomenon. The diameter of the corrosion pit was the
smallest, indicating that the coating had a good anti-corrosion effect and can effectively
delay the damage of the corrosive medium to the substrate, thereby delaying the corrosion
of the metal. However, the accumulation of corrosion products on the EP-coated metal
substrate did not significantly slow down the corrosion rate, which was owing to the large
number microbubbles caused by the continuous volatilization of the solvent and the air
brought into the process of the stirring and curing of the epoxy resin. When the corrosive
medium invades the coating, the existence of internal pores and micro-cracks makes the
corrosive medium unimpeded. C1 has a weak protection ability and cannot effectively
prevent the erosive medium from invading the metal substrate. There was a huge area of
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corrosion on the metal substrate with large corrosion depth in C2 and C3. Owing to the
poor compatibility of GO with epoxy resin and GO itself, which is easy to agglomerate
and stack, it cannot exhibit shielding and barrier properties as a two-dimensional material
in EP coatings. Compared with the above electrochemical tests, it can be seen that the
protective effect of the C3 on the substrate decreases significantly with the prolongation
of the soaking time, and the shielding effect on the erosive ions lacks long-term property.
With the continuous intrusion of corrosive medium, the ability of nano CeO2 particles to
adsorb and release oxygen cannot resist excessive oxidation, so its later corrosion resistance
is insufficient.
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The resistance of C4 to acidic corrosive medium is poorer than that of saline-alkali,
and both the corrosion area and the corrosion depth become larger [43]. On the one hand,
owing to the strong penetration of the EP coating by the acidic medium, the epoxy resin
has poor protection ability. On the other hand, the hydrolysis volume of CeO2 in an
alkaline environment expands and blocks the transport path of the erosive medium. In an
acidic environment, the hydrolysis products of CeO2 particles cannot exist stably, and H+
constantly breaks its hydrolysis balance and penetrates into the metal substrate through the
gaps between the particles. Figure 12 shows the mechanism of the CeO2–GO/EP coating
under acidic medium. When comparing the anti-corrosion performance of prepared
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coatings subjected to the acidic medium or neutral/alkaline medium, the radius difference
between H+ and Cl− should be noted. The inherent porous microstructure of the EP
provides a quick channel for H+ to move fast within the coating, and leads to the inferior
anti-corrosion performance of the EP coating subjected to the acidic medium.
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4.2. Corrosion Area Analysis of Substrate

Figure 13 shows the body microscopic corrosion analysis of each coating’s substrate
immersed for 31 d. Tables 4 and 5 shows the result of the analysis of the corresponding
corrosion areas in Figure 13. Combined with Tables 4 and 5 and Figure 13, it can be seen that
the total corrosion area of C4 was 4578 µm2, which was the smallest among the four groups
of coatings. At the same time, observing area 1, the deepest area of corrosion, shows that
the area of C4 was the smallest, which was 328 µm2. This indicated the corrosion medium
caused the substrate to corrode and reached the smallest depth. Area 3 accounts for the
largest area of C4 corrosion area, indicating that the accumulation of corrosion products on
the surface of the substrate delays the continued development of the erosive medium, and
it is difficult for water and other erosive ions to enter the deeper substrate. The relationship
between the total corrosion area and the deepest corrosion area is C1 > C2 > C3 > C4. It
can be seen that C3 has a certain protective effect on the metal substrate, and its total
corrosion area is comparable to that of C4, while the protective effect of C2 on the substrate
is poor, but better than that of C1. The lamellar structure of GO is stretched by CeO2, which
improves the interception efficiency of erosive media. At the same time, the hydrolysis of
CeO2 particles blocks the transmission channel of the corrosive medium inside the coating.
So, even if some corrosion occurs on the metal substrate, the subsequent accumulation of
corrosion products and the blockage of the transmission channel will greatly reduce the
development speed of corrosion.

Table 4. Carrier density after immersion for 1 d, 11 d, 21 d, and 31 d.

Coating 1 d ND (cm−3) 11 d ND (cm−3) 21 d ND (cm−3) 31 d ND (cm−3)

C1 7.507 × 1021 1.370 × 1022 2.156 × 1022 1.678 × 1022

C2 2.309 × 1018 2.334 × 1018 3.525 × 1018 1.678 × 1019

C3 1.919 × 1015 8.775 × 1018 5.234 × 1019 3.528 × 1019

C4 2.997 × 1013 3.961 × 1013 5.888 × 1014 3.495 × 1014

Table 5. Areas of the corresponding corrosion.

Coating
Corrosion Area/µm2

1 2 3 Total

C1 666 1382 3596 5644
C2 577 960 3558 5095
C3 521 1367 2810 4698
C4 338 816 3424 4578
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Figure 13. Body microscopic corrosion analysis of metal substrate immersed for 31 d: (a) C1; (b) C2;
(c) C3; and (d) C4.

5. Conclusions

In this paper, the effect of the CeO2–GO (4:1) nanocomposite on the anticorrosion prop-
erties of epoxy coating in simulated acid rain solution were investigated using open circuit
potential, electrochemical alternating current impedance spectroscopy, Mott–Schottky
curve, and Tafel curve. These techniques concur in pointing out that the CeO2–GO
(4:1) nanocomposite coating on Q235 carbon steel improves the resistance to corrosion
in a simulated acid rain solution. The following conclusions can be reached based on
experimental evidence.

(1) The CeO2–GO (4:1)/EP coating induced a higher positive corrosion potential (Ecorr)
and lower corrosion current density (Icorr) than those of the EP coating, GO/EP
coating, and CeO2 coating in a simulated acid rain solution. The coating protection
efficiency was as high as 98.62%.

(2) The stereomicroscope analysis indicated that the CeO2–GO (4:1)/EP coating had the
best barrier performance to the erosive medium. At the same time, the accumulation
of corrosion products and the good compactness of the coating limited the further
penetration of erosive ions and slowed the corrosion rate.

(3) The resistance of the CeO2–GO (4:1)/EP coating to acidic corrosive medium was
relatively poorer than that of neutral and saline-alkali corrosive medium. On the one
hand, epoxy resin had a poor protection ability to the acidic medium. On the other
hand, the hydrolysis product of CeO2 could not exist stably, and H+ constantly broke
its hydrolysis balance.
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