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Introduction: Optimal charging of RC circuits is a well-studied problem in the integer-order domain due
to its importance from economic and system temperature hazards perspectives. However, the fractional-
order counterpart of this problem requires investigation.
Objectives: This study aims to find approximate solutions of the most energy-efficient input charging
function in fractional-order RC circuits.
Methods: This paper uses a meta-heuristic optimization technique called Cuckoo search optimizer to
attain the maximum charging efficiency of three common fractional-order RC circuits. An analytical
expression of the fractional capacitor voltage is suggested such that it satisfies the boundary conditions
of the optimal charging problem. The problem is formulated as a fractional-order calculus of variations
problem with compositional functional. The numerical solutions are obtained with the meta-heuristic
optimization algorithm’s help to avoid the complexities of the analytical approach.
Results: he efficiency surfaces and input voltage charging curves are discussed for fractional-order in the
range 0:5 < a � 1.
Conclusion: The optimized charging function can approximate the optimal charging curve using at most 4
terms. The charging time and the resistive parameters have the most dominant effect on charging effi-
ciency at constant fractional-order a.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
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Introduction

Fractional-order modeling offers better and accurate identifica-
tion of the systems and has been recently used extensively to char-
acterize many physical phenomena. Fractional-order modeling
relies on the generalization of the Calculus, which is referred as
fractional Calculus. The idea behind fractional calculus dates back
to calculus’s origins in an intriguing letter between L’Hopital and
Leibniz discussing the consequences of dealing with a half order
derivative. A series of contributions to the area by great mathe-
maticians followed this letter. Examples of early contributors are
Reimann, Liouville, Grunwald, Letnikov, Riesz, Caputo, and many
others [1–3]. However, the fractional-calculus’ theoretical develop-
ment was rather slow and application-driven contributions took a
lot of time to surface. It was only recently when researchers real-
ized the advantages this modeling tool can offer. These advantages
include the extra tuning knobs introduced by the new fractional-
order parameter the ability to model systems with strong memory
dependency due to the convolution integral involved in most of the
fractional-calculus operators [4–6]. In addition, fractional-order
models are compact and provide a better representation of com-
plex systems using fewer parameters compared to their equivalent
integer-order models. The application areas are ubiquitous in
many science and engineering fields such as: bio-impedance mod-
eling, chaos [7–11], control [12–14], wireless power transfer
[15,16], image recognition [17], circuit theory [18–26], oscillators
[27,28], modeling of energy storage devices [29–31], bio-
impedance modeling [32,33], and others [34,35,11,36].

Meta-heuristic optimization algorithms have been proven to be
applicable in many areas of science and engineering. They are often
inspired by natural phenomena or animal behavior like hunting or
flower pollination. Their working mechanism allows them to over-
come notorious problems that gradient-based deterministic opti-
mization algorithms are known to fall into, like converging to
local extrema and sensitivity to the initial point of the search
space. On the other hand, the search agents’ stochastic movement
and the random distribution of the initial population all over the
search space allow meta-heuristic optimization techniques to have
a higher probability of finding better solutions than traditional
methods [37]. However, this comes at the cost of being more com-
putationally demanding than traditional methods. Also, the no free
lunch theorem states that there is no super meta-heuristic algo-
rithm that can be used to solve all optimization problems [38].

Analytical solutions of fractional order problems are not always
obtainable due to the complex mathematical expressions involved.
So, increased interest in using meta-heuristic optimization has
been recently observed in fractional-calculus literature [39,40].
Chronologically speaking, one of the earliest contributions in this
field is using the differential evolution algorithm for designing a
fractional order filter with a specific magnitude response [41].
Many papers followed this work in both analog and digital
domains. Flower pollination algorithm (FPA) and moth flame
optimizer (MFO) was used to find an infinite impulse response
(IIR) approximation of digital fractional-order differential
operators of orders 1=2;1=3, and 1=4 [42,43]. In the analog realm,
many fractional-order filters approximating polynomial based
magnitude responses like Butterworth, Chebyshev, and Bessel
were optimized and approximated using meta-heuristic optimiza-
tion algorithms [44–50]. In this work, we use the Cuckoo Search
(CS) Optimizer as it has been proven to perform better than many
other meta-heuristic optimization algorithms in terms of consis-
tency and accuracy of the obtained results specially in problems
involving fractional-order models [51–53].
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RC networks are basic building blocks in equivalent circuit mod-
els of energy storage devices like batteries and supercapacitors
[54,55]. The maximization of energy efficiency of RC networks is
important due to two main reasons: consuming less energy from
the source to achieve the same charging target makes the system
more greener, and reducing energy loss reduces thermal impacts
and results in prolonging energy storage device life cycle which
is important due to high price of some of the energy storage com-
ponents and also the inaccessibility for maintenance of the others
[56]. In integer-order circuits, the optimal charging of RC networks
has been thoroughly discussed [57–61]. The approaches of tackling
this problem ranged from optimal control [57], to the calculus of
variations [58]. The conclusion is the same for the simple series
RC circuit, that is, the source function that minimizes the loss in
the resistor is the constant current input. However, this problem
is still new to the area of fractional-order RC networks. This paper
aims to find approximate solutions for the optimal charging source
functions that maximize the energy efficiency for fractional-order
versions of the circuits investigated in [58]. This is a continuation
of the work we presented in [62] using a different objective func-
tion and more fractional-order RC networks.

The main objective of this paper is to find the optimal voltage
charging function that maximizes the efficiency of the charging
process in fractional-order RC circuits. The summary of contribu-
tions of this paper are as follows:

� Discuss, via a numerical study, the differences between two
main charging methodologies, constant current and constant
voltage, in fractional-order circuits.

� Study the delivered electric charge, energy loss, and charging
efficiency for fractional-order circuits.

� Present the problem formulation of the optimal charging of
three fractional-order RC networks using compositional
functional.

� Find approximate solutions of the problem using prototype
Constant Phase Element, CPE, voltage function and Cuckoo
search optimizer.

The rest of this paper is organized as follows. First, an overview
is provided of the concepts of fractional-calculus and fractional-
variational problems with compositional functionals. Next, a
review is made about the working mechanism of the Cuckoo
search optimizer. After that, a simulation study is presented to dis-
cuss the differences between constant current and constant volt-
age charging methods in the case of fractional-order circuits.
Following these, the optimization problem formulation used to
get the approximate solutions of the optimal charging problem is
presented. A summary of the optimization results is discussed
and the concluding remarks are summarized.

Preliminaries

Definitions of fractional calculus are numerous and ever-
increasing. So, recently, a classification was introduced in [63]
and it categorized the fractional calculus operators into four main
classes: Classical operators (F1), Modified operators (F2), Local
operators (F3) and operators with non-singular kernel (F4). Rie-
mann–Liouville and Caputo operators are example of the F1 class.
They are defined as:

RL
a Da

t f tð Þ ¼ 1
C n� að ÞD

n
Z t

a
t � sð Þn�a�1f sð Þds; ð1aÞ

C
aD

a
t f tð Þ ¼ 1

C n� að Þ
Z t

a
t � sð Þn�a�1f nð Þ sð Þds; ð1bÞ
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where n� 1 < m 6 n and n 2 N. The symbols RL
a Da

t and C
aD

a
t refer to

the fractional order Riemann–Liouville (RL) and Caputo derivative,
respectively. The different succession of the fractional-order inte-
gral and integer order derivative observed in the definitions of RL
and Caputo operators has affected their Laplace transform as
follows:

L RL
0 Da

t f tð Þ� � ¼saF sð Þ �
Xn�1

k¼0

sk 0D
a�k�1
t f tð Þ

h i
t¼0

; ð2aÞ

L C
0D

a
t f tð Þ� � ¼saF sð Þ �

Xn�1

k¼0

sa�k�1Dkf 0ð Þ: ð2bÞ

Both definitions are equivalent under zero initial conditions. For
linear fractional order circuits, the use of Laplace transform simpli-
fies the analysis and saves the designer from the tedious time-
domain expressions.

The calculus of variations approach for minimizing the energy
loss inside the resistor in an integer order series RC circuit is for-
mulated as [58]:

J ¼
Z tc

0
RsC

2 _vc
2 tð Þdt; ð3Þ

where tc is the pre-specified charging time. The boundary condi-
tions are

vc 0ð Þ ¼ 0; vc tcð Þ ¼ vmax; ð4Þ
where vmax is a design parameter, constrained by the device physics.
There are two main approaches for solving calculus of variations
problems. The indirect approach is the group of methods aiming
at finding the extremal function through solving the associated
Euler–Lagrange equation [58,64]. The direct approach is when the
problem is tackled directly by optimizing the functional J and the
resulting solutions do not have to satisfy the associated Euler–
Lagrange equation as they are, in general, an approximate estimate
of the extremal function [64]. The approach followed in [58] is of
the indirect type and the paper studied three RC networks, the inte-
ger equivalent of the ones shown in Fig. 1, and their RL network
duals.

In this work, the functional objective function takes the form:

J ¼ Ca
R tc
0 vc tð Þ � Davc tð ÞdtR tc
0 v in tð Þ � iin tð Þdt ; ð5Þ

which is the ratio between the energy delivered to the fractional
capacitor to the energy drawn from the source (charging efficiency).
It is worth mentioning that iin tð Þ is a function of vc tð Þ and its frac-
tional derivative for the three circuits under study (see Fig. 1). Such
functionals are called composition functionals and the discussions
on methods of their solutions in integer and fractional calculus of
variation literature are very rare [65,66]. The only paper discussing
a form of this fractional calculus of variations with composition
functional is [65], where the authors adopted the indirect approach
by deriving the associated Euler–Lagrange equation. The composi-
tion functional involved functional (fractional integration) and frac-
tional derivative of Jumarie type of the same fractional-order and it
Fig. 1. The three supercapacitor equivalent circuit models under investigation: (a) Rs-CPE
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is known that the satisfaction of the Euler–Lagrange equation is a
necessary but not sufficient condition for optimality. Also, the resul-
tant Euler–Lagrange equations in fractional calculus of variations
are known to contains both left and right fractional derivative
which is still a new topic in fractional differential equations theory
[67]. These reasons make the only approach in literature [65], not
suitable for our problem. So, We are motivated to use the direct
method of optimization with Cuckoo search optimizer. The details
of the optimization algorithm and the fractional calculus of varia-
tions problem formulation is discussed in the next two sections.
Cuckoo optimization

Cuckoo search optimization is inspired by the egg-laying and
parasitic behavior of the Cuckoo bird [68,69]. The adult birds lay
their eggs in other birds nests. They choose nests where the host
bird just laid its eggs. The eggs grow and mature if not discovered
by the host bird, and in general, they hatch earlier than the host
bird eggs and the host bird indistinctly blindly propels the other
unhatched eggs, which improve the food share of the parasitic
cuckoo chicks [69,52]. Some female cuckoo birds can reproduce
eggs that are indistinguishable from the colors and patterns of
some host species reducing their chances of being discovered and
increasing their survival rates [52]. The optimization algorithm fol-
lows three main hypotheses [53]. The first is that each adult bird
lays only one egg each time. The second is that the adult Cuckoo
bird puts its eggs in randomly chosen nest and the best found nest
is saved for the next generation. The last hypothesis is that the host
bird can discover the strange egg with a probability pa 2 0;1½ �.

It is known that animals search for food follows a random or at
least a quasi-random pattern in nature. The foraging path can be
seen as a random walk as it is affected by the current location
and the transition probabilities to neighboring locations. For
Cuckoo, and many birds and insects, this random walk has charac-
teristics of a Lévy flight where the step sizes are evaluated accord-
ing to a heavy-tailed probability distribution.

The mathematical formulation of the Cuckoo search algorithm
is as follows. The location update of the global random walk equa-
tion is [70]:

Ztþ1
i ¼ Zt

i þ a� Levy s; kð Þ; ð6Þ

where a is the step size scaling factor which is related to the scale of
the problem under investigation. a is usually set to 1; L=10, or
L=100, where L is the scale of the problem [71,70]. s is the step size
and the Levy flight is calculated by

L s; kð Þ ¼ kC kð Þ sin pk=2ð Þ
ps1þk

; s � s0 > 0ð Þ: ð7Þ

The local random walk is defined as [70]:

Ztþ1
i ¼ Zt

i þ as� H pa � �ð Þ � Zt
j � Zt

k

� �
; ð8Þ

where HðÞ is the Heaviside function, � is a uniformly distributed
random variable, pa is the switching parameter, and Zj and Zk are
model (Model 1), (b) Rp-Rs-CPE model (Model 2), and (c) Rs-Rp-CPE model (Model 3).
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two randomly selected solutions. The symbol � means element
wise vector multiplication.

A comparison among basic charging methods

In this section, a numerical comparison is made between con-
stant current, CC, and constant voltage, CV, charging methods in
case of fractional-order series RC circuit.

First, for CV charging, the time needed to reach from 0% to 98%
of the final voltage is calculated by [72]:

� zEa;aþ1 zð Þ � 0:98 ¼ 0; z

where Ea;b zð Þ is the two parameter Mittag–Leffler (ML) function
defined as [73]:

Ea;b zð Þ ¼
X1
k¼0

zk

C akþ bð Þ : ð10Þ

Fig. 2(a) shows the numerical solution of this equation for

Rs ¼ 10;Ca 2 10�12;100
h i

F 	 seca�1 and a 2 0:5;1:0ð �. The roots

where calculated using MATLAB fzero function using the ML imple-
mentation provided in [74]. When considering the change with
respect to a, the behaviour of the CV charging time changes from
increasing by increasing a at Ca ¼ 10�12 to decreasing by increas-
ing a at Ca ¼ 1. However, at constant a, the charging time increases
by increasing Ca, as expected. At the end of this CV charging time,
the final delivered electric charge can be calculated from [75]:

Qfinal;CV ¼ Vmax

Rs
t Ea;2 � ta

RsCa

� �
; ð11Þ

where Vmax is the final voltage of the CPE which is equal to the con-
stant voltage source. The current passing through the resistor dur-
ing CV charging is given by [75]:
Fig. 2. The constant voltage and constant current
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iRs tð Þ ¼ Vmax

Rs
Ea;1 � ta

RsCa

� �
: ð12Þ

Hence, the energy dissipation in the resistor is calculated by:

Eloss;CV ¼ Rs

Z tCV

0
iRs tð Þð Þ2dt: ð13Þ

Based on numerical simulation, the absolute difference between the
lost energy at a ¼ 0:5 and a ¼ 1 is smaller for larger values of Ca.
This means that the larger the capacitance is, the less effective a
becomes in determining the energy loss. From MATLAB numerical
simulations, it can be inferred that the efficiency is not changing
with Ca which might be counter-intuitive. However, it is worth not-
ing that, the CV charging time is not constant in these simulations
and is a function of a and Ca.

Suppose that CC charging is performed within the same CV
charging time (tCV ) and reaching the same final voltage on the
CPE (Vmax), the corresponding delivered electric charge to the CPE
is calculated as [76]:

Qfinal;CC ¼ VmaxCaC 1þ að Þ
ta�1
CV

: ð14Þ

The ratio between the electric charge delivered to the CPE of CC
charging divided by CV charging, Qfinal;CC=Qfinal;CV , is shown in
Fig. 2(b). It is noticed that Qfinal;cc is always smaller than Qfinal;cv for
a < 0:97 where a 
 0:97 is the point where both electric charges
are equal and for a > 0:97 an opposite behaviour is observed. The
energy loss due to the resistive element in CC charging is:

Eloss;CC ¼ Rs

Z tCV

0

VmaxCaC 1þ að Þ
taCV

� �2

dt: ð15Þ

Fig. 2(c) shows the quotient of energy loss in case on CC and CV.
It is noticed that the energy loss in CC is always smaller than CV.
Consequently, Fig. 2(d) shows that the charging efficiency in case
of CC is always greater than its equivalent CV.
charging techniques comparison at Rs ¼ 10.



Fig. 3. Rs-CPE model maximum efficiency results.

Table 1
Rs-CPE model optimum charging voltage curves.

Rs ¼ 1X Rs ¼ 10kX

N ¼ 2 N ¼ 8

c ¼ 1 c ¼ 4
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Optimization problem formulation

Assume the capacitor voltage is given as vc tð Þ. The boundary
conditions of the charging problem are:

vc 0ð Þ ¼ 0; vc tcð Þ ¼ vmax: ð16Þ
The charging time tc is chosen to be a multiple of the 98% constant
voltage charging time which is calculated as the root of Eq. (9). The
charging time used in this work is defined as: tc ¼ ctCV where c is a
tunable parameter used for numerical investigations.

The target is to maximize the charging efficiency defined by:

gcharging ¼
EC

Ein
; ð17Þ

where EC is the energy delivered to the capacitor, and Ein is the
energy delivered by the source. The energy delivered to the CPE is
calculated by:
Fig. 4. Rp-Rs-CPE model max
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ECa ¼ Ca

Z tc

0
vc tð ÞDavc tð Þ dt: ð18Þ

and the input energy is given by:

Ein ¼
Z tc

0
v iniin dt: ð19Þ

Assume that the voltage across the fractional capacitor has the
form:

vc tð Þ ¼
XN
i¼1

ai
t
tc

� �bi

; aN ¼ vmax �
XN�1

i¼1

ai; ð20Þ

where N is the number of terms used for the approximation. The
condition on the last coefficient aN is made to make sure that the
prototype CPE voltage function, Eq. (20), satisfies the boundary con-
dition for any choice of the search parameters. The a-order frac-
tional Caputo derivative of the CPE voltage is given as:
imum efficiency results.



Fig. 5. Rs-Rp-CPE model maximum efficiency results.
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Davc tð Þ ¼
XN
i¼1

ai
tbif

C bi þ 1ð Þ
C bi � aþ 1ð Þ t

bi�a: ð21Þ

Hence, the search vector X is of length 2N � 1 is defined as:
X ¼ a1; a2; . . . ; aN�1; b1; b2; . . . ; bN½ �. Throughout this work, the lower
and upper bounds of the search space are given as: Lb ¼
0;0; . . . ; 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}N�1;a;a; . . . ;a|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}N

	 

, and Ub ¼ vmax;vmax; . . . ;vmax|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}N�1;

	

2N;2N; . . . ;2N|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}N�. The second section of the lower bound is set to

a to avoid infinite current at t ¼ 0. The number of search agents
is 7� 2N � 1ð Þ and the number of iterations is 1000. For each set
of parameters, ten independent runs are executed and only the
best run is chosen.

The input voltage in case of the Rs-CPE model:

v in ¼ vc tð Þ þ RsCaD
avc tð Þ; ð22Þ
125
while the input current is:

iin ¼ CaD
avc tð Þ: ð23Þ

The input voltage in case of Rp-Rs-CPE model:

v in ¼ vc tð Þ þ RsCaD
avc tð Þ; ð24Þ

while the input current in this case is

iin ¼ v in

Rp
þ CaD

avc tð Þ: ð25Þ

The input current in case of the Rs-Rp-CPE model:

iin ¼ vc tð Þ
Rp

þ CaD
avc tð Þ; ð26Þ

while the input voltage:

v in ¼ vc tð Þ þ iin � Rs: ð27Þ



Table 2
Rp-Rs-CPE model optimum charging voltage curves.

Rs ¼ 1X Rs ¼ 10kX

Rp ¼ 10kX Rp ¼ 10MX

N ¼ 2 N ¼ 8

c ¼ 1 c ¼ 4
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Table 3
Rs-Rps-CPE model optimum charging voltage curves.

Rs ¼ 1X Rs ¼ 10kX

Rp ¼ 10kX Rs ¼ 10MX

N ¼ 2 N ¼ 8

c ¼ 1 c ¼ 4
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Fig. 6. Percentage error of the optimal v in of this work and the analytical expression of [58].
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Results and discussion

Algorithm 1. steps for simulation study
1: Input: circuit number; 1 for Rs-CPE, 2 for Rp-Rs-CPE, or 3 for
Rs-Rp-CPE

2: Set parameter sweep ranges

3: Rs ¼ 100 : 104, 20 log-spaced points.

4: Ca ¼ 10�12 : 10�6, 20 log-spaced points.

5: Rp ¼ 104 : 107, 20 log-spaced points.
6: N ¼ 2 : 8 with 1 step.
7: c ¼ 0:5 : 4 with 0:5 step.
8: a ¼ 0:51 : 1:0 with 0:05 step.
9: for all Sweep Parameters do
10: for all a do
11: Set parameters to default values
12:

Rs ¼ 1k;Ca ¼ 100p;Rp ¼ 100k; c ¼ 1:5;Vmax ¼ 5;N ¼ 4.
13: Change the default value for the parameter being

swept.
14: Calculate tCV from Eq. (9) then multiply it by c to get

tc .
15: Run Cuckoo search 10 times using the objective

function of Eq. (17) and the lower and upper boundaries
discussed before. Save the optimal positions of Eq. (20).

16: end for
17: end for

In this section, the optimization results are discussed for the
three circuit under investigation: Rs-CPE;Rp-Rs-CPE, and Rs-Rp-CPE
and a brief of the simulation procedure is summarized in Algo-
rithm 1. The default parameters are:
Rs ¼ 1k;Ca ¼ 100p;Rp ¼ 100k; c ¼ 1:5, and N ¼ 4. These parame-
ters are guided from the study made in [58]. Each objective func-
tion evaluation is made with a time vector of length
numPoints ¼ 500 for good accuracy and vmax ¼ 5V . The choice of
Vmax is only constrained by the device physics and does not affect
the results due to the linearity of the problem. Five different sweep
planes are studied for each circuit except the Rs-CPE case has only
four as it doesn’t include the Rp parameter. The two dimensional
sweep planes are: a-Rs;a-Ca;a-Rp;a-N, and a-c. The ranges of the

parameters are: a 2 0:51;1½ � with a step of 0:05;Rs 2 100;104
h i

X

logarithmically spaced vector of length 20;Ca 2 10�12;10�6
h i

F 	 seca�1 logarithmically spaced vector of length

20;Rp 2 104;107
h i

X logarithmically spaced vector of length
128
20;N 2 2;8½ � with a step of 1, and c 2 0:5;4½ � with a step of 0:5.
The range of a has been chosen in accordance with the estimated
parameters obtained in recent literature via time or frequency
domain data [30,75,77–79] Each optimization made in the study
space is performed ten times and the best solution in terms of
objective function is chosen to be included in all the different
plots/tables presented. For each circuit, efficiency surfaces over
the study planes and sample charging curves are provided for
discussion. The charging curves were chosen for the following
parameter values: Rs ¼ 1X;Rs ¼ 10kX;Rp ¼ 10kX;Rp ¼ 10MX;

N ¼ 2;N ¼ 8; c ¼ 1, and c ¼ 4 and simulated against a normalized
time axis due to the discrepancy of charging times at different val-
ues of a and the sweep parameter.

The maximum efficiency results for the Rs-CPE circuit are shown
in Fig. 3. The charging efficiency decreases with increasing a, which
is in accordance with the analysis in [62]. However, as mentioned
in [62], the round trip efficiency decreases by increasing a due to
the leaky behaviour of the CPE. For the sweep parameters Rs and
Ca, the maximum efficiency seems to be independent of them. This
is expected as the charging time is evaluated according to Eq. (9)
and it is dependent on both Rs and Ca. So, there is a compensation
between their values and the charging time to achieve nearly con-
stant efficiency at the same a. For the N parameter, it is observed
that the maximum efficiency is independent of this parameter
too. This is observed from the numerical results of the optimal
coefficients of Eq. (20) for this case. The coefficients, ak, are zeros
except for the first one and the corresponding power, b1, is approx-
imately equal to a which means that the constant current input is
the most efficient method to charge the Rs-CPE circuit confirming
the analytical study in [62]. For the last parameter, c, the charging
efficiency increases by increasing c as we know from the integer
case. However, the gap between the charging efficiencies at
c ¼ 0:5 and c ¼ 4 is very small at a ¼ 0:51 and gradually increases
until it reaches the maximum value at a ¼ 1. A sample of optimal
charging curves for the Rs-CPE case is shown in Table 1. As men-
tioned earlier, the optimal charging curves is found to be the con-
stant current. Hence, the charging curves are all raised fractional
power ramps of the form: Vin ¼ C1 þ C2ta. Comparing the cases at
Rs ¼ 1 and Rs ¼ 10kX, the DC offset increases by increasing a for
the first case and it does the opposite in the second case. Also,
The final input voltage is larger by increasing a in the first case
but is it gets smaller by increasing a in the second case. Overall,
the final input voltage is much higher than the target CPE voltage
for a near 0:5 and bigger Rs. For the N parameter, the optimal input
voltage curves are identical in the cases N ¼ 2 and N ¼ 8 for the
same reason mentioned above. Lastly, for the c parameter, a higher
value of DC offset and final input voltage is observed in case of
c ¼ 1. This is expected as faster charging requires higher input



Table 4
Cuckoo search algorithm’s convergence curves (dashed) and their mean curve (solid) for selected cases of the three fractional-order RC circuits under investigation.

Rs-CPE Rs ¼ 4:28X;a ¼ 0:9;CoV ¼ 1:83� 10�12 N ¼ 5;a ¼ 0:85;CoV ¼ 2:43� 10�10

Rp-Rs-CPE Rs ¼ 78:47X;a ¼ 0:95;CoV ¼ 4:36� 10�10 Rp ¼ 2:34MX;a ¼ 0:9;CoV ¼ 8:26� 10�11

Rs-Rp-CPE Rp ¼ 0:264MX;a ¼ 0:95;CoV ¼ 1:5� 10�9 c ¼ 0:5;a ¼ 0:95;CoV ¼ 1:02� 10�9
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voltage which leads to higher current and consequently higher
resistive losses.

The behaviors of the Rp-Rs-CPE and Rs-Rp-CPE circuits are similar
when comparing them qualitatively. The efficiency surfaces are
illustrated in Fig. 4 and Fig. 5. For the Rs parameter, a higher Rs

means longer charging time tc . However, in the presence of Rp at
constant a, this leads to higher losses and efficiency degradation.
For Rs ¼ 1X, the efficiency is higher for lower a and the opposite
happens at Rs ¼ 10kX. For the Rp parameter at constant a, the effi-
ciency increases by increasing Rp due to lower leakages. At
Rp ¼ 10kX, the efficiency increases by increasing a and the oppo-
site happens at Rp ¼ 10MX. The N parameter effect is present for
low a only. It is evident that for 0:5 < a < 0:6, three to four terms
of Eq. (20) are needed to obtain the maximum efficiency. On the
other hand, at a > 0:6, two terms are enough to obtain a reason-
able approximation of the optimal charging input function. The c
parameter is obvious in the integer case a ¼ 1 as the efficiency is
increased by increasing c. However, this effect is negligible at
a ¼ 0:51 where a slight decrease in efficiency is observed as c
increases.

The optimal input voltage charging curves are shown for selec-
tive cases in Tables 2 and 3. For Rs ¼ 1X and Rs ¼ 10kX, The final
input voltage value is increased by increasing Rs and decreasing
a. The optimal input voltage curve is similar to the Rs-CPE case
when Rs is negligible in comparison with Rp which is the case for
the figure at Rs ¼ 1X and the figure at Rp ¼ 10MX. The N parameter
effect is shown in the optimal charging curves near a ¼ 0:51 and
has no effect at a ¼ 1. For the last parameter, c, increasing c puts
lower stress on the supply by requiring smaller voltage. However,
lower values of a always requires higher final input voltage values
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at the same c value. Another observation is the higher amount of
change in the value of the input voltage is seen during the second
half of the charging period, specially for low a values.

For validation with the integer case, the optimal input voltages
as in [58] during the charging period:

v in;1 tð Þ ¼Ah
1
r

cosh
t

rs1
þ sinh

t
rs1

	 

ð28aÞ

v in;2 tð Þ ¼bAh
1
r

cosh
t

rs2
þ sinh

t
rs2

	 

ð28bÞ

for the Rp-Rs-CPE, and Rs-Rp-CPE cases, respectively. Where:

Ah ¼ Vmaxcsch tc
rs

� �
; s1 ¼ RsC; s2 ¼ RsRp

RsþRp
C;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rp

Rs

q
; b ¼ 1þ Rs

Rp

ð29Þ

The percentage error between the optimal input voltage expres-
sions in Eq. (28) derived in [58] and the optimal input voltages
obtained using the Cuckoo search optimizer are shown in Fig. 6. It
can be seen that the percentage error does not exceed 0:26% in case
of Rp-Rs-CPE circuit and 0:37% in case of Rs-Rp-CPE model for the
default parameters discussed in previous sections. This means that
the result of our approach is identical to the one derived analytically
in [58] at a ¼ 1.

In order to test the consistency and convergence speed of the
utilized meta-heuristic optimizer, the convergence curves of 10
independent runs and their mean are shown for selected cases of
the parameter space in Table 4. In all cases, the optimal efficiency
is reached before 100 iterations of the optimizer and in some cases
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it is reached as fast as 10 iterations only. Also, the coefficient of
variation, CoV ¼ std=mean, of the optimal efficiency reached is cal-
culated for each case. It is below 2� 10�9 in the selected cases
which verifies the consistency of Cuckoo search optimizer in solv-
ing the investigated problem.
Conclusion

The optimal charging for three fractional-order RC circuits was
investigated. The problem was formulated to find the optimal volt-
age charging curve that maximizes the charging efficiency, which
is the energy delivered to the capacitor divided by the supply’s
energy. The cuckoo search optimizer was used to find optimal coef-
ficients and powers of the capacitor voltage prototype function.
The results were discussed for the fractional-order 0:5 < a � 1:0
and a wide range of circuit parameters, charging condition and
approximation order like: Ca;Rs;Rp; tf , and N. It was noticed that
the resistive parameters and charging time tf have the most dom-
inant effect on the efficiency and the approximation order of 4, of
the prototype capacitor voltage function, is enough in most cases.
The same procedure can be applied to fractional-order RL circuits.
In fact, fractional-order RL circuits can be considered as the dual
problem of what we discussed, fractional-order RC circuits, where
the optimal expressions for current and voltage are to be inter-
changed in order to get the optimal expressions for the other prob-
lem similar to what was done in [58]. Possible future work includes
investigating the effect of different fractional-calculus definitions
on this problem, optimal charging, similar to the analysis per-
formed in [79,22,23].
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