
 gels

Article

Volume Phase Transitions of Heliconical Cholesteric
Gels under an External Field along the Helix Axis

Akihiko Matsuyama

Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering,
Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan; matuyama@bio.kyutech.ac.jp

Received: 22 July 2020; Accepted: 12 November 2020; Published: 16 November 2020
����������
�������

Abstract: We present a mean field theory to describe cholesteric elastomers and gels under an external
field, such as an electric or a magnetic field, along the helix axis of a cholesteric phase. We study
the deformations and volume phase transitions of cholesteric gels as a function of the external
field and temperature. Our theory predicts the phase transitions between isotropic (I), nematic
(N), and heliconical cholesteric (ChH) phases and the deformations of the elastomers at these phase
transition temperatures. We also find volume phase transitions at the I − ChH and the N − ChH
phase transitions.
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1. Introduction

Gels can undergo a volume phase transition with varying some parameters such as temperature,
the degree of ionization, the pH, etc. [1,2]. Anisotropic deformations and volume changes of liquid
crystalline gels have also unique properties due to the coupling between rubber elasticity and liquid
crystalline ordering [3–17]. Urayama et al. have observed that the nematic ordering induces the
volume changes of the gel [9,10]. The volume phase transitions of liquid crystalline gels have been
theoretically studied for nematic [11–15], smectic A [16], and cholesteric gels [17].

Cholesteric (Ch) elastomers or polymer-stabilized Ch liquid crystals are important for applications
in mirrorless lasers, in display devices, etc. [3]. External fields and temperature lead the
magnetic-induced cholesteric-nematic transitions [18,19] and shear-induced uncoiling of the helix [20].
Kim and Finkelmann [21] have observed that a side-chain Ch elastomer shows an oblate chain
conformation in the cholesteric phase. Our previous theory is qualitatively consistent with the
experimental results [17]. Anisotropic deformation of a Ch gel due to an external field has also
been reported [22]. A sufficiently high electric field imposed along the helical axis drives a finite
elongation along the field axis.

Figure 1 shows a schematic representation of a side-chain Ch liquid crystalline polymer between
two crosslinks on a Ch elastomer (or gel). In the Ch phase without the external field E = 0, the director n
is twisted along the pitch axis (z axis) with a pitch length p and the director is perpendicular to the
pitch axis (Figure 1a). When the external field, such electric or magnetic fields, applies along the
helix axis p of a Ch phase, the director n rotates along the pitch axis with a cone angle ε (Figure 1b).
This phase is called a heliconical cholesteric (ChH) phase. Such an oblique helicoidal cholesteric phase
induced by the electric field has been observed in banana-shaped liquid crystalline molecules [23].
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Figure 1. Schematic representation of a local part of a side-chain liquid crystalline polymer, or a
subchain on a cholesteric elastomer (or gel). (a) A cholesteric phase without the external field E = 0.
The director n varies along the helical axis p, which is parallel to the z axis. (b) A heliconical cholesteric
phase under an external field E 6= 0 applied along the pitch axis. The director n rotates along the pitch
axis with a cone angle ε. (c) Model of the repeating unit on the subchain with the axial ratio nm(= 2)
and the spacer ns(= 4) (see text for details).

In this paper, we theoretically study heliconical deformations of Ch elastomers and gels under the
external field imposed along the helix axis of a Ch phase. We here focus on the deformations of Ch
“elastomers” without solvent molecules and the swelling behaviors of Ch “gels” immersed in isotropic
solvent molecules. We predict a rich variety of phase transitions of the Ch gels and elastomers induced
by the external fields.

In the following, we show some numerical results of anisotropic deformations of ChH elastomers
(Section 2.1) and volume phase transitions of the gels (Section 2.2). In Section 3, we give a summary of
this paper. Based on the neoclassical rubber theory of a nematic gel [3,17] and the free energy of a ChH
phase [24,25], we show the elastic free energy of a ChH gel under the external field in Section 4.

2. Results and Discussions

In this section, we numerically calculate the equilibrium values of the swelling ratio αe (or φ),
the deformations κi (i = x, y, z), and the order parameters. We here introduce the reduced-temperature
τ = 1/νL. For the numerical calculations, we set n = 100, nm = ns = 2, and Q0 = 0.06. We also take
the solvent molecule as a good solvent condition χ = 0 in Equation (5).

In the following Section 2.1, we first show the deformations of the cholesteric elastomer melt
without solvent molecules. In the next Section 2.2, we discuss the volume phase transitions of the
heliconical cholesteric gel, immersed in solvent molecules.

2.1. Deformations of Cholesteric Elastomers under the External Field

In this subsection, we discuss deformations of a side-chain cholesteric elastomer melt without
solvent molecules, where the elastomer has the constant volume V = R3

0Ng in Equation (1).
Then the volume fraction of the melt elastomer is given by φ = 1/

√
n. The order parameters S,

σ, and Q(or the deformation κz) are determined by the coupled-Equations (45), (49), and (51) as a
function of the temperature τ.

Figure 2 shows the order parameters σ and S (a) and the deformations κi (b), plotted against the
external field hL at a temperature T/TCI = 0.9, where TCI is the temperature of the first-order ChH − I
phase transition. As increasing the external field hL, the order parameter σ decreases and the cone
angle ε of the ChH phase decreases. At the intermediate stage of hL, we find σ ∝ 1/hL. When σ = 0,
the ChH elastomer changes to the N phase. When hL = 0, we have the cholesteric phase with σ = 1.
For a weak external field, the deformation κz is smaller than κx and the elastomer shows the oblate
chain conformation, which is a spontaneous compression in the pitch axis (z direction). As increasing
the external field, the value of κz increases and the elastomer is elongated along the external field,
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where the elastomer has the prolate chain conformation with κz > κx. It has been experimentally
observed that a sufficiently high electric field imposed along the helical axis drives a finite elongation
exceeding 30% along the field axis [22].

Figure 3 shows the order parameters σ and S (a) and the deformations κz (b) under the
weak external field hL = 0.01 plotted against the temperature T/TCI . At hight temperatures of
T/TCI > 1, the value of S is small and it corresponds to the para-nematic phase (pN), or weak
nematic phase. We here refer to it as the I(pN) phase because of S ∼ 0. At T/TCI = 1, we have
the first-order ChH −I(pN) phase transition, where the order parameters S and σ jump. As shown
in Figure 3b, the values of the deformations κi jump at T = TCI and the value of κz decreases with
decreasing temperature. Near the phase transition temperature, the value of the order parameter σ

is small and then the elastomer extends to parallel to the pitch axis (z axis): κz > 1 and κx = κy < 1.
It corresponds to an prolate shape of the elastomer. However, on decreasing temperature, the value
of σ increases and the elastomer causes the spontaneous compression (κz < 1) in the pitch axis
and elongates equally in the x and y directions (κx = κy > 1). We then have κz < κx and the
elastomer shows an oblate shape at low temperatures. When σ = 2/3 at T/TCI ' 0.94, we have
κz = κy = κx = 1. The shape of the ChH elastomer is changed from prolate with σ < 2/3 to oblate
σ > 2/3 with decreasing temperature. The pitch wavenumber Q of the ChH phase is inversely
proportional to κz: see Equation (39). As discussed in the previous paper [17], when hL = 0 without
the external field, we have κz < κx and the elastomer shows an oblate shape.

Figure 4 shows the order parameters σ and S (a) and the deformations κz (b) under the stronger
external field hL = 0.15 plotted against the temperature T/TNI , where TNI is the temperature of
the first-order phase transition. As the external field increases, the N phase with S > 0 and σ = 0
appears between the ChH and I(pN) phases. We have the first-order N − I(pN) phase transition.
We also have the second-order ChH − N phase transition at T/TNI ' 0.96, where the order parameter
y continuously increases. As shown in Figure 4b, in the N phase with σ = 0, the elastomer is elongated
along the pitch axis: κz > 1, κx = κy < 1, and the value of κz increases with decreasing temperature,
as discussed in Equation (50). In the ChH phase, with decreasing temperature, the value of the order
parameter σ increases and the value of κz decreases. We then have a peak in the deformation curve of
the elastomer at the ChH − N phase transition. Further increasing the external field hL, the ChH − N
phase transition temperature shifts to lower temperatures. We find the variety of the deformation
curve of the cholesteric elastomers depending on the external fields.
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Figure 3. Order parameters S and σ (a) and the deformations κi (b), plotted against the external field
hL at a temperature T/TCI = 0.9.

Figure 4. Order parameter S and σ as a function of the temperature (a) and deformations κi under the
external field hL = 0.01 plotted against the temperature T/TCI , where TCI shows the temperature of
the first-order ChH − I(pN) phase transition (b) . The cholesteric elastomer causes the spontaneous
elongation in the pitch axis near the transition temperature TCI . As decreasing temperature, the value
of κz decreases and the value of κx increases.

Figure 2. Order parameters S and σ (a) and the deformations κi (b), plotted against the external field
hL at a temperature T/TCI = 0.9.
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Figure 3. Order parameter S and σ as a function of the temperature (a) and deformations κi under the
external field hL = 0.01 plotted against the temperature T/TCI , where TCI shows the temperature of
the first-order ChH − I(pN) phase transition (b). The cholesteric elastomer causes the spontaneous
elongation in the pitch axis near the transition temperature TCI . With decreasing temperature, the value
of κz decreases and the value of κx increases.

Figure 4. Order parameter S and σ as a function of the temperature (a) and deformations κi under
the strong external field hL = 0.15 plotted against the temperature T/TNI , where TNI shows the
temperature of the first-order N − I(pN) phase transition (b). The N phase with S > 0 and σ = 0
appears between the ChH and I(pN) phases.

2.2. Volume Phase Transitions of Cholesteric Gels under the External Field

In this subsection, we discuss the volume phase transitions and the deformations of the cholesteric
gel under the external field. To derive the equilibrium swelling φ (or αe) of the gel, we numerically
solve Equation (56).
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Figure 5 shows the osmotic pressure Π (a) and the order parameters (b) plotted against the volume
fraction φ of the gel for hL = 0.05 and T/TNI = 1, where the first-order N − I phase transition takes
place in the gel. The osmotic pressure increases with increasing φ and jump at φ ' 0, 4, where the
order parameter S jumps. Further increasing φ, the osmotic pressure curve has a minimum and jumps
at φ ' 0.86, where the order parameter σ jumps. The equilibrium value of φ is determined by the
Maxwell construction. When T/TNI = 1, the area (1) and the area (2) become equal and then we have
the first-order N − I phase transition takes place in the gel. The closed circles show the equilibrium
volume fraction of the gel at T/TNI = 1, satisfying Π = 0. The region (∂Π/∂φ) < 0 corresponds to
the unstable spinodal region [15]. Depending on the temperature, the curve of the osmotic pressure
is changed. When T/TNI > 1, the area (1) becomes larger than that of the area (2) and then the I
phase becomes stable. On the other hand, when T/TNI < 1, the area (2) becomes larger than that
of the area (1) and then the N phase becomes stable or metastable. The equilibrium volume fraction of
the gel can be obtained by solving Π = 0 as a function of the temperature. In the following we show
some numerical results of the swelling behaviors of the gel.

Figure 6 shows the volume fraction of the gel (a) and the order parameters (b) plotted against
the temperature T/TCI under the weak external field hL = 0.01. The solid curves show the values of
the equilibrium state and the dashed-curves correspond to the unstable region. At high temperatures
of T > TCI , the gel is in an isotropic state with S ' σ ' 0 and is swollen with solvent molecules.
With decreasing temperature, we find the discontinuous, or the first-order, volume phase transition
from the swollen isotropic gel (φ � 1) to the condensed gel (φ ∼ 1) at T/TCI = 1, where the order
parameters jump and the ChH phase with S > 0 and σ > 0 appears. Figure 7 shows the deformations
κi(i = x, y, z) of the gel against the temperature. In the I phase, the gel has a swollen isotropic state
and we have κx = κy = κz = 1.36. In the condensed-ChH phase, we find κz > κx because of σ < 2/3,
as discussed in Figure 3b.

Figure 5. Dimensionless osmotic pressure Π (a) and the order parameters (b) plotted against the
volume fraction φ of the gel for hL = 0.05 and T/TNI = 1, where the first-order N − I phase transition
takes place in the gel.
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Figure 6. Equilibrium volume fraction of the gel (a) and the order parameters (b) plotted against the
temperature T/TCI under the weak external field hL = 0.01.

Figure 7. Deformations κi(i = x, y, z) of the gel against the temperature for hL = 0.01.

Figure 8 shows the volume fraction of the gel (a) and the order parameters (b) plotted against
the temperature T/TNI under the strong external field hL = 0.05. The solid curves show the values of
the equilibrium state and the dashed-curves correspond to the unstable region. At high temperatures
of T > TNI , the gel is in an isotropic state with S ' σ ' 0 and is swollen with solvent molecules.
With decreasing temperature, we find the the first-order volume phase transition from the swollen
isotropic gel (φ � 1) to the condensed nematic gel (φ ∼ 1) at T/TNI = 1, where the orientational
order parameter S jump and the N phase with S > 0 and σ = 0 appears. The osmotic pressures Π
at T/TNI = 1 are shown in Figure 5a. We also have the first-order phase transition between N and
ChH phases at T/TNI ' 0.962, where the order parameters σ and S jump. The volume fraction of the
ChH gel slightly decrease, compared to the N gels. Figure 9 shows the deformations κi(i = x, y, z)
of the gel against the temperature. In the I phase, the gel has a swollen isotropic state and we have
κx = κy = κz = 1.36. In the N phase, the condensed gel is elongated parallel to the external field
and shrink perpendicular to the field. We then have κz > 1 and κz < 1. In the ChH phase, the gel
causes spontaneous compression in the pitch axis. Note that the volume of the ChH gel is almost
the same as that of the N gel, while the shape of the gel is drastically changed through the N − ChH
phase transition. As discussed in the elastomers of Figure 4, the N − ChH phase transition of the
elastomer is the continuous phase transition, while the gel can be changed drastically in shape by
using the solvent molecules.
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Figure 8. Equilibrium volume fraction of the gel (a) and the order parameters (b) plotted against the
temperature T/TNI under the strong external field hL = 0.05.

Figure 9. Deformations κi(i = x, y, z) of the gel against the temperature for hL = 0.05.

3. Summary

We have presented a mean field theory to describe the deformations of cholesteric elastomers
and gels under the external field imposed along the helix axis of a cholesteric phase. We calculate
the deformation of cholesteric elastomers and volume phase transitions of cholesteric gels under the
external field. Our theory demonstrates that a high external field imposed along the helical axis drives
a finite elongation of the elastomer along the external field. The results can qualitatively describe the
experimental results of a cholesteric gel. The deformation is given by Equation (50) as a function of
σ(∝ 1/E) and S (Figure 2).

For a weak external field, we predict I − ChH phase transition and the first-order volume phase
transitions at the phase transition temperature TCI . When T > TCI , the gel is in a swollen isotropic
state. Below T < TCI , the gel is condensed with a heliconical cholesteric phase. For a strong external
field, we predict the I − N − ChH phase transitions and the volume phase transitions. At the N − ChH
phase transition temperature, the nematic gel is compressed along the helical axis due to the heliconical
director in the ChH phase. Our theory predicts a rich variety of volume phase transitions of ChH gels.
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4. Free Energy of Cholesteric Gels under an External Field

Consider a side-chain cholesteric liquid crystalline gel immersed in isotropic solvent molecules.
The liquid crystalline “subchain” between two crosslinks in a network has the number n of segments.
The repeating unit on the subchain consists of a rigid side-chain liquid crystalline molecule with the
axial ratio nm and a flexible spacer with the number ns of segments, as shown in Figure 1c. Let L and D
be the length and the diameter of the mesogen, respectively, and the axial ratio of the mesogen is given
by nm = L/D. The volume of the mesogen and that of the flexible spacer is given by vm = (π/4)D2L
and vs = a3ns, respectively, where a3 is the volume of a segment on the spacer. Then the volume of the
subchain is given by a3n = a3(nm + ns)t, where t is the number of the repeating units on the subchain
and we put a3 = (π/4)D3. Let Ng and N0 be the number of the subchains and the solvent molecules
inside the gel, respectively. The volume fraction of the gel is given by

φ = a3nNg/V, (1)

where Nt(= nNg + N0) is the total number of the segments inside the gel and V = a3Nt is the volume
of the gel. We here assume that the volume per solvent molecule is the same volume a3 as that of the
segment on the subchain. The volume fraction of the mesogens is given by

φm = xmφ, (2)

where xm ≡ nm/(nm + ns). Using the length Ri of the subchain along the i(= x, y, z) axis, the
volume occupied by the subchain is given by RxRyRz = V/Ng. In this paper, we consider “uniaxial”
deformations of the gel along the pitch axis p (parallel to z axis) and then we take Rx = Ry. The swelling
of the gel can be characterized by

αe = V/V0 = φ0/φ, (3)

where V0 is the initial volume of the gel and φ0 is the volume fraction of the gel in the initial state.
The free energy of the cholesteric gel under the external field is given by

F = Fmix + Fel + FLC, (4)

where the first term shows the free energy for an isotropic mixing of a gel and solvent molecules.
According to the Flory–Huggins theory for polymer solutions, the free energy of the mixing is given by

a3βFmix/V = (1− φ) ln(1− φ) + χφ(1− φ), (5)

where β ≡ 1/kBT: T is the absolute temperature and kB Boltzmann constant, χ shows
the isotropic (Flory–Huggins) interaction parameter between the gel and the solvent molecule.
The second term in Equation (4) shows to the elastic free energy and the third term is the free energy of
a heliconical cholesteric phase under an external field. In the following, we derive these free energies.

4.1. Elastic Free Energy of a Heliconical Cholesteric Phase

The elastic free energy Fel comes from the deformation of the subchains on the gels. Based on the
neoclassical rubber theory [3,17], it is given by

βFel =
1
2

Ng

(
λ2

xx + λ2
yy + λ2

zz − 3− ln
a3

łxxłyyłzz

)
, (6)

where λii is the strain of the gel. The strain tensor is given by [6,11,13]

λii = Ri/Ri0, (7)
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where Ri0 is the spontaneous mean-square radius of the subchain along the i(= x, y, z) axis.
Using the effective step (bond) length tensor łii of an anisotropic Gaussian chain, we have

R2
i0 = łiian = R2

0
( łii

a
)
, (8)

where R0 ≡ a
√

n is the spontaneous radius of an ideal chain. When łii = a, we have an isotropic
Gaussian chain. The effective step length tensor łij around the director field n is given by [3]

łij = ł⊥δij + (ł‖ − ł⊥)ninj, (9)

where ni is the element i of the director and ł‖(ł⊥) is the step length parallel (perpendicular) to
the director. In the uniaxial nematic elastomers, the average shape of the subchains (backbone)
is anisotropic and elongated along the nematic director n. The side-chain elastomers have
different conformations, depending on the type of linking the mesogens to the backbone or
spacer. We here assume the side-on linking as sown in Figure 1c, similar to the main-chain case.
There are many complexities in the difference between the main- and side-chain elastomers, however,
we assume that the main contribution to the elastic energy is the deformation of the subchain: Ri0.

In this paper, we consider a longitudinal external field parallel to the pitch axis p (the z axis) as
shown in Figure 10. Then, the electric field E is given by

E = (0, 0, E), (10)

where E shows the strength of the external field. When the dielectric anisotropy is positive: ∆εa > 0, the
liquid crystal molecules tend to orient along the external field. The longitudinal fields, or longitudinal
deformations, along the helical axis z can swing the director along the pitch axis p. With the cone angle
ε of the director n measured from the pitch axis p, the director rotates out of the perpendicular plane
onto the surface of the cone angle ε as shown in Figure 10. In this conical state, the director is given by

n(z) = (sin ε cos ω(z), sin ε sin ω(z), cos ε), (11)

where the director is uniformly twisted along the z axis with the pitch p = 2π/|q| and the azimuthal
angle ω is given as a function of the position z: ω = qz. When the pitch wavenumber q > 0 (q < 0),
we have a right (left)-handed helix. The cone angle ε is a constant and does not depend on the position
z, as shown in Figure 1b.

Figure 10. Schematic representation of the director n of a heliconical cholesteric phase at a position
z on the same coordinate system with Figure 1. The cholesteric pitch p is parallel to the z axis.
The orientation vector Ω of a mesogen on a subchain has the angle θ between the vector Ω and the
director n. The angle ϕ corresponds to a rotation angle around the director n.
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Substituting Equation (11) into (9), we obtain

łxx = ł⊥ + (ł‖ − ł⊥)〈sin2 ε〉l〈cos2 qz〉l , (12)

łyy = ł⊥ + (ł‖ − ł⊥)〈sin2 ε〉l〈sin2 qz〉l , (13)

łzz = ł⊥ + (ł‖ − ł⊥)〈cos2 ε〉l . (14)

The director n is given by the average orientation of mesogens. The spacer chains are flexible and
then the step length lij is given by the average orientation of mesogens. The averages 〈· · · 〉l of
Equations (12)–(14) can be given by the average of the local director. The length ł‖(ł⊥) is the step
length parallel (perpendicular) to the uniaxial deformation. For the uniaxial deformation of the gel,
the average over the azimuthal angle ω on the x− y plane is given by

〈cos2 qz〉l = 〈sin2 qz〉l = 1/2. (15)

We here consider a random walk (the freely-jointed model) [3,11,13] with the bond length a cos θ

along the director and the length a sin θ in the perpendicular direction to the director, where θ is
the angle between the director n and the orientation Ω of the mesogen as shown in Figure 10.
We then have [3]

ł‖ = 3a〈cos2 θ〉 = a(1 + 2S), (16)

ł⊥ =
3
2

a〈sin2 θ〉 = a(1− S), (17)

where S = (3/2)(〈cos2 θ〉 − 1/3) is the scalar orientational order parameter of mesogens.
Equations (16) and (17) are given as a function of the average orientational order parameter S for all
mesogens. In the isotropic phase, the average is given by 〈cos2 θ〉 = 1/3 and 〈sin2 θ〉 = 2/3 and then
we have ł‖ = ł⊥ = a. Substituting Equations (15)–(17) into (12)–(14), we obtain

łxx = łyy = a(1− S +
3
2

Sσ), (18)

łzz = a(1 + 2S− 3Sσ), (19)

where σ = 〈sin2 ε〉 is the order parameter of the heliconical cholesteric phase. When σ = 0, we have a
nematic phase and when σ = 1 we have a cholesteric phase.

The volume fraction φ of the gel is given by

φ =
a3n

RzR2
x
=

1√
nκzκ2

x
, (20)

where we define the deformation ratio (κi) related to an isotropic Gaussian chain:

κz ≡ Rz/R0, (21)

κx ≡ Rx/R0 = Ry/R0, (22)

and we then have
κ2

x =
1√

nφκz
. (23)

Using κz, the strain λii (Equation (7)) is given as a function of the order parameters:

λxx = λyy = (1− S +
3
2

Sσ)−1/2(
√

nφκz)
−1/2. (24)

λzz = (1 + 2S− 3Sσ)−1/2κz. (25)
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Substituting Equations (24) and (25) into (6), we finally obtain the elastic free energy of heliconical
cholesteric elastomers:

a3βFel/V =
φ

2n

[
κ2

z
1 + 2S− 3Sσ

+
2√

nφ(1− S + 3
2 Sσ)κz

−3 + ln A
]

, (26)

where we define

A = lxxlyylzz/a3

= (1− S +
3
2

Sσ)2(1 + 2S− 3Sσ). (27)

When σ = 0, Equation (26) results in the elastic free energy of the cholesteric gels [17].
The configuration of the mesogens on the subchains is characterized by its position vector r and

its orientation unit vector Ω, defined by the solid angle dΩ(= sin θdθdϕ), as shown in Figure 10.
Let f (n(r) · Ω) be the orientational distribution function of the mesogens, where n(r) is the
local director. The orientational order parameter of the mesogens is given by

S =
∫

P2(cos θ) f (n(r) ·Ω)dΩ, (28)

where P2(ξ) = (3/2)(ξ2 − 1/3) is the second Legendre polynomials with ξ = cos θ.

4.2. Free Energy of a Heliconical Cholesteric Phase under an External Field

In this subsection, we introduce the free energy FLC of heliconical cholesteric phase under an
external field. For these free energy, we can use the free energy of the Ch phase under the external field,
which has been discussed in our previous paper [17]. The free energy FLC in Equation (4) consists of
three terms:

FLC = Fnem + Fd + Fext. (29)

The first term is the usual nematic free energy of Maier–Saupe type:

a3βFnem/V =
φm

nm

∫
f (n(r) ·Ω) ln 4π f (n(r) ·Ω)dΩ

−1
2

νLφ2
mS2, (30)

where the parameter νL = −βU2(> 0) shows a nematic interaction, which has been used in
Maier–Saupe theory [26]. We here assume that the interaction potentials U2 between mesogens
is the short range d0 of the order of the diameter of the mesogen

The mesogens are bounded to the polymer backbone. However, the backbone chains are flexible
and have many conformations. As a result, the mesogens bounded to the backbone chains can move
with the backbone chain and can behave like to freely rotate. The rotation of mesogens are restricted
due to being bounded to the backbone chain, however, the decrease in the entropy of rotation of
the mesogens is less and the mesogens have the large contribution of the rotational entropy because
the mesogens can move with the backbone chain. We here assume that the interaction parameter νL
includes the effects of these constrained mesogens. Then the orientational (nematic) bulk free energy
is given by the orientations of the mesogens. However, the “translational degrees of freedom” of
the mesogens (or rods) are restricted due to bounded to the backbone chain. Then the translational
entropy of mesogens are not included in the mixing free energy (Fmix). The center of gravity of the
gel is fixed. The swelling or shrink of the gel is promoted by the translational degrees of freedom of
the solvent molecules.
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The second term in Equation (29) is the distortion free energy of the ChH phase due to the spatial
variations of the director. We here introduce the tensor order parameter [18]

Qαβ(r) = S
(

3
2

nα(r)nβ(r)−
1
2

δαβ

)
, (31)

where nα is the α(= x, y, z) component of the director n and δαβ is the Kronecker delta function.
Taking into account the chiral interactions between mesogens, [27] the distortion free energy, including
the first and second spatial derivatives of the tensor order parameter, is given by [17,28]

a3βFd/V =
1
2

νLφ2
m

1
9

∂γQαβ(r)∂γQαβ(r)d2
0

− 1
2

cLφ2
m

4
9

εαβγQµβ(r)∂αQµγ(r)d0, (32)

where εαβγ is a Levi–Civita antisymmetric tensor of the third rank and ∂κ = ∂/∂rκ is the first spatial
derivative of the tensor order parameter. The parameter cL = −βU1 shows a chiral pseudoscalar
interaction between the liquid crystal molecules. The positive (negative) value of the cL means a left
(right)-handed helix.

The last term in Equation (29) is the free energy of electric (or magnetic) external fields relevant to
an orientational order. We here consider the coupling between the nematic director and the external
field. When the external electric field E is applied to the liquid crystal molecules, having a dielectric
anisotropy ∆εa, the external free energy is given by [18]

Fext = −φmε0∆εa

∫
EαQαβ(r)Eβdr, (33)

where Eα is the α component of the external field E. An external magnetic field can also be treated the
same way as the electric field.

Substituting Equations (10) and (11) into Equations (30), (32), and (33), we obtain the free energy
of liquid crystalline phases including N, Ch, and ChH phases:

FLC = Fnem + Fd + Fext = Fnem + Fdis, (34)

where we have separated the free energy into two terms for convenience [17]. One is the nematic free
energy Fnem of Maier–Saupe type [26] and the other is the distortion free energy (Fdis = Fd + Fext) due
to the spatial variation of the director under the external field. The dimensionless nematic free energy
( fnem) is given by

fnem = a3βFnem/V

=
φm

nm

∫
f (n(r) ·Ω) ln 4π f (n(r) ·Ω)dΩ

−1
2

νLφ2
mS2 − φmSh2

L, (35)

where we define h2
L = a3βε0∆εaE2 for ∆εa > 0 and the last term comes from the external free energy

Fext. Substituting the tensor order parameter Equation (31) into Equation (32), the dimensionless
distortion free energy ( fdis) including Ch and ChH phases in Equation (34) is given by (see Appendix A)

fdis = a3βFdis/V

=
1
2

νLφ2
mS2g(σ, Q), (36)
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where we define the distortion function

g(σ, Q) =
1
2
(k̃2 − k̃3)Q2σ2

+

[(1
2

k̃3Q− k̃2Q0
)
Q + η

]
σ, (37)

η =
3h2

L
νLφmS

∝ E2, (38)

and the pitch wavenumber Q = qd0 [17]. The values of k̃2 and k̃3 correspond to the dimensionless twist
and bend elastic constants of a pure mesogen, respectively. The value Q0(≡ cL/νL) shows the pitch
wavenumber of the pure Ch phase in the absence of the external field [28]. The distortion function
g(σ, Q) can describe the N, Ch, and ChH phases of pure liquid crystalline molecules. The function
g(σ, Q) has a minimum as a function of Q and σ for k̃2 > k̃3. When σ = 1, or ε = π/2, the bend term k̃3

disappears and the usual Ch phase appears. When σ = 0, or ε = 0, we have the usual N phase because
of g = 0. Depending on the strength hL of the external field, we have N, Ch, and ChH phases. Note that
the total free energy (Equation (4)) of our system is given by the sum of Equations (5), (35), and (36).

The pitch wavenumber Q depends on the deformation κz along the pitch axis of the cholesteric gel.
We here assume the “affine” deformation p = p0κz of the subchain and then the pitch length p(∝ Q−1)
is given as a function of the deformation ratio κz [17]:

Q =
2πd0

p
= Q0/κz. (39)

4.3. Orientational Distribution Function

In this subsection, we derive the equilibrium distribution function. The orientational distribution
function f (n(r) ·Ω) of the mesogens is determined by the free energy (4) with respect to this function:
(δF/δ f (ξ))φ,Q,σ = 0, where ξ = cos θ, under the normalization condition∫

f (n(r) ·Ω)dΩ = 1. (40)

We then obtain the distribution function of the mesogens (see Appendix B):

f (ξ) =
1
Z

exp
[
ΓP2(ξ)

]
, (41)

where we define

Γ = nm
[
νLφmS

(
1− g(σ, Q)

)
+ h2

L − B(S, φ)
]
, (42)

and

B(S, φ) =
(1− 3

2 σ)

nxm

[
κ2

z
(1 + 2S− 3Sσ)2

− 1√
nφ(1− S + 3

2 Sσ)2κz

− 3(1− 3
2 σ)S

(1 + 2S− 3Sσ)(1− S + 3
2 Sσ)

]
. (43)
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The constant Z is determined by the normalization condition as Z = 4π I0[S] and the function Im[S] is
defined as

Im[S] =
∫ 1

0
[P2(ξ)]

m exp[ΓP2(ξ)]dξ, (44)

where m = 0, 1, . . . . Substituting Equation (41) into Equation (28), the orientational order parameter
can be determined by

S = I1[S]/I0[S]. (45)

Using the distribution function (Equation (41)), the heliconical cholesteric free energy (Equation (34))
is given by

a3βFLC/V =
1
2

νLφ2
mS2(1− g(σ, Q)

)
− φm

nm
ln I0[S]

−φmSB(S, φ). (46)

The total free energy F is given by the sum of Equations (5), (26) and (46). Apparently, when S = 0, or
an isotropic phase, the free energy (46) becomes zero.

4.4. Determination of the Order Parameters σ and Q

The deformation of the cholesteric gel, or elastomer, at a thermal equilibrium state is
determined by

(∂ fe/∂Q)σ,S,φ = 0, (47)

and
(∂ fe/∂σ)Q,S,φ = 0, (48)

where we define the dimensionless free energy fe = a3βF/V for convenience. Note that the
deformation κz is given as a function of Q through Equation (39) and then Equation (47) is the
same as (∂ fe/∂κz)σ,S,φ = 0. From Equation (47), we obtain

φ

n

[
κz

1 + 2S− 3Sσ
− 1√

nφ(1− S + 3
2 Sσ)κ2

z

]
+

1
2

νLφ2
mS2σ

(
k̃2 −

(
(k̃2 − k̃3)σ + k̃3

) 1
κz

)(Q0

κz

)2
= 0, (49)

where the first two terms show the contribution from the elastic free energy and the last term comes
from the distortion free energy. The coefficient of the last term shows the dimensionless twist elastic
constant [28]: ˜K22 = (1/2)νLφ2

mS2. For small Q0, we can neglect the last term of Equation (49) and the
deformation κz is approximately given by

κz '
(

1 + 2
(
1− 3

2 σ
)
S√

nφ(1−
(
1− 3

2 σ
)
S

)1/3

. (50)

In the N phase with σ = 0 and S > 0, the deformation ratio κz increases with increasing the
orientational order parameter S. While in the ChH phase with σ > 0 and S > 0, the value of κz

decreases with increasing the order parameter σ and the elastomer (or gel) tends to compress parallel
to the pitch axis. On the other hand, as increasing the external field E, the value of σ decreases and
then the elastomer tends to elongate along the pitch axis. When σ = 2/3, we find κz ' (1/

√
nφ)1/3,

which corresponds to the value of the I phase without the external field. When σ = 1, Equation (50)
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results in the deformation of the cholesteric elastomers, where the elastomer is compressed along the
pitch axis [17]. From Equation (48), we obtain

3φ

2n

[
Sκ2

z
(1 + 2S− 3Sσ)2 −

S√
nφ(1− S + 3

2 Sσ)2κz

+
3S2(1− 3

2 σ)

(1 + 2S− 3Sσ)(1− S + 3
2 Sσ)

]
+

1
2

νLφ2
mS2

(
(k̃2 − k̃3

)
Q2σ +

(1
2

k̃3Q− k̃2Q0
)
Q + η

)
= 0, (51)

The order parameters σ and Q are numerically determined from Equations (49) and (51)

4.5. Equilibrium State of a Gel

The chemical potential of the solvent molecule is given by

a3β(µ0 − µ◦0) = a3β(∂F/∂N0)Ng

= fe − φ(∂ fe/∂φ), (52)

where µ0 shows the chemical potential of the solvent molecule inside the gel and µ◦0 is that of the
pure solvent molecule outside the gel. The total free energy is given by fe(φ, Q, S, σ) where order
parameters Q, σ, and S are given as a function of φ. Then the total derivative is(

d fe

dφ

)
=

(
∂ fe

∂φ

)
Q,σ,S

+

(
∂ fe

∂Q

)
φ,σ,S

(
∂Q
∂φ

)
+

(
∂ fe

∂σ

)
φ,Q,S

(
∂σ

∂φ

)
+

(
∂ fe

∂S

)
φ,Q,σ

(
∂S
∂φ

)
. (53)

We here evaluate Q (or κz), σ, and S determined above that (∂ fe/∂Q)φ,S,σ = 0 (Equation (47)),
(∂ fe/∂σ)φ,Q,S = 0 (Equation (48)), and

(
∂ fe

∂S

)
φ,Q,σ

=

(
δ fe

δ f (ξ)

)
φ,Q,σ

(
∂S

∂ f (ξ)

)−1

= 0, (54)

respectively. Equation (54) gives the equilibrium distribution function (Equation (41)). Thus, the total
derivative in Equation (52) becomes (∂ fe/∂φ)Q,S,σ and yields

a3β(µ0 − µ◦0) =
1

n
√

n(1− S + 3Sσ)κz

+ ln(1− φ) + φ + χx2
mφ2

+
1
2

νLx2
mφ2S2(1− g(σ, Q)

)
. (55)

The equilibrium swelling αe (or φ) of the gel can be determined by the balance of the chemical potentials
(osmotic pressure) among the solvent molecules existing outside and inside the gel:

Π = −a3β

(
∂F
∂V

)
= −a3β(µ0 − µ◦0) = 0. (56)
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When the dimensionless osmotic pressure (Π) versus φ has the van der Waals loops, the equilibrium
value of φ is determined by the Maxwell construction. The region(

∂Π
∂φ

)
Q,σ,S

= φ

(
∂2 fe

∂φ2

)
Q,σ,S

< 0 (57)

corresponds to an unstable spinodal region and (∂Π/∂φ)Q,σ,S > 0 corresponds to a stable
(or metastable) region [12,15]. Then the equilibrium state of the gel follows the volume curve on
the φ−Temperature plane, determined by the condition Π = 0 with the Maxwell construction, which is
equivalent to minimizing the free energy fe with respect to φ. Thus, in analogy with the gas–liquid
phase transitions, we can discuss the isotropic-liquid crystal phase transitions of the gels, by evaluating
the Π− φ curves.

Funding: This work was supported by JSPS KAKENHI Grant Number 18K03566.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of the Distortion Free Energy Fdis

In this Appendix, we derive the distortion free energy Fdis (Equation (36)) [24]. Using the tensor
order parameter (Equation (31)), the first term of the free energy Fd (Equation (32)) is given by [29]

∂γQαβ(r)∂γQαβ(r) =
9
2

S2∂αnβ∂αnβ

=
9
2

S2
[

k̃1(∇ · n)2 + k̃2(n · ∇ × n)2

+k̃3(n×∇× n)2
]

. (A1)

where the dimensionless elastic constants k̃i (i = 1, 2, 3) are associated with splay, twist, and bend
deformations of the director, respectively [18]. Using the director (Equation (11)), Equation (A1) is
given by

∂γQαβ(r)∂γQαβ(r) =
9
2

S2q2 sin2 ε

[
k̃2 sin2 ε + k̃3(1− sin2 ε)

]
. (A2)

The second term of the twist deformations in Equation (32) is also given by

εαβγQµβ(r)∂αQµγ(r) = k̃2
9
4

S2q sin2 ε. (A3)

and the external term (Equation (33)) is given by

a3βFext/V = −φmSh2
L(1−

3
2

σ). (A4)

Substituting Equations (A2) and (A3) into Equation (32) with combining Equation (A4), we obtain
Equation (36). Note that Fdis = Fd + Fext. The first term −φmSh2

L in Equation (A4) is migrated into
the last term of Equation (35) and the second term of Equation (A4) is included into the last term of
Equation (37) for convenience.
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Appendix B. Functional Derivatives

In this Appendix, we derive the distribution function Equation (41). Using Equation (4) with
Equation (34), we have(

δF
δ f (ξ)

)
φ,Q,σ

=

(
δFel

δ f (ξ)

)
φ,Q,σ

+

(
δFnem

δ f (ξ)

)
φ,Q,σ

+

(
δFdis
δ f (ξ)

)
φ,Q,σ

= 0. (A5)

The required derivatives of the free energies are given by(
δFel

δ f (ξ)

)
φ,Q,σ

=

(
δFel
δS

)(
δS

δ f (ξ)

)

=
φ

n

[
κ2

z(1− 3
2 σ)(

1 + 2(1− 3
2 σ)S

)2 −
(1− 3

2 σ)
√

nφκz
(
1− (1− 3

2 σ)S
)2

− 3(1− 3
2 σ)2S(

1− (1− 3
2 σ)S

)(
1 + 2(1− 3

2 σ)S
)] ∫ P2(ξ)dΩ, (A6)

for the elastic free energy (Equation (26)),(
δFnem

δ f (ξ)

)
φ,Q,σ

=
φm

nm

∫
ln f (ξ)dΩ−

(
νLSφ2

m + h2
Lφm

) ∫
P2(ξ)dΩ (A7)

for the nematic free energy (Equation (35)), and(
δFdis
δ f (ξ)

)
φ,Q,σ

= νLφ2
mSg(σ, Q)

∫
P2(ξ)dΩ, (A8)

for the distortion free energy (Equation (36)). Substituting Equations (A6)–(A8) into Equation (A5),
we obtain Equation (41).
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