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Abstract: This study aims to identify the clinical and genetic markers related to the two uncommon
nutritional statuses—metabolically unhealthy normal-weight (MUNW) and metabolically healthy
overweight/obese (MHOW) individuals in the physically active individuals. Physically active male
volunteers (n = 120) were recruited, and plasma samples were analyzed for the clinical parame-
ters. Triglycerides, HDL-Cholesterol, LDL-cholesterol, total cholesterol, C-reactive protein, and
insulin resistance were considered as markers of metabolic syndrome. The subjects were classi-
fied as ‘healthy’ (0 metabolic abnormalities) or ‘unhealthy’ (≥1 metabolic abnormalities) in their
respective BMI group with a cut-off at 24.9 kg/m2. Analysis of biochemical variables was done
using enzyme linked immunosorbent assay (ELISA) kits with further confirmation using western
blot analysis. The microarray was conducted, followed by quantitative real-time PCR to identify
and analyze differentially expressed genes (DEGs). The MHOW group constituted 12.6%, while
the MUNW group constituted 32.4% of the total study population. Pro-inflammatory markers like
interleukin-6, tumor necrosis factor (TNF)-α, and ferritin were increased in metabolically unhealthy
groups in comparison to metabolically healthy groups. Gene expression profiling of MUNW and
MHOW individuals resulted in differential expression of 7470 and 5864 genes, respectively. The
gene ontology (GO) biological pathway analysis showed significant enrichment of the ‘JAK/STAT
signaling pathway’ in MUNW and ‘The information-processing pathway at the IFN-β enhancer′

pathway in MHOW. The G6PC3 gene has genetically emerged as a new distinct gene showing its
involvement in insulin resistance. Biochemical, as well as genetic analysis, revealed that MUNW and
MHOW are the transition state between healthy and obese individuals with simply having fewer
metabolic abnormalities. Moreover, it is possible that the state of obesity is a biological adaptation to
cope up with the unhealthy parameters.

Keywords: obesity; prevalence; metabolic syndrome; metabolically healthy obesity; metabolically
unhealthy normal weight

1. Introduction

Adipocytes (classically known for the storage of excess fat and lipids) have now
emerged as an active endocrine organ [1]. In addition to it, there is an increased level of
hormones like leptin, resistin, and cytokines in obese subjects compared to non-obese indi-
viduals, which cumulatively relates obesity to various co-morbidities [2–4]. Surprisingly,
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not all obese people show increased adipokines levels, and instead, show a healthy profile
like a normal-weight individual. The state of obesity showing an absence of the metabolic
complication and BMI greater than 30 kg/m2 has been named as metabolically healthy
obesity (MHO) [5]. On the other hand, the metabolic abnormality can be observed in
normal-weight individuals who showed a risk of development of metabolic syndrome with
their BMI lying within a healthy normal range. These individuals are called as metabolically
unhealthy normal-weight (MUNW) [6].

Though numerous studies have been published related to metabolic health, and many
are undergoing; still, no single defined criteria to predict metabolic health is available [7].
Alternatively, Karelis put forward an idea of the initial set of simple biochemical esti-
mations as markers to identify the MHO individual based on their research studies and
suggested if four out of five metabolic markers are in the normal range, a person can be
considered as MHO [8]. The five metabolic markers in their study were triglycerides (TG),
HDL-Cholesterol (HDL-C), LDL-cholesterol (LDL-C), total cholesterol (TC), and insulin
resistance.

Dietary pattern, physical inactivity, and a sedentary lifestyle contribute to obesity,
though; one should also embark on the influence of genes in the body [9]. The genetic
predisposition to obesity has a vital role in the development of obesity subtypes. Some
genes, like FTO and SH2B1, are genetically thrifty genes, known to be naturally selected
for obesity [10–12]. On the other hand, the genetic contribution of pathways involved in
adipose tissues also informs us about the development of MHO and MUO phenotypes.

Therefore, taking into account simple biochemical markers, we planned our study with
the criteria of MHO proposed by Karelis, 2004, with some modifications [8]. In the present
study, we aimed to analyze the prevalence of metabolically healthy overweight/obesity
(MHOW) and metabolically unhealthy normal-weight (MUNW) individuals among young,
physically active Indian males belonging to the same region, ethnicity, age, and dietary
habits. Moreover, understanding the metabolic profile of such individuals is obscure and
requires to be explored with more research; therefore, whole-body composition analyses
with hematological parameters and biochemical estimations of hormones and inflammatory
markers along with whole-genome expression profiling have been studied in this research
article. Since genetic insight into MHOW and MUNW is not studied on physically active
individuals yet, this makes our study as distinct and novel.

2. Materials and Methods
2.1. Subjects

The study was conducted on young male volunteers (age ≥ 18) of a fitness center in
Karnal, Haryana. Participants were indulged in exercise for a minimum tenure of 6 months
and were moderately active. They were explained with the study protocol approved
by the Institutional Ethics Committee (IEC DIPAS, IEC/DIPAS/C-1/2 DATED 26.5.15).
A total of 120 individuals consented in written for participation in the study. Dietary intake
was assessed using a 7-day self-filled dietary intake form. These contained different food
items as study participants were free living. Although this method suffers limitations
as both over- and under-reporting of food intake are known problems [13,14], calorie
and nutrient intake was computed from the dietary recalls based on values reported for
Indian recipes using the database of National Institute of Nutrition (http://218.248.6.43:
8080/CountWhatYouEat/, accessed on 1 July 2020) and dietary manual (https://www.nin.
res.in/downloads/DietaryGuidelinesforNINwebsite.pdf, accessed on 1 July 2020) [15]).
Out of 120 participants, 24 male participants (six participants per group) with an average
age of 23.8 years were picked up for further microarray analysis. Healthy volunteers with a
minimum 18 years of age, engaged in more than six months of regular exercise constituted
inclusion criteria, while individuals with long term medication, due to acute or chronic
illness, were excluded from the study.

The Criterion for Metabolic syndrome (Karelis, 2004, with some modifications) [8]:

• Fasting TG level ≥ 150 mg/dL

http://218.248.6.43:8080/CountWhatYouEat/
http://218.248.6.43:8080/CountWhatYouEat/
https://www.nin.res.in/downloads/DietaryGuidelinesforNINwebsite.pdf
https://www.nin.res.in/downloads/DietaryGuidelinesforNINwebsite.pdf
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• Fasting HDL-C ≤ 40 mg/dL (men)
• Fasting LDL-C ≥ 100 mg/dL
• Fasting TC ≥ 200 mg/dL
• C-reactive protein ≥ 1.18 (90th percentile)
• Insulin resistance (McAuley’s Index) ≥ 15.76 (90th percentile)

Thus, taking BMI ≥ 24.9 kg/m2 as overweight/obese and the above-mentioned
metabolic syndrome, we divided the population into four groups considering zero metabolic
syndromes for metabolically health profiles.

Categorization of participants:

• Metabolically healthy normal-weight (MHNW): BMI ≤ 24.9 kg/m2, with no markers
of metabolic syndrome

• Metabolically unhealthy normal-weight (MUNW): BMI ≤ 24.9 kg/m2, with one or
more markers of metabolic syndrome

• Metabolically healthy overweight/obese (MHOW): BMI≥ 25 kg/m2, with no markers
of metabolic syndrome

• Metabolically unhealthy overweight/obese (MUOW): BMI ≥ 25 kg/m2, with one or
more markers of metabolic syndrome

2.2. Anthropometric Measurements

Height was measured using a measuring rod with the least count as 0.1 cm (Seca
216, Seca Asia Pacific medical measuring systems and scales, Kuala Lumpur, Malaysia).
Bodyweight was measured with bare feet, in light clothing using a bioelectric impedance
analyzer (Tanita BC-420MA, body composition analyzer, Tanita Corporation, Tokyo, Japan).
Body mass index (BMI) was calculated using the formula weight in kilograms divided by
squared height in meters, i.e., Weight (kg)/Height (m2). Body composition analysis was
done before breakfast between 0700 h and 1000 h in the post-absorptive state.

2.3. TEE, PAL Value, and BMR Calculation

Total energy expenditure (TEE) for physical activity was monitored using accelerometry-
based wearable Actical® devices (Respironics, mini mitter co. Inc., Bend, OR, USA). The
volunteers wore the device on the wrist for 7 days continuously to record minute by minute
energy expenditure [16]. BMR was calculated manually using the prediction equation for
Indians [17]) (Supplementary Table S1). Further, physical activity level (PAL) was calcu-
lated by the division of total energy expenditure (TEE) by the basal metabolic rate (BMR)
(PAL = TEE/BMR).

2.4. Collection of Blood Samples

Whole venous blood was collected in plain EDTA and heparinized vacutainers by
venipuncture in the arm. Hematological parameters were measured on a fully automatic
hematology analyzer (MS4e, MeletSchloesing Lab., Osny, France). Plasma was collected
after centrifugation of heparinized whole blood sample for 10 min at 3000 rpm, while
serum was isolated after keeping the whole blood sample at room temperature for about
1 h. Serum samples were utilized for evaluating hormones and biochemical variables,
while human plasma was conserved with a protease inhibitor for immunoblot analysis.
Both the samples were stored at −80 ◦C. For microarray of whole-genome genes, 2.5 mL of
whole blood was drawn by venous puncture directly into PAXgen blood RNA tubes (BD,
Franklin Lakes, NJ, USA) to stabilize RNA and stored at −80 ◦C for further use.

2.5. Analysis of Biochemical Variables

Commercially available kits were used for the analysis of lipid profile, i.e., total
cholesterol (Randox lab ltd., County Antrim, UK), triglycerides, high-density lipoprotein-
cholesterol (HDL-C), and low-density lipoprotein- cholesterol (LDL-C) (Agappe diagnostics
ltd, Kolkata, India). ELISA kits were used for insulin (Sigma Diagnostics Inc., Livonia, MI,
USA), leptin (Diagnostics Biochem Canada Inc., London, ON, Canada), adiponectin (Elab-
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science Biotechnology Co. Ltd., Wuhan, China), C-reactive protein (CRP, Sigma Diagnostics
Inc., Livonia, MI, USA), interleukin-6 (IL-6, Diaclone SAS, Besançon, France), tumor necro-
sis factor-α (TNF-α, Diaclone SAS, Besançon, France), ferritin (Bio-detect, Laguna Hills, CA,
USA) as per assay manual of the kits. Insulin resistance was calculated using McAuley’s
Index i.e., exp (2.63–0.28 ln insulin [µU/mL]–0.31 ln triglycerides [mM/mL]) [18].

2.6. Antibodies

The primary antibodies used were primary rabbit polyclonal anti-Leptin (1:1000, Ob
(A-20) sc-842), primary rabbit polyclonal anti-AdipoR2 (1:1000, (H-44) sc-99184), primary
rabbit polyclonal anti-IL-6(1:1000, (H-183) sc-7920), primary rabbit polyclonal anti-β-actin
(1:1000 (N-21) sc-130656) from Santa Cruz Biotechnology, Inc (Heidelberg, Germany).
Primary monoclonal mouse anti-ferritin (1:1000 (E63C02001)), primary rabbit anti-TNF-α
(1:500, E18-7014-1) from EnoGene Biotech Co., Ltd., New York, NY, USA. The secondary
antibody used was goat anti-rabbit IgG-HRP (sc-2004, 1:25,000) and goat anti-mouse IgG-
HRP (sc-2004, 1:25,000) of SantaCruz Biotechnology, Santa Cruz, CA, USA.

2.7. Immunoblot Analysis

Sample containing 30 µg protein was loaded on 10% SDS-PAGE and transferred
to PVDF membrane on the semi-dry transfer unit (Bio-Rad laboratories, Hercules, CA,
USA). The blots were incubated with primary antibody for the protein of interest for 3 h
followed by the addition of IgG-horse radish peroxidase conjugated secondary antibody
against the specific primary antibody for 2 h at room temperature. Immunoreactive bands
were visualized with a gel documentation instrument (Alliance Q9 Advanced, UVITECH
Chemiluminescence Documentation Systems), and densitometric analysis was done using
Image J analysis software.

2.8. RNA Extraction

The PAXgen blood RNA tubes containing samples were thawed for two hours at
room temperature to ensure the whole cells lysis. Total RNA was isolated using PAXgene
Blood RNA Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s guidelines, and
extracted RNA was stored at −80 ◦C.

2.9. Oligonucleotide Microarray Hybridization

The quality and concentration of RNA were checked using a spectrophotometer (Nan-
oDrop2000, Thermo Scientific, Wilmington, DE, USA), and RNA integrity was assessed
using Agilent 2100 Bioanalyzer system (Agilent Technologies Inc., Lexington, MA, USA).
The RIN values more than 7 were considered adequate for hybridization and scanning.
A total of 250 ng of high-quality RNA was used to synthesize complementary DNA fol-
lowed by an invitro transcription step in which amplification and labeling were done to
produce biotin-labeled cRNA according to the MessageAmp II a RNA Amplification kit
(Ambion, Inc., Austin, TX, USA) as recommended by Illumina′s sample labeling procedure.
The microarray and hybridization were performed on Illumina HumanHT-12 v4 Expres-
sion BeadChip (Illumina, Inc., San Diego, CA, USA). The total fluorescence emission from
a single spot is collected as a total signal intensity, which is directly proportional to the
degree of hybridization [19].

2.10. Gene Expression Profiling and Gene Ontology(GO)

Differentially expressed genes (DEGs) were identified using Genome Studio™ Gene
Expression Module v 1.0 (Illumina Inc., San Diego, CA, USA) and statistically enriched
with fold change ≥ 2.0 and p-value ≤ 0.05. Functional gene ontology and pathway analysis
were performed using online software Enrichr [20]. p-value ≤ 0.05 was adjusted using
the hypergeometric distribution. Enriched pathways network was constructed using
Cytoscape 3.2.1 [21] with different color coding and shapes for up- and downregulated
genes and processes for symbolic representation of the molecular links between genes
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and processes. The network-based analysis was performed using Network Analyst [22],
which provides visual and statistical analytes for gene expression analysis to obtain highly
interconnected hub nodes [23].

2.11. Functional Gene Set Enrichment Analysis (GSEA) and Upstream Regulation of Shared
DEGs

To distinguish the inference of shared DEGs, we executed a functional analysis using
the Enrich R platform [24]. The annotation of the significant gene list was extensively as-
sessed with this software using various libraries, such as Gene ontology library64, biocarta,
Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), Wikipathway, Reactome
pathway, and Panther. The analysis was based on p < 0.05 and performed with a Fischer
Exact test. Upstream and kinase enrichment analysis were used to prioritize transcription
factors and protein kinases by using Expression2Kinase (X2K) bioinformatic tool.

2.12. Validation of Some Candidate Genes Responsible for Obesity by Real-Time-PCR

Among the study population, five samples for each group of MUNW, MHOW, and
MUOW with matched age, ethnicity, and occupational routine were selected for validation
of the obtained microarray data by reverse transcription-polymerase chain reaction (RT-
PCR) for five DEGs. CUL1 (Cullin 1) was selected from hub gene analysis, G6PC3 (Glucose-
6-phosphatase catalytic subunit 3) and RHEB (Ras Homolog Enriched In Brain) were
selected from the insulin resistance pathway, while STAT3 (Signal Transducer And Activator
Of Transcription 3) and Amyloid β A4 precursor protein-binding family B member 1-
interacting protein (APBB1IP) were selected from the leptin pathway. Further confirmation
of DEGs acquired from microarray was executed using two-step RT-PCR on Biorad CFX96
(Hercules, CA, USA). β-actin was used for normalization of selected candidate DEGs.

2.13. cDNA Synthesis and Quantitative Real-Time Quantitative PCR (qRT-PCR)

cDNA synthesis was performed using a commercially available kit (PrimeScript ™
1st cDNA Synthesis Kit, Clontech Laboratories, Inc., A Takara Bio company) following
the manual provided by the manufacturer. The synthesized cDNA was diluted 10 times
for utilization for real-time PCR. Briefly, the 1 µL cDNA was mixed with 0.5 µL TaqMan
probe and 5 µL mastermix. The volume of the reaction mixture was made up to 10 µL with
Rnase free water. To validate the microarray findings, the expression levels of genes were
quantified relative to the endogenous control gene, β-actin (ACTB), using pre-designed
TaqMan gene expression assays (Applied Biosystems, Foster City, CA, USA).The mean
fold change for each sample was calculated by using the 2DDCt method. The cDNAs were
confirmed using 2.5% agarose in agarose gel electrophoresis.

2.14. Statistical Analysis

Statistical analyses were performed using Graph Pad Prism version 5.0 software
for Windows (Graph pad Prism software, Laolla, CA, USA) with the level of statistical
significance set at p ≤ 0.05. Parameters were expressed as mean ± standard deviation.
One wayanalysis of variance (ANOVA) followed by post hoc Bonferroni test was made for
comparison between the four groups.

3. Results
3.1. Prevalence of Metabolically Unhealthy and Healthy Phenotypes

The mean age, height, BMI, and other anthropometric parameters are described in
Table 1. Out of 120 individuals recruited for the study, only 111 were considered for
the analysis. The other 9 participants could not be included due to less blood samples
and incomplete data. The varying nutritional status showed a different prevalence of
obesity in the study population. Out of 111 participants, 39 were overweight and obese,
consisting of 35.1% of the sample, while the rest of the population (64.9%) consisted of
healthy individuals. Taking into account metabolic health of the participants, 35.8% (n = 14)
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and 64.2% (n = 25) individuals were categorized as metabolically healthy overweight
(MHOW) and metabolically unhealthy overweight (MUOW), respectively. In comparison,
50% (n = 36) of the normal-weight individuals were categorized as metabolically unhealthy
normal-weight (MUNW). The prevalence of all the nutritional statuses is presented in
Figure 1a.

Table 1. Anthropometric characteristics, energy intake, and energy expenditure of the study male participants.

S.No. Characteristics MHNW (n = 36) MUNW (n = 36) MHOW (n = 14) MUOW (n = 25)

1 Age (y) 22.9 ± 4.1 23.7 ± 5.3 25.7 ± 7.5 25.9 ± 4.7

2 Height (cm) 171.7 ± 5.9 171.1 ± 6.8 170.7 ± 7.2 173.5 ± 5.4

3 Weight (Kg) 63.2 ± 6.3 65.5 ± 7.5 79.9 ± 11.0 83.8 ± 9.2

4 BMI (Kg/m2) 21.5 ± 1.7 22.3 ± 1.6 27.3 ± 1.9 *,# 27.8 ± 2.3 *,#

5 Fat Mass(Kg) 11.0 ± 2.8 12.4 ± 3.9 20.4 ± 4.6 *,# 22.6 ± 4.3 *,#

6 Fat Mass (%) 17.3 ± 3.8 18.6 ± 4.4 25.3 ± 2.6 *,# 26.8 ± 2.5 *,#

7 Fat Free Mass (Kg) 52.2 ± 4.9 53.1 ± 4.5 59.5 ± 6.7 *,# 61.2 ± 5.2 *,#

8 Muscle Mass (Kg) 49.5 ± 4.6 50.3 ± 4.3 56.5 ± 6.3 *,# 58.0 ± 4.9 *,#

9 Total Body Water (Kg) 34.8 ± 3.6 35.5 ± 3.0 41.5 ± 5.0 *,# 41.9 ± 4.2 *,#

10 BMR (kcal/day) 1561 1595 1804 1860

11 Energy Intake (kcal/day) 3112 ± 1133 3601 ± 1336 3358 ± 1574 3514 ± 1365

12 TEE (kcal/day) 3066 ± 849 3232 ± 980 3975 ± 1141 3789 ± 691

13 PAL 1.96 2.03 2.20 2.03

Values are expressed as mean ± SD. * p < 0.001 in comparison with MHNW, # p < 0.001 in comparison with MUNW, BMI, body mass index;
BMR, basal metabolic rate; TEE, total energy expenditure; PAL, physical activity level; MHNW, metabolically healthy normal-weight;
MUNW, metabolically unhealthy normal-weight; MHOW, metabolically healthy overweight/obese; MUOW, Metabolically unhealthy
overweight/obese.

3.2. Analysis of Clinical and Biochemical Parameters

Hematological profile analysis depicted an elevation in the blood levels of white blood
cells (WBC), thrombocytes, and red blood cells (RBC) of the metabolically unhealthy group
in contrast to metabolically healthy groups (Table 2).MHOW participants had proximate fat
mass and fat free mass to MUOW, while the former group had significantly lower levels of
TG (77.2± 38 mg/dLvs.112± 74 mg/dL) and LDL (68.8± 16 mg/dL vs. 95.3 ± 31 mg/dL)
with a significantly higher HDL (57.1 ± 19.6 mg/dL vs. 39.5 ±14 mg/dL). The MUNW
group showed similar metabolic characteristics as the MUOW group with high levels of TG
(108.1 ± 82 mg/dL) and LDL (77.4 ± 32 mg/dL) and low levels of HDL (46.4 ± 16 mg/dL)
(Figure 2). Figure 2 represents clinical data related to the metabolic risk factors, including
TG, HDL-C, LDL-C, CRP, and insulin resistance. Since inflammation is coupled with
obesity, inflammatory markers were studied. Leptin and adiponectin, in addition to
interleukin (IL)-6, tumor necrosis factor (TNF)-α, and ferritin, were analyzed by ELISA,
as well as immunoblotting, followed by densitometry (Figure 1b–f). The levels of leptin
and adiponectin were elevated in MHOW and MUOW in comparison to normal-weight
groups, while IL-6 was low in MHOW compared to MUNW and MUOW.
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Figure 1. Figure showing percent prevalence of nutritional status in study population (a), and levels of hormones and
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Table 2. Hematological profile of the study participants.

S.No. Variables MHNW MUNW MHOW MUOW

1 Hb (g/dL) 14.7 ± 1.4 14.4 ± 1.5 14.5 ± 1.5 15 ± 1.4

2 WBC (109/L) 7.4 ± 2.5 8.2 ± 2.4 7.5 ± 1.6 8.3 ± 2.5

3 Lymphocytes (106/L) 36.9 ± 5.5 35.6 ± 8.5 34.0 ± 6.4 36.7 ± 6.6

4 RBC (M/mm3) 5.2 ± 0.5 5.0 ± 0.5 5.0 ± 0.5 5.5 ± 0.7 *

5 MCV (fL) 89.5 ± 6.8 89.7 ± 7.2 90.9 ± 4.3 87.7 ± 8.6

6 HCT (%) 46.5 ± 4.2 45.2 ± 4.6 45.5 ± 4.4 47.7 ± 5.0

7 MCH (pg/cell) 28.3 ± 2.5 28.4 ± 2.5 28.8 ± 1.4 27.6 ± 3.2

8 MCHC (g/dL) 29.9 ± 10.4 31.7 ± 0.9 31.8 ± 1.1 31.5 ± 1.3

9 THR (109/L) 313 ± 80.5 352.3 ± 100 317.4 ± 48.8 326.3 ± 97.3

Values are expressed as mean ± SD.* p < 0.01 in comparison with MUNW and MHOW. Hb, hemoglobin; WBC, white blood cells; RBC,
red blood cells; MCV, mean corpuscular volume; HCT, hematocrit; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; THR, thrombocytes.

3.3. Microarray Analysis
3.3.1. Identification of DEGs among Different Metabolic Health Subtypes w.r.t.
Metabolically Healthy Normal-Weight

In order to identify DEGs in the MUNW, MHOW, and MUOW groups, the processed
data were loaded into Genome Studio™ Gene Expression Module, taking MHNW as a
reference. The total DEGs in MUNW, MHOW, and MUOW were 12,885, 13,355, and 13,671,
respectively. On screening the DEGs based on two-fold change at p-value ≤ 0.05, whole-
genome microarray analysis resulted in 7470, 5864, and 12 DEGs for the MUNW, MHOW,
and MUOW groups, respectively. Since only 12 genes were obtained for MUOW after
applying fold change and significance level, further bioinformatics analysis was carried out
only for MUNW and MHOW w.r.t MHNW. Tables 3 and 4 represent the top 5 upregulated
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and downregulated DEGs in the MUNW and MHOW groups, respectively, in comparison
to the MHNW group.
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Table 3. Top 5 upregulated and downregulated differentially expressed genes (DEGs) in the MUNW group in comparison
to the MHNW group.

S. No. Gene ID Genes Gene Name p-Value Differential Score

Upregulated

1 720 C4A Complement C4A (Rodgers Blood Group) 0.049 3.44

2 402 EPCAM Epithelial Cell Adhesion Molecule 0.049 3.44

3 83,723 FAM57B Family With Sequence Similarity 57 Member B 0.049 3.44

4 245,939 DEFB128 Defensin β 128 0.044 3.44

5 133,396 IL31RA Interleukin 31 Receptor A 0.044 3.44

Downregulated

1 55,278 QRSL1 Glutaminyl-TRNA Synthase
(Glutamine-Hydrolyzing)-Like 1 0.048 −3.44

2 653,519 GPR89A G Protein-Coupled Receptor 89A 0.047 −3.44

3 65,251 ZNF649 Zinc Finger Protein 649 0.047 −3.44

4 51,547 SIRT7 Sirtuin 7 0.044 −3.44

5 1017 CDK2 Cyclin Dependent Kinase 2 0.043 −3.44
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Table 4. Top 5 upregulated and downregulated DEGs in the MHOW group in comparison to the MHNW group.

S. No. Gene ID Genes Gene Name p-Value Differential Score

Upregulated

1 80,778 ZNF34 Zinc Finger Protein 34 0.003 5.50

2 23,630 KCNE1L Potassium Voltage-Gated Channel Subfamily E Regulatory
Subunit 5 0.008 5.50

3 3280 HES1 Hes Family BHLH Transcription Factor 1 0.022 5.50

4 441,326 FAM90A18 Family With Sequence Similarity 90 Member
A18, Pseudogene 0.044 5.50

5 1154 CISH Cytokine Inducible SH2 Containing Protein 0 5.09

Downregulated

1 38 ACAT1 Acetyl-CoA Acetyltransferase 1 0 −5.09

2 3109 HLA-DMB Major Histocompatibility Complex, Class II, DM β 0 −5.09

3 26,995 TRUB2 TruB Pseuouridine Synthase Family Member 2 0.005 −5.09

4 79,912 PYROXD1 Pyridine Nucleotide-Disulphide Oxidoreductase Domain 1 0.023 −5.09

5 29,103 DNAJC15 DnaJ Heat Shock Protein Family (Hsp40) Member C15 0 −5.07

3.3.2. Functional Gene Set Enrichment Analysis (GSEA) and Upstream Regulation of
Shared DEGs

To analyze the significantly overexpressed biological pathways and gene ontology
terms in the DEGs acquired from the groups, GSEA was performed. In MUNW, Panther
pathway enrichment suggested ‘JAK-STAT signaling’ pathway (P00038, p-value: 0.03),
and Reactome pathway enrichment resulted in the ‘translation’ pathway (R-HSA-72766,
p-value: 0.002) as overexpressed GO biological pathway. GO term enrichment suggested
cotranslational protein targeting to the membrane (GO:0006613) with adjusted p-value
0.007 as the most overexpressed GO term. Tables 5 and 6 represent the top significantly
enriched biological pathways and GO terms in group MUNW. In MHOW, Biocarta path-
way enrichment suggested ‘The information-processing pathway at the IFN-β enhancer’
pathway (h_pcafpathway, p-value: 0.05) and KEGG pathway enrichment showed ‘Ribo-
some’ pathway (hsa03010, p-value: 0.016) as overexpressed GO biological pathway. GO
term enrichment suggested ‘gene expression’ (GO:0010467) with adjusted p-value 0.001 as
the most overexpressed GO term. Tables 7 and 8 represent the top significantly enriched
biological pathways and GO terms in group MHOW.

Table 5. Top 10 Enrichment pathway-GO Biological pathway for the MUNW group in comparison to the MHNW group.

S. No. Term Pathway/Term ID Overlap GSEA Library Adjusted p-Value

1 JAK/STAT signaling
pathway_Homo sapiens_P00038 P00038 12/14 Panther 0.031

2 Translation_Homo
sapiens_R-HSA-72766 R-HSA-72766 85/151 Reactome 0.002

3

SRP-dependent cotranslational
protein targeting to
membrane_Homo

sapiens_R-HSA-1799339

R-HSA-1799339 62/107 Reactome 0.009

4 Influenza Life Cycle_Homo
sapiens_R-HSA-168255 R-HSA-168255 72/136 Reactome 0.043
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Table 5. Cont.

S. No. Term Pathway/Term ID Overlap GSEA Library Adjusted p-Value

5 Influenza Infection_Homo
sapiens_R-HSA-168254 R-HSA-168254 77/147 Reactome 0.043

6

Major pathway of rRNA
processing in the
nucleolus_Homo

sapiens_R-HSA-6791226

R-HSA-6791226 86/166 Reactome 0.043

7 rRNA processing_Homo
sapiens_R-HSA-72312 R-HSA-72312 91/180 Reactome 0.048

8

Activation of the mRNA upon
binding of the cap-binding

complex and eIFs, and
subsequent binding to 43S_Homo

sapiens_R-HSA-72662

R-HSA-72662 35/58 Reactome 0.051

9
Cap-dependent Translation

Initiation_Homo
sapiens_R-HSA-72737

R-HSA-72737 61/114 Reactome 0.051

10
Eukaryotic Translation

Initiation_Homo
sapiens_R-HSA-72613

R-HSA-72613 61/114 Reactome 0.051

Table 6. Enriched Gene Ontology term in the MUNW group in comparison to MHNW.

S. No. Enrichment Term Pathway/Term ID Overlap GSEA Library Adjusted p-Value

1 Cotranslational protein
targeting to membrane GO:0006613 65/110 GO 0.007

2 Protein targeting to ER GO:0045047 65/111 GO 0.007

3
Establishment oof protein

localization to
endoplasmic reticulum

GO:0072599 67/115 GO 0.007

4
Srp-dependent

cotranslational protein
targeting to membrane

GO:0006614 63/108 GO 0.009

5 Protein localization to
endoplasmic reticulum GO:0070972 67/118 GO 0.014

6 Translation GO:0006412 126/264 GO 0.252

7 Translational initiation GO:0006413 72/139 GO 0.252

8 Protein targeting GO:0006605 129/273 GO 0.304

9 Establishment of protein
localization to organelle GO:0072594 135/292 GO 0.549

10 Translational termination GO:0006415 48/89 GO 0.549
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Table 7. Enrichment pathway-GO Biological pathway for the MHOW group in comparison to the MHNW group.

S. No. Term Pathway/Term ID Overlap GSEA Library Adjusted p-Value

1

The information-processing
pathway at the IFN-β

enhancer_Homo
sapiens_h_pcafpathway

h_pcafpathway 18/29 Biocarta 0.058

2 Ribosome_Homo
sapiens_hsa03010 hsa03010 62/137 KEGG 0.016

3 Influenza Life Cycle_Homo
sapiens_R-HSA-168255 R-HSA-168255 68/136 Reactome 0.0003

4

SRP-dependent cotranslational
protein targeting to
membrane_Homo

sapiens_R-HSA-1799339

R-HSA-1799339 56/107 Reactome 0.0003

5 Influenza Infection_Homo
sapiens_R-HSA-168254 R-HSA-168254 71/147 Reactome 0.0004

6 Infectious disease_Homo
sapiens_R-HSA-5663205 R-HSA-5663205 142/348 Reactome 0.0009

7

Major pathway of rRNA
processing in the
nucleolus_Homo

sapiens_R-HSA-6791226

R-HSA-6791226 75/166 Reactome 0.0025

8 tRNA Aminoacylation_Homo
sapiens_R-HSA-379724 R-HSA-379724 26/42 Reactome 0.0025

9
Nonsense-Mediated Decay

(NMD)_Homo
sapiens_R-HSA-927802

R-HSA-927802 52/106 Reactome 0.0025

10

Nonsense Mediated Decay
(NMD) enhanced by the Exon

Junction Complex (EJC)_Homo
sapiens_R-HSA-975957

R-HSA-975957 52/106 Reactome 0.0025

Table 8. Enriched Gene Ontology term in the MHOW group in comparison to MHNW.

S. No. Enrichment Term Pathway/Term ID Overlap GSEA Library Adjusted p-Value

1 Gene expression GO:0010467 255/672 GO 0.001

2 Viral life cycle GO:0019058 60/118 GO 0.001

3 Protein targeting to ER GO:0045047 57/111 GO 0.001

4 Protein localization to
endoplasmic reticulum GO:0070972 59/118 GO 0.002

5 Establishment of protein localization to
endoplasmic reticulum GO:0072599 58/115 GO 0.002

6 SRP-dependent cotranslational protein
targeting to membrane GO:0006614 55/108 GO 0.002

7 Translation GO:0006412 112/264 GO 0.002

8 Cotranslational protein targeting
to membrane GO:0006613 55/110 GO 0.002

9 Ncrna metabolic process GO:0034660 135/332 GO 0.003

10 Nuclear-transcribed mrna catabolic process GO:0000956 81/183 GO 0.005
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The upstream analysis resulted ‘Aryl hydrocarbon receptor (AHR)’ and ‘Leucine-rich
repeat kinase 2 (LRRK2)’ as highly ranked transcription factor and regulatory kinases,
respectively, in MUNW, while a total of seven transcription factors were significantly
expressed—in which estrogen receptor 1(ESR1) was highly ranked, while lymphocyte
cell-specific protein-tyrosine kinase (LCK) was highly ranked protein kinase in MHOW.
Supplementary Tables S2 and S3 represent the transcription factors and Kinases for MUNW,
respectively, and Supplementary Tables S4 and S5 represent the transcription factors and
Kinases for the MHOW groups, respectively, in comparison to the MHNW group.

3.4. Identification of Hub Genes by Network-Based Analysis

The network-based analysis was performed using the online tool, NetworkAnalyst, to
identify important and most interconnected genes called as hub genes among the DEGs ob-
tained from the data of two groups. In the MUNW group, ELAV Like RNA Binding Protein
1 (ELAV1), was a highly ranked hub gene with 753 degrees and 1634,759.12 betweenness
centrality showing−3.37-fold change. In the MHOW group, Small Ubiquitin-Like Modifier
2 (SUMO2) was a highly ranked hub gene with 425 degrees and 616,100.7 betweenness
centrality showing −2.33-fold change. Network-based hub genes analysis is presented for
the MUNW and MHOW groups in Figure 3a,b. Supplementary Tables S6 and S7 represent
the top 10 hub genes for the MUNW and MHOW groups.
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3.5. Identification of Network Pathways

Nutritionally important pathways were selected, and DEGs of those pathways were
input into the Cytoscape software for network analysis. In MUNW, signaling by inter-
leukins showed the highest degree with 109 genes (closeness centrality—0.31, betweenness
centrality—0.134) with Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) show-
ing the highest degree [20] among genes, while in MHOW, metabolic pathways showed
the highest degree with 314 genes (closeness centrality—0.442, betweenness centrality—
0.606) with Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit β (PIK3CB)
showing the highest degree [16] among genes. Figure 4a,b represents the network of
pathways made by using nutritionally important genes for MUNW and MHOW, re-
spectively. Also, the nutritionally important genes of the respective groups are listed
in Supplementary Tables S8 and S9.
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3.6. Validation of Genes by Real-Time PCR

To validate the results of the microarray analysis, some genes were quantitatively
analyzed by real-time PCR after technical verification. Though bioinformatics analysis was
done only with the MUNW and MHOW groups, we still tried to analyze the expression
of the selected genes in the MUOW group for confirmation. For biological validation,
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20 samples were analyzed independently for microarray results. These samples were other
than those used for microarray analysis, but from the same group (5 samples each for
MUNW, MHOW, MUOW). The expression levels of five candidate genes (CUL1, APBB1IP,
STAT3, RHEB, and G6PC3) were validated using qRT-PCR (Figure 5). The mRNA expression
of the selected genes as tested by qRT-PCR showed similar results as microarray though
the results did not estimate true fold changes.
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A significant difference in the expression pattern of CUL1, APBB1IP, and G6PC3
was observed between MUNW and MHOW. However, the altered expression was not
significant between the MHNW and MUNW or MHOW group. β-actin was used as the
endogenous control for normalization of candidate gene expression. Figure 5 depicts the
fold change of mRNA expression of selected candidate genes in the MUNW, MHOW, and
MUOW groups using quantitative real-time PCR in comparison to MHNW.



Genes 2021, 12, 290 15 of 21

4. Discussion

Although obesity is a disease, not every obese individual is unhealthy or shows
metabolic risk markers. Some obese individuals are shielded against the cardiometabolic
risk factors, and hence, called metabolically healthy overweight/obese (MHOW/MHO).
Similarly, some healthy individuals show metabolic risk markers even though their BMI
was within the range of healthy person, and hence, called metabolically unhealthy normal-
weight (MUNW) individuals. The mechanisms underlying the advancement of MHOW/
MHO and MUNW are still poorly understood. Even though many studies are conducted
using omental or subcutaneous adipose tissue to state a variety of pathways involved
and affected in MHO and MUNW [25–27], the lack of genetic insight using whole blood
to study the genetic expression in various pathways majorly in two uncommon obesity,
i.e., MUNW and MHOW needs to be explored which makes this study novel itself.

Due to the unavailability of a universally accepted definition of metabolically healthy
obesity (MHO), many studies considered 0, 1, or 2 metabolic syndrome components with
or without insulin resistance for defining MHO criterion [6,28–33]. Therefore, it had been
suggested that MHO is a transition state between MHNW and metabolically unhealthy
obesity (MUO) with simply having fewer metabolic abnormalities. Some studies have
also suggested that obesity is a biological adaptation leading to changes in adipose tissue
biology in response to weight gain [34,35]. Considering the zero metabolic syndrome
criterion, the present study explores metabolically healthy and unhealthy phenotype. The
prevalence of MHOW individuals in our study is comparable to an Indian study published
by Geetha etal.2011 [28]. The haphazard prevalence of metabolically healthy and unhealthy
profiles ranges widely, with 10% to 47.7% all over the world [33,36–40]. Such arbitrary
results of prevalence may be due to varied country, region, age, gender, race, screening
techniques, and absence of a distinct criterion for metabolically healthy and unhealthy
individuals [41].

The development of a pathophysiological state in a body modulates the overall
transcriptome, which results in varying genetic expression. Microarray helps in global
transcriptome analysis to explore the biological insights into various diseases pathogenesis.
We used an end-to-end approach starting from the evaluation of whole blood gene expres-
sion profile in MUNW, MHOW, and MUOW with matched controls (MHNW), followed
by integrated bioinformatics analysis to extract novel biological genes and pathways and
finally, autonomously validated significantly altered common DEGs by real-time PCR. To
our surprise, on applying filters of 2-fold change and p-value ≤0.05, MUOW left with only
12 genes out of 13,671 DEGs; therefore, we continued the further functional analysis with
two groups (MUNW and MHOW). Since the volunteers were into regular physical activity,
their metabolic state may have switched from MUOW to MHOW, due to which the expres-
sion of genes were not in required fold change. On reviewing the literature, we found that
a person’s nutritional status can switch between metabolically healthy and metabolically
unhealthy status and vice versa [42,43]. A 10-year follow-up study of North West Adelaide
also reported the transition of metabolically unhealthy obese MUO to MHO [44]. Thus,
it is stated that metabolic health is not a steady-state and can be preserved by targeted
interventions [42].

Interestingly, we got 7470 and 5864 DEGs in MUNW and MHOW, respectively, under
the significance threshold of adjusted p-value ≤ 0.05 and fold change ≥ 2 compared to the
healthy control. In MUNW, the gene enrichment analysis showed overexpression of GO-
biological pathway ‘JAK-STAT signaling’ in the Panther database. The JAK-STAT signaling
pathway is activated by cytokines and interleukins, which further forms STATs dimers
and changes the gene expression in the nucleus upon translocation [45,46]. The plasma
levels of IL-6, TNF-α, and ferritin in the study participants were high in metabolically
unhealthy profile as also reported by many studies [47], suggesting the implication of the
JAK-STAT signaling pathway. On the other hand, Biocarta enrichment analysis showed
overexpression of ‘The information-processing pathway at the IFN-β enhancer’ pathway,
which suggests chromatin remodeling resulting in the activation of transcription, due to
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interferon-β [48,49]. The other enriched pathways analysis revealed common pathways in
both the groups (MUNW and MHOW), such as ‘Translation’, ‘Ribosome’, ‘SRP-dependent
cotranslational protein targeting to membrane’, ‘Major pathway of rRNA processing in the
nucleolus’, ‘rRNA processing’. These outcomes imply that the two groups are varying from
each other in some parameters; however, they showed similarity in their gene expression
at the translation level as also depicted by GO term enrichment. This suggests that MUNW
and MHOW are only biological adaptations to cope up with unhealthy parameters, and
they are intermediate states between MHNW and MUO nutritional status.

Next, we analyzed the overexpressed transcription factors via upstream analysis,
which showed upregulation of the ‘Aryl hydrocarbon receptor (AHR)’ transcription factor
in the MUNW group. AHR plays a crucial role in obesity metabolism by promoting adi-
pogenesis, and it is reported that AHR inhibition leads to reversal of obesity and hepatic
steatosis in mice [50]. In contrast, the upstream analysis showed overexpression of ‘Estro-
gen receptor 1(ESR1)’ transcription factor in the MHOW group. ESR1 gene polymorphism
exhibited a reduced BMI in male and female subjects and also known to attenuate the risk
of obesity [51,52]. ESR1 forms complex with 17-β estradiol (E2) (E2/ESR1) and modulates
adipose tissue vascular endothelial growth factor A (VEGFA), thereby helping in angio-
genesis, attenuation of inflammation, and ameliorating adipose tissue function [53]. Thus,
the upregulation of AHR and ESR1 gives us a lead signal to variant metabolic profile in
MUNW and MHOW, respectively.

To gain additional genetic insight towards the nutritionally linked significant pathway
in MUNW and MHOW, the nutritionally important pathways were selected and ana-
lyzed. Two nutritional network pathways that were significantly enriched in MUNW and
MHOW subjects were ‘signaling of interleukins’ and ‘metabolic pathways’. Interleukins
are produced by leukocytes and target the sites in a paracine and autocrine manner. The
oligomerization of interleukins activates various cascades, including the JAK-STAT signal-
ing pathway and MAPK pathway [54]. The ‘metabolic pathways’ involve enzyme-mediated
chemical reactions that lead to catabolism and anabolism in the body. Thus, ‘signaling
of interleukins’ portrays the major involvement of inflammatory and anti-inflammatory
processes regulating in MUNW as also shown by plasma levels of inflammatory markers in
the study participants, while the highly regulated metabolic pathways in MHOW portrays
the normal involvement of various regulatory processes. The nutritionally important genes
‘PIK3R2’ and ‘PIK3CB’ in the MUNW and MHOW groups, respectively, are a regulatory
and catalytic components of Phosphoinositide-3-Kinase (PI3K), a lipase kinase. The regula-
tory role of PIK3R2 was reported as ameliorating insulin sensitivity in PIK3R2 knockout
mice [55], while a promoter variant of PIK3CB is reported to provide protection from insulin
resistance in obese and non-obese individuals [56]. These results imply the important role
of PIK3R2 and PIK3CB in regulating insulin sensitivity in obese and non-obese individuals.

The disease pathophysiology can be best understood by analyzing the level of gene
expression of the DEGs overlapped between the groups; therefore, we selected genes from
hub gene analysis, insulin, and leptin pathways. Among Hub genes, Cullin1 (CUL1, fold
change expression of MHNW = 1.00, MUNW = 0.29, MHOW = 1.56, and MUOW = 0.85)
is crucial for cell scaffolding and ubiquitin associated proteolysis [57]. Moreover, CUL1
(along with SKP1 (S-phase-kinase-associated protein 1) and F-Box protein) forms the largest
E3 ubiquitin ligase family (Skp1-Cullin1-F-box (SCF)) E3 ligase is known for controlling
obesity with an association of Skp2 [58]. It is reported that the mice knockout for SCF
Fbxo40 shown elevated levels of IRS1 of the insulin signaling pathway and play a vital
role in insulin resistance [38]. Thus, the overexpression of CUL1 in MHOW and under-
expression in MUNW suggests the diverse nature of MHOW individuals. Among other
DEGs, overexpression of the APBB1IP gene was quantified (fold change expression of
MHNW = 1.0, MUNW = 0.32, MHOW = 1.18, and MUOW = 0.74). APBB1IP is commonly
known as Rap1-GTPase, and plays a vital function in diet-induced obesity, insulin, and
leptin resistance. Genetic ablation of Rap1-GTPase shields against dietary obesity and
imbalance of glucose, insulin, and leptin sensitivity, reduction in inflammation, and ER
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stress in the hypothalamus [59]. The overexpression of the APBB1IP gene in MHOW in
comparison to MUNW suggests leptin resistance as also shown by ELISA and Western blot-
ting of leptin. Moreover, it is reported decreased values of McAuley’s index corresponded
to increased insulin resistance, which is also shown by this study [60].

Taking into account insulin pathway and insulin resistance, one gene which gath-
ered our attention was G6PC3 (fold change expression of MHNW = 1.00, MUNW = 0.31,
MHOW = 1.10, MUOW = 0.79). Glucose 6 phosphatase enzymes have three subunits
known as G6PC, G6PC2, and G6PC3, together known as G6PC family. Majorly, the GPC
family works in association with fasting glucose levels [61,62]. G6PC3 is ubiquitously
expressed in cells and tissues, and hence, formerly known as “ubiquitously expressed
G6Pase catalytic subunit related protein” (UGRP). Its mRNA has been reported to be more
abundant than the other paralogous genes of G6PC [63,64]. G6PC3 is well known for
its expression in white blood cells, particularly neutrophils, and its deficiency leads to
autosomal recessive disease SCN4 (severe congenital neutropenia type 4) [61,62,65]. This
subunit of the paralogous gene of G6PC is lesser known for its regulation in blood glucose
levels. To date, G6PC3 known for regulation in neutrophils and deficiency will cause severe
congenital neutropenia type 4 (SCN4). However, in our study, in the MUNW group, G6PC3
has been downregulated, while upregulated in MHOW group suggesting its implication in
nutrition-related pathways of insulin resistance.

Summarizing the present study, MHOW is a better metabolic health status with de-
creased WBC, RBC, thrombocytes, and inflammatory markers than MUNW. The increased
blood levels of IL-6, TNF-α, and ferritin proved that inflammation is present in the un-
healthy groups. Although ferritin is known as an important biomarker in iron-binding
and transferring, it is also rising as an inflammatory marker in obesity [66]. The tendency
and levels of inflammatory markers in all the groups suggest that metabolically healthy
individuals have lower inflammation in comparison to metabolically unhealthy individ-
uals. The lower inflammation is also proved at a genetic level where the ‘signaling of
interleukins’ pathway was overexpressed in MUNW, while ‘metabolic pathways’ were
overexpressed in MHOW. The significant difference in inflammation was observed only in
IL-6 concentrations was due to the higher concentration of adiponectin, which acts as an
anti-inflammatory protein, hence, limiting the expression and release of pro-inflammatory
markers. This, therefore, helps in the development of a better metabolic profile [67]. Fur-
thermore, the GO-biological pathways and GO terms showed expression of common
processes suggesting MUNW and MHOW as the transition state between metabolically
healthy and metabolically unhealthy health status.

5. Conclusions

To conclude our study, MHOW is indeed a better metabolic health status as predicted
by GO biological processes and transcription factors; however, it is not a stable state. The
major outcome from the study was a unique gene ‘G6PC3’ showing upregulation in MHOW
and still unknown for its existence in insulin resistance. Moreover, the biochemical and
genetic exploration has suggested that obesity (as a biological adaptation and MHOW
and MUNW) are the transition states between metabolically healthy and metabolically
unhealthy profiles—though, further studies are essential in this direction.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/2/290/s1, Table S1: Prediction Equation for calculating basal metabolic rate (BMR) in Indian
Males as per ICMR Expert Report [17], Table S2: Top significantly expressed Transcription Factors
in MUNW in comparison to MHNW using Expression2Kinases tool, Table S3: Top significantly
expressed Kinases in MUNW in comparison to MHNW using Expression2Kinases tool, Table S4:
Top significantly expressed Transcription Factors in MHOW in comparison to MHNW using Expres-
sion2Kinases online tool, Table S5: Top significantly expressed Kinases in MHOW in comparison to
MHNW using Expression2Kinases online tool, Table S6:Top Ten Hub Gene Analysis Performed Using
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