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Naltrexone can aid in reducing alcohol consumption, while acamprosate supports abstinence; however, not all patients with alcohol
use disorder (AUD) benefit from these treatments. Here we present the first genome-wide association study of AUD treatment
outcomes based on data from the COMBINE and PREDICT studies of acamprosate and naltrexone, and the Mayo Clinic CITA study of
acamprosate. Primary analyses focused on treatment outcomes regardless of pharmacological intervention and were followed by
drug-stratified analyses to identify treatment-specific pharmacogenomic predictors of acamprosate and naltrexone response.
Treatment outcomes were defined as: (1) time until relapse to any drinking (TR) and (2) time until relapse to heavy drinking (THR; ≥
5 drinks for men, ≥4 drinks for women in a day), during the first 3 months of treatment. Analyses were performed within each
dataset, followed by meta-analysis across the studies (N= 1083 European ancestry participants). Single nucleotide polymorphisms
(SNPs) in the BRE gene were associated with THR (min p= 1.6E−8) in the entire sample, while two intergenic SNPs were associated
with medication-specific outcomes (naltrexone THR: rs12749274, p= 3.9E−8; acamprosate TR: rs77583603, p= 3.1E−9). The top
association signal for TR (p= 7.7E−8) and second strongest signal in the THR (p= 6.1E−8) analysis of naltrexone-treated patients
maps to PTPRD, a gene previously implicated in addiction phenotypes in human and animal studies. Leave-one-out polygenic risk
score analyses showed significant associations with TR (p= 3.7E−4) and THR (p= 2.6E−4). This study provides the first evidence of
a polygenic effect on AUD treatment response, and identifies genetic variants associated with potentially medication-specific
effects on AUD treatment response.
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INTRODUCTION
Alcohol use disorder (AUD) is highly prevalent, and presents a
significant health burden worldwide [1]. Several medications have
been developed for treatment of AUD, but they are underutilized
and pharmacological treatment of AUD remains a major challenge
[2]. Recent reviews have highlighted the need for a precision
medicine approach in the context of AUD treatment in order to
increase the utility and safety of available medications [3, 4].
Treatment efficacy of acamprosate and naltrexone is supported

by large systematic meta-analyses of randomized controlled trials
[5, 6], which suggest that naltrexone helps people refrain from
excessive drinking while acamprosate is effective in supporting
abstinence [6–12]. However, a considerable proportion of AUD
patients fail to benefit from these drugs, with the number needed
to treat estimated to be 7–12 for acamprosate and 12–20 for
naltrexone [7, 8, 13, 14]. Garbutt et al. reviewed moderators of
naltrexone response and concluded that available data were
insufficient to guide clinical treatment selection [15]. Similarly,

limited success was achieved in studies searching for clinical
moderators of acamprosate response [16]. Although secondary
analyses have identified potential moderators of naltrexone and
acamprosate response [17], further efforts are needed to identify
predictors for personalized medicine [18].
Genetic variation contributes to inter-individual differences in

drug response [19–22], and may facilitate the prediction of
response to AUD treatment [23, 24]. Moreover, discovery of
genetic variation and biological pathways involved in treatment
response may reveal information about the mechanisms of drug
action, accelerating further drug discovery efforts. Candidate gene
studies identified several genetic variations that may influence
AUD treatment outcomes [25–28]. However, the contribution of
candidate gene studies to the understanding of genetic effects on
AUD treatment response has been limited, highlighting the need
for genome-wide pharmacogenomic studies. Yet, to date, no
genome-wide association studies (GWASs) of acamprosate or
naltrexone treatment response have been published.
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Recent GWASs of AUD and other alcohol use related traits have
identified a growing number of loci associated with these
phenotypes. Various downstream analyses including gene, path-
way and polygenic risk score (PRS) analyses have provided further
insights into the genetic architecture of AUD and related traits,
including genetic overlap with other psychiatric and behavioral
traits [29–33]. While identifying loci contributing to AUD has been
challenging due to the complexity of AUD and difficulties with
compiling large samples of patients evaluated for this phenotype,
GWAS of quantitative measures of problem drinking and alcohol
consumption have been more successful [29–33]. Despite its
clinical relevance, AUD treatment response has not yet been
studied with the GWAS approach. Investigating the genetics of
AUD treatment response is expected to not only reveal genetic
variation potentially useful in treatment selection but may also
contribute to our understanding of AUD risk and prognosis.
GWAS of treatment outcomes have been performed in the

context of other addictions, most notably nicotine dependence.
Large studies of smoking behavior phenotypes, including smoking
cessation, demonstrated shared and unique genetic contributions
across these phenotypes, nicotine use disorder, and other diseases
[34–36]. Studies of nicotine clearance and nicotine metabolism
biomarkers have provided further insights regarding the genetic
contributions to complex smoking related phenotypes [37, 38].
However, similar to AUD, little is known about pharmacogenetic
factors that contribute to response to specific smoking cessation
treatments.
Here we present the first GWAS of AUD treatment response

based on data from three of the largest studies of acamprosate
and naltrexone completed to date, with a total sample of more
than 1000 patients treated for AUD: the COMBINE [39], PREDICT
[40], and CITA [27] studies. COMBINE and PREDICT were
randomized, placebo-controlled studies designed to evaluate
response to acamprosate and naltrexone, while CITA was an
open-label study of acamprosate designed for pharmacogenomics
analyses. Using data from these three studies, we performed
GWAS of AUD treatment outcomes (across treatment options) as
well as pharmacogenomics GWAS of acamprosate and naltrexone
response, separately. Our analyses included gene-level tests, gene-
set and tissue enrichment analyses, and PRS analyses. Our results
provide the first evidence of a polygenic effect on AUD treatment
outcomes.

METHODS
Samples, genotyping, quality control, and imputation
This study used a new genomic dataset derived from three previously
completed studies of acamprosate and/or naltrexone treatment of AUD:
the COMBINE, PREDICT, and CITA studies [27, 39, 40]. Key characteristics of
these three studies are summarized in the Supplementary text and
Supplementary Table S1. All subjects included in our analyses provided
consent allowing use of their clinical data and DNA for genetic studies of
AUD and response to its treatment, and this study was approved by the
Mayo Clinic Institutional Review Board.
Sample genotyping, quality control, and imputation are described in

the Supplementary Methods. After quality control, data from 498 COMBINE
participants, 266 PREDICT participants, and 319 CITA participants of
European ancestry with treatment outcome data were available for
analysis. Following imputation, 5.6 million SNPs with minor allele
frequency (MAF) > 0.05 in at least one of the studies were included in
the meta-analyses.

Assessment of treatment outcomes
Detailed descriptions of study procedures and assessments in the
COMBINE, PREDICT, and CITA studies are presented elsewhere
[27, 39, 40]. In brief, baseline patient characteristics were collected in
each study, and outcomes were assessed during 3 or more months of
treatment. We compared baseline measures (demographic data and
clinical information including alcohol consumption in the 30 days prior to

treatment initiation) across studies using chi-square tests or one-way
analysis of variance. Treatment outcomes were derived from timeline
follow back (TLFB) data collected after treatment initiation. For this study,
the primary treatment outcome measures were: (1) time until relapse (TR)
to any drinking during the first 3 months of treatment, and (2) TR to heavy
drinking (≥5 drinks for men, ≥4 drinks for women in a day) during the first
3 months of treatment. Outcomes for patients that were lost to follow-up
in the first 3 months prior to relapse (or heavy relapse) were treated as
censored observations in the survival analyses. Although the two
outcomes we analyzed are highly correlated because for many patients
first relapse was an episode of heavy drinking, we considered both
outcomes, as acamprosate is believed to be effective in preventing relapse
to any drinking while naltrexone has been reported to be more effective in
preventing relapse to heavy drinking [6, 8, 9].

Genome-wide association analyses
The primary analyses included patients treated with acamprosate, naltrexone,
or placebo (N= 1083) to identify predictors of treatment outcomes
regardless of pharmacological intervention. Drug-stratified analyses were
then run to identify treatment-specific (i.e., pharmacogenomic) predictors of
acamprosate (N= 652) and naltrexone response (N= 301). In these drug-
stratified analyses, patients were included if they were treated with the
medication of interest (acamprosate or naltrexone), irrespective of other co-
therapies. Thus, the GWAS of naltrexone outcomes in the COMBINE dataset
included patients regardless of whether they had received the combined
behavioral intervention and whether they had received naltrexone co-
therapy; this means the acamprosate and naltrexone samples overlapped by
a subset of COMBINE subjects that had been treated with both medications
(N= 101). All GWAS were run in COMBINE, PREDICT and CITA datasets
separately, followed by fixed-effects meta-analysis. In each dataset, allelic
associations with TR and time until heavy relapse (THR) were assessed using
Cox proportional hazards models. All analyses were adjusted for genetic
principal components (PCs), if needed, to control for remaining population
stratification in the European ancestry samples. The Cox proportional hazards
analyses were run using the survival package in R (version 3.6.2), with SNP
effect sizes estimated using hazard ratios (HR). Meta-analyses of GWAS
summary statistics were performed using METAL [41]. Methods for gene-level
as well as gene-set and tissue enrichment analyses are described in the
Supplementary Text.

Polygenic risk score analyses
Leave-one-out PRS analyses were used to test for a reproducible polygenic
predictor of treatment outcomes between datasets. Specifically, leave-one-
out PRSs for TR and THR were generated for each target study based on
the results of a discovery GWAS meta-analysis where the target cohort was
left out. The PRSs were constructed using PRSice2 [42] to prune (r2 > 0.1
within a 500 kb window) and restrict SNPs to a given p value threshold
(pt= 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 1), with SNP alleles weighted by their
log(HR) estimates. We then performed a principal component analysis
(PCA) on the set of PRSs estimated at different p value thresholds and used
the first PRS principal component to test for association with the outcome;
this PRS-PCA strategy eliminates the multiple testing across PRSs based on
different p value thresholds [43]. The PRSs for TR and THR were tested for
association with the respective treatment outcome in each left out dataset
using Cox proportional hazards models, and the results from the analyses
of the three datasets were meta-analyzed to assess overall PRS prediction
of treatment response.
To investigate whether PRS for other AUD-related traits predict AUD

treatment outcomes, we generated PRS for AUD and alcohol consumption
using summary statistics from several published GWAS. For AUD, we
derived the PRS based on the largest clinically assessed AUD sample [32], a
multi-ethnic sample with ICD diagnoses of AUD [31], and a large meta-
analysis of problematic alcohol use [33]. For alcohol consumption, we used
PRS derived from the UK Biobank GWAS [29] and from the Million Veterans
Program data [31]. These PRSs were also constructed using PRSice2 [42]
(r2 > 0.1 within a 500 kb window; pt= 5e−8, 1e−7, 1e−06, 1e−5, 0.0001,
0.001, 0.01, 0.05, 0.1, 0.2, 1). As with the leave-one-out analyses, we used
the PRS-PCA strategy to reduce multiple testing across p value thresholds
by computing a single PRS for each set of GWAS summary statistics and
testing its association with the outcome.
The PRS analyses of the COMBINE study data were adjusted for the first

four PCs to account for the heterogeneity observed in this dataset.
Nagelkerke’s pseudo-R2 was calculated to estimate the variance explained
in TR or THR by the PRS in each dataset, and weighted average R2 values
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were calculated across the three datasets using the effective N for each
cohort.

RESULTS
Descriptive statistics for the three datasets are shown in Table 1. In
total, 639 (59%) of the study participants relapsed to any drinking,
while 564 (52%) relapsed to heavy drinking.

Genome-wide association study
Manhattan plots for the two GWAS meta-analyses in the full
cohort (all treatments) are shown in Fig. 1; the corresponding
Quantile/Quantile plots are shown in Supplementary Fig. S1. In the
meta-analysis across the three studies no individual SNPs were
significantly associated with TR; the SNP with the strongest
evidence for association is located in an intron of the potassium
voltage-gated channel subfamily Q member 4 gene (KCNQ4,
rs1078110, MAF= 0.30, P= 6.2E−7). In the full cohort analysis of
THR, significant associations were observed for a set of SNPs in the
brain and reproductive organ-expressed gene BRE, also known as
BABAM2 (BRISC and BRCA1 A complex member 2); there were 14
genome-wide significant SNPs at this locus (top SNP rs56951679,
MAF= 0.17, minor allele HR= 1.5, p= 1.6E−8). The effect estimate
for the top SNP at this locus (rs56951679) suggests that carrying
one additional copy of the minor allele (C) is associated with 1.5
times higher risk of relapse to heavy drinking. A regional
association plot for this locus is shown in Supplementary Fig. S2.
In drug-stratified meta-analyses of outcomes in patients treated

with naltrexone (Supplementary Fig. S3), an intergenic SNP
located between the long intergenic non-coding RNA RP4-
710M16.2 and the PPAP2B gene (phospholipid phosphatase 3,
also known as PLPP3) was associated with THR (rs12749274,
MAF= 0.079, HR= 2.90, p= 3.9E−8). While not achieving
genome-wide significance, the strongest evidence for association
with TR and second strongest for THR was observed with a SNP in
an intron of the protein tyrosine phosphatase receptor type D

gene PTPRD (rs62533259, MAF= 0.14: TR minor allele HR= 2.2,
p= 7.7E−8; THR minor allele HR= 2.4, p= 6.1E−8). PTPRD has
been implicated in multiple addiction-related phenotypes in
humans and other species [44].
One SNP was significantly associated with TR during acampro-

sate treatment; this intergenic SNP is located between a non-
coding RNA gene and the ribosomal protein L29 pseudogene
(rs77583603, MAF= 0.093, p= 3.1E−9; Supplementary Fig. S4).
The top signal in the analyses of THR in acamprosate-treated
patients was rs34797278 in a non-coding RNA (MAF= 0.079, p=
5.4E−8). All loci with suggestive evidence of association (p <
5*10−6) with one of the outcome measures are shown in
Supplementary Tables S1 (all treatments), S2 (naltrexone), and
S3 (acamprosate).
The top association findings described above were identified

using meta-analyses of COMBINE, PREDICT, and CITA results. As
these studies had significant differences in patient populations,
we examined Forest Plots for the top loci to investigate the
consistency of observed associations across these heterogeneous
samples (Supplementary Fig. S5). The results were highly
consistent across samples at the genome-wide significant loci as
shown in Supplementary Fig. S5A/C/D. However, the top PTPRD
SNP association that almost reached significance in the meta-
analysis of naltrexone-treated patients in COMBINE and PREDICT,
was driven by a genome-wide significant association in the
COMBINE sample, while showing no significant association in the
PREDICT sample, although the direction of effect in PREDICT was
consistent with the effect in COMBINE and the 95% confidence
intervals overlapped (Supplementary Fig. S5B).
Figure 2 shows scatterplots of results (p values) from analyses

of TR vs. THR, and for analyses of acamprosate treatment
outcomes vs. naltrexone treatment outcomes. As expected, TR
GWAS signals were highly correlated with THR signals (panels A,
B, and C of Fig. 2), but results for acamprosate treatment
outcomes showed little correlation with signals for naltrexone
treatment outcomes (panels D and E of Fig. 2). Although TR

Table 1. Demographic and clinical characteristics of the COMBINE, PREDICT, and CITA participants included in the pharmacogenomics GWAS.

COMBINE PREDICT CITA

Sample sizes p value

Total N 498 266 319

Acamprosate N 223 110 319

Naltrexone N 199 102 –

Placebo only or no pills N 177 54 –

Age, mean(SD) 45.4 (10.6) 45.2 (8.5) 43.4 (11.6) 0.012

Sex, male N(%) 343 (68.9%) 266 (100%) 204 (64.0%) <0.0001

Age of onset 30.5 (11.9) 30.2 (10.2) 29.6 (12.0) 0.63

Baseline alcohol consumptiona, mean (sd)

Days since last drinking day 8.0 (5.4) 22.0 (4.3) 19.7 (8.8) <0.0001

Average number of drinks per drinking day 12.1 (7.4) 21.0 (12.7) 12.0 (8.6) <0.0001

% Drinking daysb 56.2 (22.8) 82.0 (26.8) 32.2 (28.2) <0.0001

% heavy drinking days 47.2 (23.8) 79.4 (27.9) 28.6 (26.8) <0.0001

Treatment Outcomes:

Relapse, N (%) 380 (76.3%) 158 (59.4%) 101 (31.7%) <0.0001

Relapse in acamprosate subset, N (%) 167 (74.9%) 62 (56.4%) 101 (31.7%) <0.0001

Relapse in naltrexone subset, N (%) 146 (73.4%) 65 (63.7%) – 0.084

Heavy Relapse, N (%) 338 (67.9%) 142 (53.4%) 84 (26.3%) <0.0001

Heavy relapse in acamprosate subset, N (%) 144 (64.6%) 56 (50.9%) 84 (26.3%) <0.0001

Heavy relapse in naltrexone subset, N (%) 127 (63.8%) 57 (55.9%) – 0.18
aBaseline alcohol consumption measures are based on 30 days before start of treatment.
b% drinking days= 100 − % days abstinent in the 30 days before start of treatment.
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results were generally highly correlated with THR results, the top
association from the THR analysis of the full cohort (the BRE top
SNP p= 1.6E−8) showed much weaker evidence for association
with TR (p= 1E−0). On the other hand, the PTPRD rs62533259
association in the naltrexone-treated subset was a top signal in
both the TR and THR analyses (shown in panel B of Fig. 2).
However, the same PTPRD variants were not associated with TR or
THR in the acamprosate-treated patient subset (panels D and E of
Fig. 2).
Results of the gene-level, gene-set, and tissue enrichment

analyses are described in the Supplementary Text.

Polygenic risk score analyses
Leave-one-out analyses provided evidence of a polygenic effect
on treatment response in AUD. Specifically, for both TR and THR,
PRSs derived from SNP effects observed in any two of the studies
explained a statistically significant proportion of variance in the
same outcome in the left-out dataset (TR: Nagelkerke’s R2= 0.8%,
p= 0.007 with PRS-PCA, max R2= 1.3%, p= 3.7E−4 at pt= 0.05;
THR: Nagelkerke’s R2= 1.0%; p= 0.002 with PRS-PCA, max R2=
1.3%, p= 2.6e−4 at pt= 0.05; Fig. 3). In contrast, none of the PRSs
for AUD, problematic alcohol use or alcohol consumption were
associated with either treatment outcome (Supplementary
Fig. S7).

DISCUSSION
Using data from three studies of AUD treatment outcomes, we
performed the first GWAS for AUD treatment response, including
drug-stratified pharmacogenomic analyses of acamprosate and
naltrexone treatment outcomes, and identified several genome-
wide significant associations. We also performed PRS analyses to
assess if a polygenic signal captured by this GWAS is associated
with AUD treatment outcomes in independent samples. Results of
these leave-one-out PRS analyses provided the first evidence of
association between AUD treatment outcomes and PRSs, reflect-
ing combined effect of variation across the genome on response
to AUD treatment. While the proportion of variation in the
treatment response explained by the PRSs is small, as expected for
relatively small studies of complex traits, the significant associa-
tion demonstrates that polygenic effects contribute to AUD

treatment outcomes motivating further research into identifying
contributing genetic factors.
Significant evidence of association was observed between THR

and SNPs in the brain and reproductive organ-expressed protein
(BRE) gene (aliases include BABAM2, BRCC4 and BRCC45), which
encodes BRISC and BRACA1 A complex member 2. BRE is
ubiquitously expressed in human tissues, but most prominently
in the zona glomerulosa of the adrenal cortex, where miner-
alocorticoids (e.g., aldosterone) are synthesized and secreted, as
well as in glia and neurons [45]. BRE expression is altered in
adrenal abnormalities, suggesting possible involvement in adrenal
function [45]. Chronic alcohol consumption has been shown to
increase blood aldosterone levels, and increased aldosterone level
was correlated with higher alcohol consumption, craving and
anxiety levels in AUD patients [46]. Aldosterone may regulate
alcohol use behaviors and anxiety via mineralocorticoid receptors
expressed in limbic regions involved in regulating anxiety, stress-
induced alcohol consumption, craving, and inhibitory control [47].
Thus, our finding of association of BRE SNPs with THR may be
related to regulation of stress response and alcohol craving.
Furthermore, BRE has shown genome-wide significant associations
with a range of phenotypes from different domains (e.g.,
metabolic, immunological, cardiovascular) [48]. With respect to
psychiatric traits, genetic variation in BRE has been associated with
alcohol intake frequency and drinks per week in the general
population [34]. In our study, BRE SNPs were significantly
associated with THR, but they were not significantly associated
with TR despite the overall correlation of results for these two
outcomes. It is possible that this gene has a differential effect on
relapse and heavy relapse (e.g., if it is involved in regulation of
alcohol consumption quantity or AUD severity), particularly given
the prior reports of BRE genetic variation being associated with
alcohol intake frequency and drinks per week. However, it is also
worth noting that according to GTEx, BRE rs56951679 (and other
top SNPs in our analysis) is a splicing quantitative trait locus for
FNDC4 exon 7 in human cortex, hippocampus, and nucleus
accumbens. FNDC4, a secreted factor highly expressed in liver and
brain, was implicated in sex-specific neurotoxic consequences of
chronic alcohol withdrawal [49]. The mechanisms of action
through which variants in the BRE region may impact response
to AUD treatment need to be further explored.

Fig. 1 Manhattan plots for analyses of outcomes in all subjects.Manhattan plots are shown for (A) time until relapse to any drinking, and (B)
time until relapse to heavy drinking. In each panel, -log10(pvalue)s are shown (y-axis) for all SNPs by SNP position in the genome (x-axis).
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The one SNP with genome-wide significant evidence of
association with acamprosate treatment response (rs77583603;
p= 3.1E−9 for TR) is located between a non-coding RNA gene and
the ribosomal protein L29 pseudogene and is not itself annotated
as functionally significant. Analyses of naltrexone treatment
outcomes identified a SNP near PPAP2B (a.k.a. PLPP3, LPP3), which
encodes phospholipid phosphatase 3, that was significantly
associated with THR. Changes in PPAP2B gene expression have
been observed in nucleus accumbens and amygdala of rodents
after voluntary ethanol consumption [50, 51], and PPAP2B has
been implicated in alcoholic fatty liver in humans [52]. These
genes/variants identified in the medication-specific analyses have
not been previously implicated in AUD or other addiction-related
traits in humans, and their potential role in AUD treatment
response needs further investigation.
An intronic SNP of PTPRD, while not quite genome-wide

significant, was the strongest association signal for TR
(p= 7.7E−8) and the second strongest association for THR (p
= 6.1E−8) in the naltrexone analysis. This finding is notable
because PTPRD (protein tyrosine phosphatase receptor type D)
has been implicated in multiple addiction-related phenotypes in
humans and in animal studies [53, 54]. Prior studies have not
provided genome-wide significant evidence for association of
PTPRD alleles with any substance use disorders, but the PTPRD
locus showed genome-wide significant associations in a GWAS of
obsessive-compulsive traits [55], suggestive association in a
GWAS of opioid cessation [56], and it appears to have pleiotropic
effects across brain phenotypes [44]. Protein tyrosine phospha-
tases are signaling molecules that regulate a variety of cellular
processes, and PTPRD likely plays a role in neuronal cell adhesion.
Uhl and Martinez [44] provided a comprehensive review of
PTPRD genetics and neurobiology, and discussed its potential
role as a pharmacological target with effects on brain pheno-
types. Of note, the PTPRD effect we observed appears to be a
pharmacogenomic effect specific to naltrexone, as our study
provided no evidence of association of the same PTPRD variant
with acamprosate treatment response. The impact of PTPRD on

naltrexone treatment outcomes is, therefore, intriguing and
warrants further investigation.
We performed GWAS of treatment outcomes in the full cohort

of patients from the COMBINE, PREDICT, and CITA studies, as well
as drug-specific analyses of acamprosate and naltrexone treat-
ment response. The drug-stratified analyses aim to identify
genetic variants that impact response to a given drug. The
analyses of the full sample may also identify pharmacogenomic
effects, but have greater power to identify genetic variants that
impact risk of relapse regardless of specific treatment—these
variants may include markers of severity of AUD or AUD subtypes
that confer differential risk of relapse following treatment. Two
genes implicated in this study, BRE and PTPRD, were previously
associated with AUD related phenotypes. Known AUD risk genes,
particularly ADH1B [32], were not significant predictors of
treatment response in our analyses. This may be partly due to a
relatively small contribution of AUD risk genes to treatment
response, which would be consistent with findings in other
psychiatric disorders including major depressive disorder [57, 58].
In addition, low-frequency variants that are protective against
AUD could have very low frequencies in our samples of AUD
patients, reducing the power to detect their contribution to
treatment response. Indeed, this may be the case with ADH1B
variants that are protective against AUD and have low allele
frequencies in populations of European ancestry. For example, the
AUD-associated SNP rs1229984 in ADH1B has a frequency of ~5%
in European populations [59]. In the COMBINE dataset this SNP
had a frequency of only ~2%, whereas in CITA and PREDICT its
frequency was ~1% and <1%, respectively. Because of its low
frequency and poor imputation quality in the CITA and PREDICT
samples, this SNP was not analyzed in these datasets. However,
analysis of the COMBINE data provided nominal evidence of
association for rs1229984 with TR (HR= 0.32, p= 0.016) and THR
(HR= 0.27, p= 0.0053); the effect estimates suggest the minor
allele at rs1229984, which is protective against AUD, may have a
strong protective effect against relapse during treatment, redu-
cing the risk of relapse by about 70%. Because its MAF was below

Fig. 2 Scatterplots comparing results (p values) from GWAS of TR vs. THR and comparing results of analyses of different patient subsets.
Scatterplots of -log(p) for (A) analysis of TR vs. analysis of THR in all subjects, (B) analysis of TR vs. analysis of THR in naltrexone-treated
subjects, (C) analysis of TR vs. analysis of THR in acamprosate-treated subjects, (D) analysis of TR in acamprosate-treated patients vs. analysis of
TR in naltrexone-treated patients, and (E) analysis of THR in acamprosate-treated patients vs. analysis of THR in naltrexone-treated patients.
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0.05 in all of the samples, this SNP was excluded from the meta-
analyses. We also found that PRSs for AUD and alcohol
consumption were not associated with treatment response
outcomes. These results stand in contrast to the significant
prediction of the leave-one-out PRS for both TR and THR,
suggesting that the genetic mechanisms involved in treatment
response are different from the genetic mechanisms affecting
consumption in non-AUD samples and addiction to alcohol.
This study made use of data from three prior studies of AUD

treatment. These three studies have important similarities allow-
ing for combined analysis, including use of the TLFB to assess
drinking outcomes. However, the three studies also differed in
relevant patient characteristics. The available PREDICT study data
were only from men, but the COMBINE and CITA study samples
included 31% and 36% women, respectively. Reported pre-
treatment baseline alcohol consumption also differed, with
PREDICT participants having the highest (and CITA participants
having the lowest) alcohol consumption at baseline and

participants in the COMBINE study having the shortest duration
of abstinence prior to treatment initiation. The studies also
differed in rates of treatment outcomes, with the CITA sample
having the lowest percentage of any-drinking relapse and heavy-
drinking relapse. While this heterogeneity may have limited the
replicability of findings between the three datasets and reduced
power of the meta-analysis, the differences between the studies
also mean that identified genetic associations are likely robust
genetic predictors of treatment outcomes that apply to a broad
range of patients. In fact, the genome-wide significant loci in our
study showed highly consistent results across the different
samples. The PTPRD signal was driven by a genome-wide
significant association in the COMBINE sample, while showing
no significant association in the PREDICT sample; however, the
direction of effect was the same and the confidence intervals for
the SNP effect in the two samples overlapped. A more in-depth
analysis of potential effect modifiers or confounders of the
observed PTPRD association in a larger sample of patients treated
with naltrexone is warranted.
In addition to sample heterogeneity that may have reduced the

power of this study, other limitations need to be noted. The sample
size of this study is smaller than what is typically required for well-
powered GWAS of complex traits, particularly when the goal is
identification of specific genetic risk variants. With a genome-wide
significance threshold of 5e−8 and our sample of N= 1083 sub-
jects, we had 80% power to detect SNP effects of HR= 1.80 and
HR= 1.87 for TR and THR, respectively, for variants with MAF= 0.1.
For more common variants with MAF= 0.4, our sample provided
80% power to detect SNP effects of 1.43 and 1.47 for the two
outcomes, respectively. While genome-wide significant associa-
tions with several SNPs were identified in the full cohort and in the
drug-stratified analyses, no significant gene-level associations were
detected by MAGMA analysis. In the GWAS we used the standard
significance threshold of 5e−8, although several different GWAS
were performed (two outcomes, in the full sample as well as in
drug-stratified samples). A Bonferroni correction for the two
treatment outcome measures would not be appropriate as these
outcomes are highly correlated, but the exploratory analyses of
naltrexone and acamprosate treatment outcomes were largely
independent. Thus, the observed SNP-level associations in these
analyses should be interpreted cautiously and need to be
replicated in independent samples. We also note that the sample
size in this study was expected to be adequate to detect polygenic
effects, and indeed our leave-one-out PRS results revealed a
significant polygenic effect for both TR and THR.
Other limitations of this study include a lack of thorough

investigation of the role of intermediate or potentially confound-
ing factors such as demographic and clinical variables or
comorbidities (e.g., smoking) as well as measures of AUD severity
or alcohol consumptions. Because each of the contributing studies
collected different data at baseline, harmonization of these
variables and investigation of their role in the context of
pharmacogenomics effects on AUD treatment response was
beyond the scope of this study, but should be further investigated
in the future. Similarly, the different study designs and limited
sample size prohibited a formal evaluation of the specificity of
findings in the drug-stratified analyses with SNP-drug interaction
tests, which should be investigated in future studies. Finally,
because of the limited ancestral diversity in the contributing
studies, the analysis was limited to patients of European ancestry,
limiting the generalizability of the findings to other populations,
and reducing the power to identify effects of variants that are rare
in European ancestry populations such as the ADH1B variant
discussed above, or the ALDH2 Glu504Lys polymorphism (rs671)
that shows extraordinarily significant association to AUD, but only
in populations where the locus is actually polymorphic. Studies of
the genetics of AUD treatment response in samples with other
ancestries are needed.

Fig. 3 Leave-one-out PRS analyses. Leave-one-out PRS analysis of
(A) time until relapse to any drinking and (B) time until relapse to
heavy drinking. In each of the three studies (CITA, COMBINE and
PREDICT) PRSs were constructed based on a discovery GWAS in the
remaining two samples across a range of p value thresholds (pT
denoted using different colors described in the legend) to select
SNPs for inclusion in the PRS. The selected SNPs (after LD pruning)
were used to compute PRSs and the association of the PRSs with the
outcome (TR or THR) was tested. The plots show the –log10(p
values) for these association tests (on the y-axis) in each sample, as
well as the meta-analysis of the leave-one-out PRS associations
across the studies. The PRS association meta-analyses provided
significant results for both time until relapse (p= 3.7E−04, Nagelk-
erke’s R2= 1.3% at pT= 0.05) and time until heavy relapse (p= 2.6E
−04, Nagelkerke’s R2= 1.3% at pT= 0.10).
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In conclusion, these first GWAS analyses of AUD treatment
outcomes had limited power for discovery of specific genetic
variants associated with response to AUD treatment. Nevertheless,
they provided important insights, including the first demonstra-
tion of polygenic effects on AUD treatment outcomes, and
identification of genetic variants potentially associated with AUD
treatment response. These findings motivate further investigation
of the genetic contribution to AUD outcomes and study of the
biological mechanisms underlying response to medications used
in the treatment of AUD.
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