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ABSTRACT
Background: Patient suitability for magnetic resonance-guided high intensity focused ultrasound
(MRgHIFU) ablation of pelvic tumors is initially evaluated clinically for treatment feasibility using refer-
ral images, acquired using standard supine diagnostic imaging, followed by MR screening of potential
patients lying on the MRgHIFU couch in a ‘best-guess’ treatment position. Existing evaluation methods
result in �40% of referred patients being screened out because of tumor non-targetability. We
hypothesize that this process could be improved by development of a novel algorithm for predicting
tumor coverage from referral imaging.
Methods: The algorithm was developed from volunteer images and tested with patient data. MR
images were acquired for five healthy volunteers and five patients with recurrent gynaecological can-
cer. Subjects were MR imaged supine and in oblique-supine-decubitus MRgHIFU treatment positions.
Body outline and bones were segmented for all subjects, with organs-at-risk and tumors also seg-
mented for patients. Supine images were aligned with treatment images to simulate a treatment data-
set. Target coverage (of patient tumors and volunteer intra-pelvic soft tissue), i.e. the volume
reachable by the MRgHIFU focus, was quantified. Target coverage predicted from supine imaging was
compared to that from treatment imaging.
Results: Mean (±standard deviation) absolute difference between supine-predicted and treatment-pre-
dicted coverage for 5 volunteers was 9±6% (range: 2–22%) and for 4 patients, was 12± 7% (range:
4–21%), excluding a patient with poor acoustic coupling (coverage difference was 53%).
Conclusion: Prediction of MRgHIFU target coverage from referral imaging appears feasible, facilitating
further development of automated evaluation of patient suitability for MRgHIFU.
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1. Introduction

Magnetic resonance guided high-intensity focused ultra-
sound (MRgHIFU) is a noninvasive, non-ionizing treatment
modality which has a number of established clinical applica-
tions including the ablation of uterine fibroids and bone
nerves (for pain palliation) [1], and the treatment of essential
tremor [2]. In addition, MRgHIFU is being trialed in the UK
for the thermal ablation of recurrent gynaecological tumors
(NCT02714621) [3].

MRgHIFU therapy of pelvic tumors is particularly challeng-
ing because of the depth of the tumors within the body.
MRgHIFU systems can only treat targets within the focal
length constraints of their transducers, and identifying acous-
tic access which is free from obstruction by acoustically opa-
que tissues, such as gas and bone, and from organs at risk is
challenging [3]. Failure to correctly identify suitable patients
for MRgHIFU therapy could deprive them of their only treat-
ment option, while failure to identify patients who cannot be
treated wastes patient time and hospital resources on

screening sessions. Patients must therefore be carefully
assessed prior to being accepted for treatment. We hypothe-
size that an algorithm could be developed, that could accur-
ately predict target tumor coverage by HIFU from
referral imaging.

Currently, the clinical evaluation process relies heavily on
experience and opinion. The process is as follows: patients
are referred to the MRgHIFU clinic on the basis of supine
diagnostic imaging, often follow-up imaging after unsuccess-
ful prior treatment [3,4] and referred to here as the ‘referral
image dataset’. If at this point treatment appears qualita-
tively feasible, patients progress to the screening stage. At
screening, patients are imaged with treatment conditions
being mimicked as closely as possible. Patients are asked to
lie in one or two ‘best guess’ treatment positions on the
MRgHIFU couch. The ‘best guess’ positions are identified by
the treatment team using prior clinical experience and sub-
jective judgment. Suitable patients, those for whom a major-
ity of the tumor can be reached or who fulfill clinical trial
eligibility criteria, are invited back for treatment. The current
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process is challenging. In a previous metastatic bone pain
palliation trial, 16 of 37 patients (43%) initially considered for
treatment were found at screening not to satisfy eligibility
criteria because of disease that could not be targeted, for
reasons that include tumor accessibility and size [4]. In a
pilot planning study which assessed MRgHIFU for the treat-
ment of recurrent gynaecological tumors, 9 of 20 eligible
patients (45%) who underwent screening imaging were sub-
sequently assessed as untreatable because of an eligibility
criterion, namely, that >50% tumor coverage could be
achieved without risk of damage to surrounding structures
[3]. These two studies suggest that, for abdominal pelvic
tumors, the current evaluation process may overestimate the
number of patients that are suitable for MRgHIFU by more
than 40%.

Given the relatively poor results of the current subjective
method, we propose a workflow that would ultimately be
suitable for the quantitative assessment of patient suitability
for MRgHIFU therapy (Figure 1). In this paper, we focus on a
core aspect of that workflow, as explained below. If the
workflow were to be successfully implemented, the number
of patients incorrectly denied treatment could be minimized,
and the number who would benefit from a screening scan
could be maximized. In the long-term, it may even be pos-
sible to avoid the need for a screening visit, which could
mean that a sick patient will no longer need to travel to the
magnetic resonance (MR) imaging unit and undergo what
may be a lengthy session in which optimal treatment posi-
tions are investigated, only to return days to weeks later for
a treatment session. This may also reduce the load on the
resources of a busy clinical MR department.

The proposed patient workflow (Figure 1) comprises three
steps. In Step 1, key anatomical components that could pre-
vent access to targets, such as acoustic obstructions and
organs at risk, are segmented from the referral images. In
Step 2, the referral imaging dataset is orientated into plaus-
ible potential treatment positions. In Step 3, the percentage
of tumor volume that can be reached by the HIFU focus (%
target volume covered) is calculated at each orientation. In
Step 4, acoustic and thermal modeling are used to calculate
the treatable target volume, in order to facilitate a quantita-
tive clinical decision as to whether a patient should proceed
to screening.

The focus of this paper is Step 3, the calculation of tumor
coverage. As far as the authors are aware, no previous work
has been done on predicting target tumor coverage from
referral images. A novel method has been developed to
identify the tumor coverage that could be achieved in the
presence of acoustic obstructions and organs at risk, and
using this methodology, a feasibility study has been per-
formed to determine whether it is possible to accurately pre-
dict tumor coverage from referral imaging by comparison
with predictions made using subjects lying in treatment ori-
entations. For this purpose, volunteer imaging data were
obtained, and used to develop novel data processing and
analysis techniques for the calculation of tumor coverage.
Subsequently, the method was tested using patient data
obtained in a concurrently started clinical trial.

2. Methods

2.1. Overview

In order to evaluate the developed methodology for the cal-
culation of tumor coverage, estimations of target (tumor)

Figure 1. Schematic of proposed patient workflow. Workflow designed to assess
the potentially MRgHIFU-treatable percentage of a patient’s target tumor. Using a
supine referral image dataset, step 1 involves segmentation of important structures:
organs at risk, acoustic obstructions, and the target tumor. Step 2 rotates the refer-
ral imaging dataset into possible treatment positions, with the tumor centroid
lying, by idealized design, along a vertical line through the magnetic isocentre and,
by system design, the transducer’s home position. In step 3, target coverage (i.e.
percentage of target volume coverable by an 8mm treatment cell) is calculated.
Cycling through steps 2 & 3 identifies the patient orientation with the maximum
target volume coverage. In step 4, the treatable percentage of the target volume is
quantified, using acoustic and thermal modeling of MRgHIFU treatment. This allows
a clinical decision of whether to progress to treatment to be made.
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coverage from referral and treatment images obtained for
each volunteer (patient) were compared. Here, the referral
imaging dataset is the expected input into the prospective
patient workflow and is used to predict target volume cover-
age. We assume the treatment images depict the subject
positioned in a plausible (volunteer) or actual (patient) treat-
ment position, respectively, on the MRgHIFU bed. The treat-
ment imaging dataset is used to calculate the target
coverage. The workflow used in this study is shown in
Figure 2. As the treatment position is known from the treat-
ment images, the referral imaging dataset was oriented into
the known treatment position to compare the predicted tar-
get coverage with the actual target coverage. This was
achieved by an affine registration of the referral imaging
dataset to the treatment imaging dataset (Step 1 in
Figure 2). Segmentation of the acoustic obstructions and
organs at risk (Step 2 in Figure 2) from both datasets was
performed to identify tissues that could prevent target cover-
age. This was followed by calculation of the target (tumor)
coverage (Step 3 in Figure 2) and comparison of the results
for predictions from referral imaging datasets with those
from treatment imaging datasets.

At the start of the project, clinical trial data were not avail-
able. The method was therefore developed using volunteer
imaging data, with the goal of testing it on anticipated clinical
datasets. As a result of significant anatomical differences
between volunteers and patients, some adaptation was neces-
sary. Firstly, volunteers lacked target tumors. This could have
been addressed by the creation of dummy tumors, but in the
absence of an obvious method for defining the size, shape
and position of dummy tumors in an unbiased and clinically
relevant way, all the soft tissue in the pelvis was defined as
‘target tissue’. Secondly, while patients undergo dietary and
physical bowel preparation prior to treatment in order to min-
imize the risk of bowel and rectal damage, volunteers were

not required to do so. These tissues were therefore not consid-
ered to be organs-at-risk when processing volunteer data.
While these two limitations present challenges, they do not
prevent like-for-like comparison between target coverage pre-
dictions from referral and treatment imaging datasets. Datasets
from 5 volunteers, comprising pseudo-referral and pseudo-
treatment imaging datasets were available for the develop-
ment of the method. The methodology was subsequently
tested on 5 patients who had undergone ablative MRgHIFU
treatment for recurrent gynaecological tumors.

2.2. Input images

All subjects were scanned on a 3.0 T Philips AchievaVR MR
scanner (Amsterdam, Netherlands), using a multi-point Dixon
sequence [5] (TE1/TE2¼ 1.186 (out-of-phase)/2.372 (in-phase)
ms, TR ¼ 3.62ms, number of echoes ¼ 2, flip angle ¼ 10�).
This produced four 3D image sets for each referral and treat-
ment imaging dataset: in-phase (�IP’), out-of-phase (�OP’),
water-only (�Water’) and fat-only (�Fat’) image sets. Patients
were further imaged using, amongst others, a T2w Large
Field-of-View (T2wLFOV) sequence.

All referral imaging datasets were acquired with subjects
lying supine on the standard MR bed using SENSE XL torso
coils (Philips, Netherlands) wrapped around the pelvis.
Treatment imaging datasets were acquired with subjects
lying oblique supine decubitus on a gel-pad, which was
placed on top of an acoustically transparent membrane on
the top surface of the SonalleveVR V2 MRgHIFU couch
(Profound Medical, Mississauga, Canada), using two
SonalleveVR coils – one integrated into the acoustic window,
and an external pelvic coil. The subject’s body weight caused
the gel-pads to compress and the membrane to bow.
Subjects were positioned by a radiographer experienced in

Figure 2. Schematic of developmental methodology used in this study. The accuracy of the methodology to calculate target coverage from referral imaging was
assessed using this workflow. The target volume coverage by MRgHIFU was calculated from a subject’s treatment image dataset, acquired with the subject placed
in a plausible or actual treatment position (bottom row) for volunteers or patients, respectively. Comparison with the target volume coverage predicted from a
supine referral image datasetet allowed assessment of the methodology. Step 1: the referral imaging dataset is rotated into the same orientation as the treatment
imaging dataset using affine registration both to allow comparison with the treatment imaging dataset. Step 2: segmentation of acoustic obstructions (e.g. bones,
shown), organs at risk (patients only) and the target tumors (patients only) was performed to identify tissues that impede target coverage. Step 3: Target volume
coverage was calculated for the registered-referral imaging dataset and the treatment imaging dataset, and finally, the two quantities were compared to assess
the predictive capacity of the methodology.
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MRgHIFU. Cohort-specific imaging information for volunteers
is given in Section 2.2.1, and for patients, in Section 2.2.2.

Treatment angles were measured using ITK-Snap 3.6.0
software [6] (University of Pennsylvania, USA), by manually
drawing a line between the axial-plane positions of the left
and right ischial spines, and finding the angle between this
and a horizontal line.

2.2.1. Volunteers
Five female volunteers (age: 28–44years, weight: 55–72kg, body
mass index: 20.2–26.4 kg/m2), were scanned (with ethics
approval from The Royal Marsden and ICR Committee for
Clinical Research (internal protocol CCR1406)). In addition to the
supine referral imaging dataset described above, each volunteer
was scanned in two ‘treatment’ positions deemed to be plaus-
ible from experience of treating patients with pelvic bone pain
with MRgHIFU [3,4]. These positions were nominally �steep’ and
�shallow’, but were dependent on a subject’s size and shape,
which affected how they fitted into the bore of the MR scanner.
This generated two treatment imaging datasets per volunteer.
The volunteers, wearing thin trousers, were placed with their left
buttock roughly centered over the acoustic window and with
their right side elevated using angled foam pads. They were
scanned from the L5-sacrum disk to the inferior-most point of
the ischial tuberosity in the axial direction. Fields-of-view were
chosen to include the full body outline in the axial slices.
15mm-thick gel-pads were used to provide acoustic coupling
between the skin and the SonalleveVR acoustic window for all
volunteers. The voxel size for referral imaging and treatment
imaging datasets was approximately 0.78� 0.78� 1.50mm3.
Volunteer details are recorded in Table 1.

2.2.2. Patients
Five patient datasets were acquired after volunteer image
acquisition began, as part of a recurrent gynaecological

tumor clinical trial (NCT02714621, REC: 15/WM/0470) [3]. For
treatment imaging datasets, patients were oriented into a
clinically judged treatment position, with the tumor as close
to the magnetic isocentre as possible. Because pretreatment
diagnostic referral imaging was not available, the earliest
(Day-7) follow-up supine images were used as ‘referral’ imag-
ing datasets. These were chosen to minimize anatomical
changes between the two imaging datasets. 15mm-thick
gel-pads were used for patients P2 to P5. For patient P1, a
40mm-thick gel-pad was manually cut out to provide a
degassed-water-filled recess, into which the patient was low-
ered. Patient details are recorded in Table 2. Weight data
had been collected from patients as part of the trial data,
but height data (and therefore BMI data) had not.

Patient referral and treatment imaging datasets were
acquired after gadolinium contrast injection for improved
contrast, and were acquired with a Field-of-View (FoV) of
288� 288� 133 voxels and voxel size 0.87� 0.87� 1.50mm3.
As part of a separate study, patient’s tumors were seg-
mented from patient T2wLFOV datasets (TE ¼ 90ms, TR ¼
3620.4ms, number of echoes ¼ 16, flip angle ¼ 90�, FoV
672� 672� 40 voxels, voxel size 0.45� 0.45� 4.5mm3)
obtained immediately pretreatment. These segments were
used to define the target tumor volume for each patient.

2.3. Image registration

Registration of referral imaging datasets to treatment imag-
ing datasets rotated the referral imaging dataset into the
same treatment orientation as used in the treatment imaging
dataset, which allowed the target coverage predicted from
the registered-referral imaging dataset to be compared to
that calculated from the treatment imaging dataset. Each
subject’s referral imaging dataset was registered to their
treatment imaging dataset(s) by aligning 10 or more manu-
ally placed bony landmark points, distributed throughout the
pelvis, using Horos v2.4.0 (Horos Project) [7]. Registration was

Table 1. Details of volunteers participating in this study.

Volunteer 1 2 3 4 5 Mean ± Standard Deviation

Age (years) 28 44 29 27 36 33 ± 6
Body Mass Index (kg/m2) 20.2 26.4 23.5 23.8 20.9 23 ± 2
Height (cm) 165 165 170 160 168 166 ± 3
Weight (kg) 55 72 68 61 59 63 ± 6
Pelvic tilt from supine (�)
Steep, 23, 19, 17, 24, 29, 22 ± 4,
Shallow 17 12 8 13 16 13 ± 3
Gel-pad Thickness (mm)
Steep, 10.2, N/A, 9.8, 9.7, N/A, 9.8 ± 0.3
Shallow 9.8 N/A 9.8 9.3 10.0
Membrane Bowing (mm)
Steep, 10.4, N/A, 8.6, 10.9, N/A, 10.0 ± 1.3
Shallow 11.7 N/A 9.4 10.9 7.8

Table 2: Details of patients participating in this study.

Patient P1 P2 P3 P4 P5 Mean ± Standard Deviation

Age (years) 64 53 72 74 59 64 ± 8
Weight (kg) 42 76 57 61 61 59 ± 11
Treatment Angle (�) 6 33 16 9 24 18 ± 10
Gel Pad Thickness (mm, mean ± SD) 5.3 ± 0.5 10.9 ± 0.6 8.6 ± 0.4 12.3 ± 0.4 8.0 ± 0.4 10 ± 2
(Nominal) (40) (15) (15) (15) (15) (15)
Membrane Bowing (mm, mean ± SD) 4.1 ± 0.2 10.0 ± 0.5 9.0 ± 0.5 5.0 ± 0.2 10.0 ± 0.1 7.6 ± 2.8
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performed following the standard operating procedure
described in the Appendix. The software calculated the
required affine transformation and applied it to the referral
imaging dataset [8] to generate the registered-referral imag-
ing dataset.

To quantify the quality of this registration, the intra-observer
(3 volunteer datasets) error and inter-observer (3 observers, 1
volunteer dataset) error associated with the referral-to-treatment
registration was calculated. The errors were quantified as the
mean Euclidean distance between corresponding points.

2.4. Image segmentation

The presence of acoustic obstructions and organs at risk in
the beam path prevents safe sonication of the target, and
hence they were segmented in order to identify acoustic
access to the target. The tumor defined the target volume
for patients, and hence was segmented. The body outline
was segmented to assist with the other segmentation proc-
esses, and to assist in positioning the MRgHIFU system
relative to the registered-referral imaging dataset. Organs at
risk, bone (an acoustic obstruction) and the tumor were
manually segmented from the MR datasets (as shown in
Figure 2, Step 2). The body outline and extracorporeal air (an
acoustic obstruction) were segmented automatically, as
described below.

2.4.1. Body outline
The body outline delineates the skin surface, and, particularly
for treatment imaging datasets, needs to be separated from
the gel-pad the subject lies on. An automatic process involv-
ing Otsu thresholding [9] was developed to separate the
body from surrounding extracorporeal air and the gel-pad.
Connected-components labeling [10] was used to collate
segments of the body, and morphological operations [11]
and flood-filling [12] were employed to link disparate seg-
ments and fill holes within segments.

2.4.2. Acoustic obstructions
Internal acoustic obstructions, primarily bone, were seg-
mented by manual contouring of axial slices using OsiriX Lite
v10.0.4 [13] (Pixmeo, Geneva, Switzerland) and Horos. For
volunteers, pelvic bones were manually segmented from
referral imaging datasets. The registered-referral imaging
dataset pelvic bone segments were applied to the corre-
sponding treatment imaging dataset in order to reduce the
burden of manual contouring. Femora were manually seg-
mented separately from referral and treatment imaging data-
sets, because of the likelihood of different articulation
between datasets (unlike the more rigid pelvis). For patients,
the treatment region was considerably smaller and therefore
pelvic bones as well as femora close to the target (tumor)
could be manually segmented in a realistic time. However,
contouring was restricted to ±10 axial slices from the edges
of the tumor to reduce the time burden of manual segmen-
tation. The pelvic bones at the greater sciatic notch were
always segmented, because the notch defines the superior

edge of the sciatic foramen through which the acoustic
beam is expected to sonicate the tumor.

Air gaps between the patient and the gel-pad act as
acoustic obstructions. Extracorporeal air in volunteer treat-
ment imaging datasets was not segmented, because the
trousers worn by volunteers during image acquisition pre-
vented skin-to-gel-pad acoustic coupling. Instead, volunteer
acoustic coupling limits in the left-right direction were manu-
ally identified, as shown in Figure 4. For volunteers, it was
assumed that the intergluteal cleft would be filled with
acoustic-coupling gel as part of clinical preparations, and
hence, they were not treated as acoustic obstructions.
Extracorporeal air in the patient treatment imaging datasets
was segmented to define the limits of acoustic coupling,
using an automatic segmentation algorithm inspired by
Kullberg et al. [14]. In some cases, the intergluteal cleft was
seen to contain air, and was therefore manually contoured
and included as part of the extracorporeal air segment.

2.4.3. Target volume
As part of a separate study, patient tumors had been con-
toured by an experienced radiographer (SG) using in-house
software (Adept v0.2, The Institute of Cancer Research, UK)
[3] on referral and treatment imaging T2wLFOV images,
where the slice thickness was 10 times that of the in-plane
voxel dimensions. Segmented tumors were registered to
align with the Dixon imaging datasets using the same proce-
dures described above in order to obtain tumor outlines in
the Dixon images. Since healthy volunteers had no tumors,
all soft tissue within the pelvic region was designated as
the target.

2.4.4. Organs at risk
Organs at risk, namely the uterus, rectum, bladder, and intes-
tines were manually segmented for patients. Some patients
had previously undergone pelvic exenteration surgery result-
ing in the removal of most pelvic organs.

2.4.5. Evaluation of automated segmentation quality
Automatic segmentation quality for the body outline and for
extracorporeal air was assessed by comparing randomly
selected image slices with corresponding manually segmented
slices (body: five slices per dataset, from three ‘steep’ treat-
ment imaging datasets and two ‘steep’ registered-referral
imaging datasets originating from three volunteers; air: five sli-
ces per dataset from three patient treatment datasets). In order
to determine the ability of the segmentation to determine
acoustic coupling between patient and transducer, only the
extracorporeal air segments around the body/gel-pad interface
were assessed.

The assumption that the manually-segmented pelvic bone
in volunteer registered-referral datasets could be used to
automatically segment the pelvic bones in the treatment
imaging dataset was similarly tested against manual contour-
ing performed on the treatment imaging dataset (five slices
per treatment dataset, four treatment datasets originating
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from three volunteers). The segmentation quality of the vol-
unteer bony pelvis and femora was taken to be indicative of
the segmentation quality for all manually segmented tissues.
Quality metrics were Dice Similarity Coefficient (DSC) and
mean contour-to-contour distance [15,16].

2.5. Prediction of target volume coverage

2.5.1. Overview
To calculate the target volume that can be covered, an
MRgHIFU transducer was simulated. Positioning of the
MRgHIFU transducer was known for the treatment imaging
datasets, but had to be derived for the registered-referral
imaging datasets. In the process of positioning the virtual
transducer/referral imaging dataset, patient-induced com-
pression of the gel-pad and bowing of the oil-bath mem-
brane had to be taken into account. To reduce the
computational time required, additional practical and clinic-
ally-relevant restrictions were placed on transducer transla-
tion, as described in greater detail below. The target volume
covered by treatment cells was calculated for corresponding
pairs of registered-referral and treatment datasets, and then,
for each subject, the two volumes were compared. The
details of these procedures are presented below.

2.5.2. MRgHIFU system characteristics
The simulated transducer was modeled on The Royal
Marsden Hospital’s MRgHIFU system, the SonalleveVR V2. The
system replaces the imaging couch in the bore of the MR
scanner for treatment. The 256-element phased-array

transducer (130mm diameter, focal length 140mm, source
frequency 1.22MHz) is mounted on a robotic positioner with
3 linear and 2 rotational motion capabilities in an oil bath,
and faces the patient through a thin (50mm thick) acoustic-
ally transparent membrane. The transducer’s home position
(black cross in Figure 3) always lies 140mm below the mag-
netic isocentre, and the undeformed membrane-to-isocentre
distance is 72.5mm. Acoustic coupling is achieved using a
degassed-water wetted gel-pad (either 15 or 40mm thick).
When a subject is in place, the gel-pad is compressed and
the acoustic membrane bowed under their weight. From its
home position, the transducer can translate in 50mm steps
up to: 72.5 mm left or right and inferior or superior, and
34mm toward the patient (anterior) and 33mm away
(posterior). The transducer can be angled up to 10� away
from the perpendicular in the left-right and inferior-
superior directions.

The transducer was simulated in MATLAB R2018b. It con-
sisted of 256 points that represented the center of each
transducer element. Ultrasound rays traced from each elem-
ent on the transducer surface to the transducer focal point
were used to represent the acoustic beam. The transducer
was restricted to being able to tilt ±10� in 2.5� steps in the
left-right direction only, in order to avoid incomplete regis-
tered-referral dataset image slices resulting from registration,
but otherwise possessed the translational extents of the clin-
ical device as described above. The transducer is assumed to
produce a perfect 8mm treatment cell, i.e. an 8mm x
21.84mm ellipsoid [17,18] centered at the focal point with
its long-axis aligned to the beam axis.

Figure 3. Schematic of the SonalleveV
R

V2 MRgHIFU system: LEFT - a subject lying on the MR bed will compress the acoustic-coupling gel-pad and bow the acoustic
membrane, which seals the oil bath. Ideally, target tissue would be centered directly above the transducer’s home position and the center of the membrane/gel
pad and below the magnetic isocentre. RIGHT- a coronal view of the MRgHIFU couch showing the transducer’s home position below the center of the membrane.
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2.5.3. Practical and clinically-relevant restrictions on
transducer translation

In order to improve computational efficiency of target cover-
age prediction, transducer translation in the left-right and
inferior-superior axes was restricted to the left-right and
inferior-superior extents of the targets. For patients, practical
restrictions on left-right and inferior-superior translation were
calculated from the left-right and inferior-superior extents of
the tumor. For volunteers, the target is all soft tissue within
the pelvic region. Hence, practical and clinically-relevant limits
were manually identified (see Figure 4) and implemented. The
left-right limits represent the extents of acoustic coupling. The
inferior-superior limits represent the inferior-superior extents of
the registered-referral imaging dataset containing complete
body outlines and pelvic bone.

2.5.4. Estimated patient deformation resulting from
reorientation into the treatment position

In this study, the treatment position was known from the
treatment imaging dataset. In treatment imaging datasets,
the isocentre, and hence the transducer’s home position
(Section 2.5.2), was known. In the registered-referral imag-
ing dataset, because the treatment position is the same, the
transducer’s home position left-right and inferior-superior
coordinates were taken from the treatment imaging data-
set. However, to mimic the prospective workflow, the anter-
ior-posterior coordinate had to be estimated from data
within the registered-referral imaging dataset. The method
of doing so is shown in Figure 5. Briefly, it was assumed
that: i) the gel-pad would be most compressed and the
membrane most bowed at the isocentre line, and ii) after
soft tissue deformation resulting from the reorientation into
the treatment position, the isocentre-to-skin point distance
would remain the same. The membrane bowing distance
and gel-pad thickness for patients was assumed to be that
calculated for volunteers. These quantities were obtained
by determining the average gel-pad thickness and

membrane bowing distance close to the isocentre line,
using ITK-Snap, in the 7/10 volunteer treatment imaging
datasets in which measurement was possible. From this,
the position of the undeformed membrane, and hence the
transducer anterior-posterior home position, was estimated
(see Figure 3). Patient P1 had been treated on a custom-
ized gel-pad, the thickness of which was independently
measured and used for positioning. For comparison, the
actual patient gel-pad thicknesses and membrane bowing
distances were measured and compared to the volunteer-
derived averages.

2.5.5. Calculation of target coverage
For volunteers, a regular grid of target points, one per image
voxel, was created in the soft tissue (see Figure 6); for
patients, this grid was created solely within the tumor [19].
The transducer acoustic beam had been discretized into 256
rays, linking the center of a transducer element to the focus.
Each ray was discretized into regularly spaced (0.2mm)
points along its length, and each was tested for intersection
with acoustic obstructions or organs at risk. If no point inter-
sected these, an 8-mm treatment cell was drawn around the
focal point, and all grid points within this were marked as
covered (Figure 6). This was repeated as the transducer was
exhaustively translated and tilted. The number of grid points
covered, multiplied by the image voxel volume, was used to
quantify the target volume covered. For volunteers, the
transducer was translated in 4mm steps, whereas for
patients, 2mm steps were used in order to ensure coverage
of the smaller tumor volume.

For volunteers, the accuracy of the methodology was
quantified by calculating how much of the soft tissue volume
coverage calculated from the treatment imaging dataset was
predicted to be covered from the registered-referral imaging
dataset, as described in Equation (1). In effect, the treatment
imaging dataset covered soft tissue volume becomes the tar-
get volume for the registered-referral imaging dataset,

Figure 4. Transducer translation restrictions for volunteer data. Practical restrictions applied to the transducer’s translation capabilities (solid red lines) for volunteer
datasets only. (a) For a treatment imaging dataset, the left-right translation was limited by the extent of acoustic coupling between the volunteer’s skin and the
gel pad. The corresponding registered-referral imaging dataset shared these left-right restrictions. (b) For a registered-referral imaging dataset, the transducer’s
inferiorsuperior translation was restricted by the extent of pelvic bone and the requirement for a full body outline within the image. The corresponding treatment
imaging dataset shared these inferior-superior restrictions.

INTERNATIONAL JOURNAL OF HYPERTHERMIA 1039



Figure 5. Method used to predict the transducer’s anterior-posterior home position in a registered-referral imaging dataset. The treatment dataset magnetic iso-
centre is known because the registered-referral imaging dataset had been registered to the treatment imaging dataset. A line was drawn downwards from the
treatment dataset isocentre and intersected the skin at the skin point. From this skin point, the home position was calculated using the average compressed gel-
pad thickness, the average membrane bowing distance, and the calibrated distance between undeformed membrane and home position of 67.5mm (see
Figure 3).

Figure 6. Method for quantifying target volume covered within a dataset (volunteer treatment imaging dataset in this example). A regular 3D grid of potentially
accessible points was created (blue crosses) within the target: soft tissue (volunteers) or tumor (patients). For each transducer position and tilt identified in Section
2.5.3, the acoustic beam was checked for intersection with any acoustic obstructions (green contours) or organs at risk. If no obstruction exists, an 8mm treatment
cell was created around the focus (yellow ellipse). Grid points within a treatment cell were marked as ‘covered’ (red crosses).
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allowing calculation of the percentage target volume cov-
ered (TVCvol).

TVCvol ¼ 100%� CVRegisteredReferral \ CVTreatment

CVTreatment
(1)

where CV is the covered target volume.
For patients, the accuracy of the methodology was quan-

tified using the difference between the percentage tumor
volumes covered (TVCpat), calculated from treatment imaging
dataset and that calculated from registered-referral imaging
dataset. TVCpat is given by:

TVCpat ¼ 100%� CV
TV

(2)

where CV is the covered tumor volume and TV is the total
tumor volume.

3. Results

3.1. Subjects

Details for the volunteers involved in the study are recorded
in Table 1, and those for patients in Table 2, as are the
(pseudo-)treatment angle(s), compressed gel-pad thickness
and membrane bowing distance for each subject. For volun-
teers, 15mm gel-pads were compressed to an average of
9.8 ± 0.3 (mean± standard deviation, with range: 9.3 to 10.2)
mm, and the average membrane bowing distance close to
the isocentre line was 10.0 ± 1.3 (range: 7.8 to 11.7) mm. The
weight ranges of volunteers and patients (patients: 59 ± 11 kg
vs volunteers: 63 ± 6 kg) were similar. The range of patient
treatment angles (6-33�) slightly exceeded the range of vol-
unteer angles (8-29�).

3.2. Image registration quality

Between three observers, the mean distance between corre-
sponding points for the referral imaging dataset for one vol-
unteer, registered to one of their treatment imaging
datasets, was on average 1.2 ± 0.2mm. For one observer, the
mean distance between corresponding points for the referral
imaging datasets for three volunteers, each registered to one
of their corresponding treatment imaging datasets, was on
average 1.3 ± 0.2mm. These distances are less than the axial
slice thickness of the Dixon image datasets and less than
double the in-plane image resolution.

3.3. Segmentation quality

3.3.1. Automatic segmentation quality
Automatically segmented body outlines agreed with valid-
ation slices with a mean DSC of 0.991 ± 0.003 and an average
mean contour-to-contour distance of 0.9 ± 0.4mm. Automatic
extracorporeal air segmentation of patient data agreed with
validation slices with a mean DSC of 0.89 ± 0.06 and an aver-
age mean contour-to-contour distance of 0.25 ± 0.16mm.

3.3.2. Manual segmentation quality
Volunteer treatment image pelvic bone segmentation agreed
with the validation slices, with mean DSC of 0.93 ± 0.01 and
an average mean contour-to-contour distance of
0.76 ± 0.10mm. Volunteer femur segmentation agreed with
the validation slices with mean DSC of 0.96 ± 0.01 and an
average mean contour-to-contour distance of 0.53 ± 0.11mm.

3.4. Prediction of target volume coverage

The TVCvol for each volunteer in each of their two treatment
positions is shown in Figure 7(a). For volunteers, the regis-
tered-referral imaging dataset predicted target volume cover-
age of 91 ± 6% (range: 78 to 98%) of that calculated from
the corresponding treatment imaging dataset. The TVCpat for
each patient’s treatment imaging and referral imaging are
shown in Figure 7(b). Patient P4 appears to be an outlier.
Excluding their data, for patients, registered-referral TVCpat
predicted the treatment TVCpat to within an average of
12 ± 7% (range: 4 to 21%). Representative images of the tar-
get (tumor) volumes covered for volunteers and patients are
shown in Figure 7(c) and (d), respectively.

4. Discussion

The aim of this study was to develop a novel method to cal-
culate tumor coverage and assess the feasibility of predicting
tumor coverage from (supine) referral imaging, as part of a
wider study into automating the evaluation of patient suit-
ability for MRgHIFU therapy.

4.1. Subjects

Although patient mean age was nearly double that of the
volunteers, their weights were similar. Compressed gel-pad
thickness and membrane bowing for volunteers varied min-
imally (mean± standard deviation being 9.8 ± 0.3mm and
10.0 ± 1.3mm respectively), suggesting that use of mean val-
ues for the prediction of patient tumor coverage should be
acceptable. Minimum and maximum patient tilt angles
exceeded those of volunteers by at most 4� despite acquir-
ing the volunteer imaging before the patient data
was available.

4.2. Image registration

Mean post-registration misalignment between referral and
treatment images was found to be less than the axial slice
thickness of the Dixon MR imaging, in line with results from
literature [20].

4.3. Image segmentation

Automatic and manual segmentation of acoustic obstruc-
tions, organs at risk and the body outline resulted in mean
DSCs � 0.89 and mean contour-to-contour distances that
were less than the axial slice thickness (1.5mm). A mean
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contour-to-contour distance of 2.81mm has been deemed
acceptable for breast-air boundary segmentation from MR
imaging (voxel size: isotropic 2.5mm) [21]. The DSC for extra-
corporeal air segmentation (patient treatment imaging data-
sets only) was less than that for body outline segmentation
(volunteers and patients, treatment and registered-referral
datasets) while the mean contour-to-contour distance was
better than that for body outline segmentation. This was
probably due to the smaller size of the air segments around
the patient/gel-pad interface, causing a misidentified voxel
to have a greater effect than for the larger body outline.
From the DSC (0.96) and mean contour-to-contour distance
(0.53mm) values, the assumption that pelvic bone seg-
ments identified on treatment images were identical to
post-registration, manually outlined referral image seg-
ments appears to be valid (Section 3.3.2).

Since tumors were manually segmented by an expert, any
segmentation imprecision or inaccuracy was ignored. Tumors
were segmented on datasets with slice thickness (4.5mm) 10
times the in-plane resolution (0.45mm), and thus rotation
during registration could introduce relatively large discrepan-
cies between the interpolated and actual tumor outlines,

thus increasing uncertainty in the TVCpat predicted from
referral imaging datasets.

4.4. Target coverage

4.4.1. Volunteer study
The volunteer’s results show an average target coverage
agreement between treatment and registered-referral imag-
ing datasets of 91% (range: 78–98%), corresponding to a
mean difference of 9%. This suggests that the techniques
used for positioning the transducer in the registered-referral
imaging datasets were sufficient to proceed to testing with
patient data. The worst agreement (78%, for Volunteer 2
tilted at a 12� treatment angle) was attributed to inaccurate
placement of the transducer’s home position, caused by the
skin point directly below the isocentre (see Figure 5) not
remaining at constant position between the registered-referral
and treatment datasets, as had been assumed. Consequently,
the HIFU focus was predicted to reach 12mm deeper into the
volunteer than it could. The next worst agreements, (88% for
Volunteer 2 tilted at 19� and Volunteer 3 tilted at 17� and 8�)

Figure 7. Percentage of target volume covered. (a) For volunteers, the agreement between the referral and treatment covered volumes is shown, where the treat-
ment covered volume is the ground-truth. (b) For patients, the percentage of the registeredreferral tumor (red) and the treatment tumor (blue) that was covered is
shown. The numbers on top of each set of bars represent the difference in % Tumor Volume Covered predicted from the registered-referral dataset, and that calcu-
lated from treatment dataset. Representative examples of target coverage for volunteers (c) and tumor coverage for patients (d) are shown, with a scale bar in (d).
The anatomy is shaded purple in the registered-referral dataset, and green in the treatment dataset.
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were due to the same cause, resulting in overestimation of the
focal depth by 6mm.

For a single volunteer, the difference between target
coverage predicted from registered-referral datasets and that
from treatment datasets results from differing femur seg-
ments and differing transducer home positions. Since angula-
tion was restricted to tilting left-right only, and the
transducer was restricted to prevent translation beyond the
inferior-superior extents of the pelvis, differences in femur
segmentations were judged to have only a small effect.
Refinement of the transducer positioning technique, by sam-
pling within a 15� 15mm region around the isocentre line
(see Figure 5) instead of using a single skin position to pre-
dict the anterior-posterior position, provided no statistically
significant improvement (data not presented).

4.4.2. Patient study
The goal of this study was to develop and test a method for
quantitatively assessing tumor coverage from referral imag-
ing, as opposed to the current clinical practice of qualitative
assessment, and to assess the feasibility of the new method-
ology. From the results, quantitative prediction of tumor
coverage from referral imaging appears feasible. Despite the
simplicity of the technique used to account for the expected
body deformation resulting from reorientation from supine
into a treatment position, the TVCpat predicted from the reg-
istered referral and the treatment imaging datasets had a
mean difference of 12% (range: 4–21%), excluding an outlier
for whom the difference was 53% (see below). In the litera-
ture, a median difference of 21% in automatic segmentation
had been judged as acceptable [22]. In the context of the
current clinical practice, where �40% of referred patients fail
screening, these results are encouraging [3,4]. The small
cohort involved in this study (5 volunteers, 5 patients) repre-
sents lower than expected patient recruitment for the clinical
trial. However, other published studies have also involved
small patient cohorts, e.g. a transcranial simulation study
involved 5 patients [23], a simulation study for kidney abla-
tion examined 4 patients [24], and in various therapeutic
feasibility studies, between 10 and 13 patients were consid-
ered [25–27]. In addition, an automatic geometric optimiza-
tion technique for the packing of HIFU treatment cells
demonstrated its capabilities using test objects and the pub-
licly available dataset of a single volunteer [28]. Results from
these small-cohort feasibility studies also demonstrate high
variance in results. For example, in the transcranial simula-
tion study, simulation results differed from measured data by
up to 40 ± 13% [23]. The results here indicate a step toward
the long-term objective of widespread quantitative analysis
of patient suitability for MRgHIFU therapy, with the aim of
improving clinical decision-making and minimizing the
impact on patient and hospital time and resources.

The outlier referred to above was patient P4, whose poor
results were due to the assumption of perfect acoustic cou-
pling between patient and gel-pad when calculating TVCpat
for the registered-referral imaging dataset. In practice, treat-
ment imaging showed that the tumor periphery was
obstructed by air between the patient and gel-pad. This

highlights a possible advantage of the proposed workflow.
Having established that a greater tumor coverage could have
been achieved at the referral stage, clinicians may have been
able to improve the clinical preparations, and increase
tumor coverage.

In general, the marginally poorer results for patients com-
pared to volunteers (excluding the outlier patient) may be
partially due to volunteer target volumes being over 10
times larger (�300,000 ± 100,000mm3) than patient targets
(�20,000 ± 10,000mm3). A missed voxel has a larger propor-
tional effect for smaller target volumes.

A source of error for the patient cohort may arise from
the differences in the actual gel-pad thickness and mem-
brane bowing (Table 2) compared to the mean values deter-
mined from the volunteer cohort which were used in the
predictive calculations. Membrane bowing differences from
the average of 10.0mm ranged from 0.9mm to 4.7mm for
patients, and from 0.4mm to 2.2mm for volunteers. Gel-pad
thickness differences from the average of 9.8mm ranged
from 1.1 to 2.5mm for patients who were treated on 15mm
gel-pads, and from 0.0 to 0.7mm for volunteers. To evaluate
the effect of this, the TVC was recalculated with the actual
gel-pad thickness and membrane bowing distance for all
patients. The maximum difference in TVCpat Registered-Referral

that resulted from using the average membrane bowing and
gel-pad thickness, rather than the actual measured values,
was 0.3% (patient P1). As more data from clinical studies
becomes available, modeling the relationship between mem-
brane bowing distance, or compressed gel-pad thickness,
and patient weight and orientation may generate more
accurate predictions of the transducer home position from
referral imaging.

Deformation and translation of organs at risk, due to
reorientation from referral to treatment position, clinical prep-
aration such as pretreatment dieting and bowel-preparation,
and the time between referral and treatment (1week), may
explain why the patient results show worse agreement overall
than the volunteer results. In clinical experience, organs at risk
such as the rectum are known to vary substantially and unpre-
dictably in shape, position and volume [29,30]. The overall
accuracy of the proposed patient workflow is expected to be
limited by the patient-specific soft tissue deformation and cou-
pling to the gel-pad. At the very least, the methodology pre-
sented here allows quantitative assessment of tumor coverage
prior to the screening stage, reducing the need for clinical
experience, and the influence of subjective opinion, on the
assessment of patient suitability for progression through the
treatment pathway.

4.5. Limitations of the study

One of the major limitations is the small volunteer and
patient cohort, which restricts the statistical certainty of the
results. This study is also limited to predicting pelvic tumor
coverage. However, the proposed patient workflow may be
adaptable for other tumor sites. Assessment of the tumor
volume that can be successfully ablated will require acoustic
propagation and thermal bioeffects modeling. This is the
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subject of extensive ongoing work. Patient deformation
resulting from orientation into the treatment position was
only accounted for using the simple assumption that the iso-
centre-to-skin point distance would remain constant. This
produced acceptable results for tumor coverage. However,
accurate acousto-thermal modeling requires an accurate
description of the medium of propagation, which may
require simulation of soft tissues deformation between the
gel-pad and the target.

Only reorientations from supine to oblique supine decubi-
tus positions were tested in this study. While the results of
this study are only applicable to the specific diagnostic MR
bed and MRgHIFU couch used, the core principles are
expected to be applicable to other HIFU devices, and referral
datasets obtained from X-ray tomographic imaging.
Furthermore, since the patient mean age was almost twice
that of the volunteers, patient soft tissue could have differ-
ent elastic properties than that of volunteers and therefore
exhibit different deformation behavior. This could have
affected the developed methodology.

5. Conclusion

Novel methodology for predicting the MRgHIFU target cover-
age from supine (MR) referral imaging was developed using
10 volunteer datasets and was retrospectively applied to 5
patient datasets. The difference between the target coverage
computed using referral and treatment image datasets was
within 12% on average (range: 4–21%), after one patient,
with inadequate acoustic coupling during treatment, was
excluded from analysis. Despite the relatively small cohort
size, the focus on pelvic tumors, and the limited range of
patient positions and MRgHIFU equipment on which the
methodology was devised and tested, these results suggest
quantitative, automated screening and treatment planning
should be feasible, eventually obviating the need for patient
suitability to be assessed using qualitative clinical judgment
based on operator experience.

Geolocation information

The study was conducted at the Institute of Cancer Research
and the Royal Marsden Hospital, Sutton, Surrey,
United Kingdom.
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Appendix: Registration standard
operating procedure

1. Open HorosTM on Mac OS X. Make sure the pyOsiriX plugin
is installed.

2. Import the in-phase MRI datasets that are to be registered. Double
click them to bring them up together.

3. Select a dataset. Then, at the top menu 2D Viewer ! Sort By…!
Slice Location Ascending.

4. Below the menu bar, in a section titled ‘Mouse button function’,
select the point function. Use the point function to mark an ana-
tomical feature on one dataset and the same anatomical feature on
the other. The same point names, e.g. ‘Point 1’, must correspond
to the same anatomical features in both datasets. Repeat this for
the list of anatomical features mentioned below. If the same ana-
tomical feature cannot be found in one or both of the datasets,
ignore that anatomical feature and continue down the list. At least
10 features should be marked by the end.
Anatomical Features:
a. Femur/pelvis landmark marks where the two bones meet in

the head-most direction (Right and Left)
b. ischial spine (Right and Left)
c. Superior-most or inferior-most of ischial tuberosity (Right

and Left)
d. Pubic arch/top of pubic arch connection
e. Anterior-facing spur in axial plane where pelvis first encloses

femur head (Right and Left)
f. Sacral nerve bundle (S1 and S2) when just-enclosed by bone

(Right and Left)
g. Spinal nerves splitting from spinal cord (Right and Left)
h. Sacrum/L5 disk border
i. Coccyx

5. Open the pyOsiriX console within Horos. A Python script can be
used to extract point data from a dataset in Horos and save it in a
format that can be processed in an external Python environment.
Do this for both datasets.
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