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Background. Following recent advances in technology, there is a growing interest in studying fatigue based on electrophysiological
signals as a means of monitoring brain activity. While some existing works relate fatigue to performance, others consider the two
as independent entities. Therefore, we must explore this intricate issue, particularly in laparoscopic training, for the sake of patient
safety. Objective. This paper explores and evaluates effects of fatigue on efficiency and accuracy based on laparoscopic surgical
training using Electroencephalography (EEG) signal. Materials and Methods. 20 college students performed peg transfer task on
laparoscopic simulator, with real-time recording of EEG signals for each subject. To monitor degree of fatigue, a real-time fatigue
monitoring system based on fatigue analysis algorithm was designed through the use of EEG in alpha (𝛼) and theta (𝜃) rhythms.
We designed data acquisition and fatigue analysis modules based onMATLAB platform. BrainLink was used to record EEG signals
and send them to personal computer wirelessly via Bluetooth. While artifacts from the captured EEG signals were removed using
Blind Source Separation (BSS), 𝛼 and 𝜃 rhythms were extracted using wavelet analysis. Fatigue was evaluated based on Regression
Model and Mahalanobis Distance (𝐷𝐶), and its threshold was determined from the experimental results using Receiver Operating
Characteristic (ROC) curve analysis. Results.Completion time and number of errors behaved like a decreasing function during the
first few trials while increasing afterwards with the increasing of perceived fatigue level. The results indicate that learning curve
of the subjects is increasing until 13th trials when they have attained maximum learning benefits and decreases afterwards due to
fatigue. Conclusion. Regression analysis shows that there are significant learning and fatigue effects when peg transfer task in the
training is repeated in a series of trials. However, for the training to be effective and efficient, there should be monitoring during
the training to observe where in the learning curve a trainee gains maximum learning benefits. Furthermore, fatigue is a significant
indicator of efficiency and accuracy in terms of completion time and errors, respectively.

1. Introduction

Surgeons, particularly those in training, work for a long
period of time and are often sleep deprived [1]. Such per-
sonnel may possibly experience disturbance in circadian
rhythms, which may exacerbate physical or mental fatigue.
Fatigue has been proved to decrease efficiency in cognitive
skills [2], leading to decrease in performance as well as
increasing rate of medical errors [3, 4]. However, previous
studies that investigated the link between performance and
fatigue are conflicting. Some studies concluded that fatigue
has no impact on surgical performance [5, 6]while others link
it to performance [7, 8]. Therefore, understanding the effects

of fatigue, particularly in surgical training, remains an open
problem.

In surgical field, virtual reality surgical simulation has
been an alternative approach to examine effects of fatigue on
performance [7–9] without reliance on patients for laparo-
scopic training. The surgical simulator is a cost-effective
laparoscopic training device that uses innovative learning
tools for skill acquisition and can differentiate user’s level
of experience. It can also evaluate surgical performance
without the use of patients for skills practice [9]. A number
of studies used surgical simulators to investigate effects
of fatigue in laparoscopy. For example, Daruwalla et al.
investigated effects of fatigue on laparoscopic skills and found
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that fatigue has effects on laparoscopic tasks such as peg
transfer [7]. This finding was supported by Tsafrir et al. [8]
who argued that efficiency and safety of residents are affected
by fatigue [8]. Yet, most of the existing works are based
on indirect way of measuring brain activities. These include
the use of individual report scaling questionnaires [4], eye
blink pattern using camera systems or Electrooculography
(EOG) [10], and heart rate variability by Electrocardiography
(ECG) [11]. However, an individual report questionnaire
lacks sensitivity in detection of small important changes
in mental fatigue. In EOG, the closure of eyelid increases
with increasing fatigue while ECG holds a reflection of
autonomic nerve activity. Conversely, it is very important to
monitor brain activity using direct measurement technique
such as Electroencephalography (EEG) [11].This technique is
regarded as a promising method for detecting mental fatigue
and provides the most direct measurement of brain activity
[11]. Therefore, this paper explores and evaluates effects of
fatigue on efficiency and accuracy based on laparoscopic
surgical simulation using Electroencephalography (EEG) as
a means of monitoring brain activity. In order to study
this precisely, a real-time fatigue monitoring system based
on fatigue analysis algorithm was designed and 20 college
students were employed to perform laparoscopic task, with
real-time recording of EEG signals for each subject.

2. Materials and Methods

2.1. Subjects. 20 healthy college students in the age range of 24
to 26 with correct visual acuity of 1.0 or more were recruited
from University of Shanghai for Science and Technology.
A lifestyle questionnaire was administered and used as a
selection criterion which required the subjects to have no
medical contraindications such as history of prior brain
injuries, use of prescription medication, severe concomitant
disease, drug abuse, or alcoholism as well as psychological or
intellectual problems, which more likely limit compliance.

All subjects filled informed agreement form and none of
them had previous experience with laparoscopic simulator.
Likewise, all subjects received comprehensive instructions
about the task described in Section 2.3 and were given
15 minutes of hands-on introduction for orientation with
the equipment until they became competent in laparoscopy
simulation task. This study had the approval from the insti-
tutional ethics committee. Subjects were requested to stop
cigarette smoking and consuming caffeinated drinks or any
other stimulant 48 hours prior to the experiment as they may
interfere with the trend of fatigue, and compliance with these
instructions was reported. The experiment was performed
from 13:00 to 17:00 hours in a temperature controlled room
with continuous peg transfer task 20 times, in order to make
the subjects into fatigue state.

2.2. Real-Time Fatigue Monitoring System. We designed a
real-timemonitoring system to evaluate and analyze effects of
fatigue on efficiency and accuracy during laparoscopic simu-
lation. The system consists of EEG data acquisition module,
fatigue analysis module, Bluetooth communication module,
and laparoscopic simulator platform. The data acquisition
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Figure 1: Schematic view of EEG fatigue monitoring system.

and fatigue analysis modules were designed based on MAT-
LAB platform.

2.2.1. EEG Signal Recording and Acquisition Module. The
experiment employed a virtual reality laparoscopic simulator
(called Simbionix LAP Mentor) to perform peg transfer
task. This simulator has a wide variety of modules ranging
from simple to complex laparoscopic tasks such as suturing,
basic operation, cholecystectomy, gastric bypass surgery,
incision hernia surgery, gynecological surgery, rectal surgery,
and laparoscopic assembly skills. During the experiment,
BrainLink was used to record EEG signals through the use
of its three forehead electrodes. The recordings of neuronal
activity in the brain are identified as EEG signals [12]. Indeed,
the electrodes read EEG signals from head surface and send
them to personal computer wirelessly via Bluetooth module
for storage and display, as demonstrated in Figure 1.

2.2.2. Signal Processing and Fatigue Analysis. Signal process-
ing and fatigue analysis were designed to follow three steps,
as demonstrated in Figure 2.

The first step is to remove artifacts from EEG signals.
Although BrainLink is designed to record cerebral activity,
it also records electrical activities arising from entities other
than the brain. Generally, any activity that is recorded apart
from cerebral origin is termed as artifact. In most cases,
the artifacts can be obtained from either physiologic or
extra physiologic perspectives. The former are unwanted
physiological signals that arise from source other than the
brain, that is, the body. For example, eye movements, heart,
and muscles. The latter are technical and arise from outside
the body, for example, noise in AC power line which can
be reduced by decreasing electrode impedance and shorter
electrode wires. In fact, any EEG signal greater than 50𝜇V
is regarded as an artifact [13, 14]. However, many artifacts
cannot be identified if their amplitude is lower than 50𝜇V.
Therefore, a systematic approach to eliminate artifact is
important to reduce chance of misinterpretation and analysis
of the EEG signal. Several techniques have been proposed to
remove artifacts from EEG recording. In the present study,
a Blind Source Separation (BSS) method is employed to
remove artifacts from EEG data. BSS is a signal processing
method that includes independent component analysis. BSS
technology separates interfering signal from the original. By
studying distribution of the artifacts and the use of BBS
technology, we obtained a pure EEG signal from the raw EEG
data. The raw EEG signal obtained from the BrainLink is
demonstrated in Figure 3.
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Figure 2: Three steps for signal processing and fatigue analysis.
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Figure 3: Raw EEG signal from the BrainLink.

The second step is the extraction of characteristic rhythm
waves. Human brain pattern poses regular oscillations which
are termed as rhythms and are differentiated on the basis of
signal’s frequency [15]. Rhythms of electrical activity in the
brain are categorized according to frequency bands, namely,
alpha (𝛼), beta (𝛽), theta (𝜃), and delta (𝛿) [4].These rhythms
are usually identified by frequency and amplitudes. The
amplitudes recorded by scalp electrodes from the BrainLink
are in the range of microvolts (𝜇V). The present experi-
ment employed wavelet analysis to extract two characteristic
rhythms waves: alpha (𝛼) and theta (𝜃), as shown in Figure 4.
Since variations in the alertness state induce changes in EEG
spectra, the spectra in 𝜃 rhythm (4–7Hz) and 𝛼 rhythm
(8–11Hz) will reveal changes in cognitive state and memory
performance so that when mental fatigue increases, the
relative power of 𝛼 and 𝜃 rhythms decreases [16].

The third step is computation of deviation of EEG signals
in 𝜃 and 𝛼 rhythm. When fatigue occurs, both 𝜃 and 𝛼
rhythms change significantly [10] and the subject’s EEG
spectra in them deviate from his or her alert state. Hence, his
or her cognitive state and memory performance will change.
This deviation was calculated using Mahalanobis Distance
(𝐷). The EEG spectra in 𝜃 and 𝛼 rhythms are characterized
by (𝜇,𝑁), where 𝜇 is the vector of mean values and 𝐶 is the
covariancematrix of EEG spectra.TheMahalanobis Distance
is calculated as follows:

𝐷(𝑥𝛼) = [(𝑥𝛼 − 𝜇)
𝑇𝐶−1 (𝑥𝛼 − 𝜇)]

1/2

,

𝐷 (𝑥𝜃) = [(𝑥𝜃 − 𝜇)
𝑇𝑁−1 (𝑥𝜃 − 𝜇)]

1/2

,
(1)

where 𝑥𝜃 and 𝑥𝛼 are EEG signal in 𝜃 and 𝛼 rhythms,
respectively. Then, the combined deviation of EEG is given
by

𝐷𝐶 = 𝜎 ∗ 𝐷 (𝑥𝛼) + (1 − 𝜎) ∗ 𝐷 (𝑥𝜃) , 0 ≤ 𝜎 ≤ 1. (2)

The parameter 𝜎 is a constant. Since Mahalanobis Distance
in 𝜃 and 𝛼 rhythms changes with fatigue state, the weights
of 𝐷(𝑥𝛼), 𝐷(𝑥𝜃), and 𝐷𝐶 are used as indicators of fatigue.
In the present work, the threshold of fatigue was calculated
from the experimental results based on Receiver Operating
Characteristic (ROC) curve analysis. When the value of 𝐷𝐶
is larger than the defined threshold, the cognitive state of the
subject can be regarded as fatigue state.

2.2.3. Software Platform. Thesystemwas designed to useGUI
platform which enables functions such as data processing
and drawings. The system collects EEG signals and extracts
characteristic rhythms wave 𝛼 and 𝜃, in order to calculate
fatigue value. Since the distance between EEG and the
rhythmswave increases gradually with the increase of fatigue,
it is very important to determine an appropriate threshold
and compare the threshold with the weighted Mahalanobis
Distance of 𝜃 and 𝛼 rhythm. Based on the ROC curve analysis
method, the fatigue threshold was determined (6.0 𝜇V). In
the present work, when fatigue value exceeds the predefined
threshold value of 6.0 𝜇V, fatigue is detected and the system
immediately rings the alarm. The system interface is shown
in Figure 5.

2.3. Experimental Procedures. Peg transfer task requires peg-
board (with 12 pegs) and six rubber triangles (Figure 6). Each
triangle is lifted using a grasper in the subject’s left hand
and transferred in mid-air to a grasper in his/her right hand.
Then, the triangle is placed on a peg on the opposite side of
the board. After moving all the triangles on the right side,
then every triangle has to be moved back to the left side of
the board, using the same procedure.The number of errors is
defined when a subject drops the triangle out of reach. The
maximum completion time was set to 300 seconds in the
simulator.

3. Results

The training was evaluated objectively by comparing effi-
ciency (in terms of completion time), accuracy (in terms of
number of errors), and fatigue level.

3.1. Objective Indicators of Effective Laparoscopic Surgical
Training. Inmost laparoscopic surgical training, minimizing
number of errors, completion time, and fatigue level is
preferred in general as it would improve efficiency of the
training. To get representative sample of each aforementioned
quantities, we averaged the results of all subjects at each
training trial. Herein, we present the results of errors made
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Figure 4: Brain waves belonging to alpha (𝛼) and theta (𝜃).

Figure 5: GUI platform for signal processing.

Figure 6: Left and right shift of six rubber triangles.

during peg transfer task, time to complete the task, and
fatigue level.

3.1.1. Number of Errors. Regression Model predicted that
the number of errors made during the first seven training
trials was associated with lack of technical skills and perhaps
new procedures [17], while it was associated with fatigue at
the last eight trials. As predicted by the linear regression
equation 𝑦 = 12.13 − 1.4 × (𝑅2 = 0.98), the number of
errors decreases until the seventh trial where it quickly attains
a stable degree upon which the competency of the subject is
anchored, as observed in Figure 7.This indicates that learning
curve of the subjects has increased until seven trials when
they have attained maximum learning benefits. During the
8th to 11th trials, the average number of errors is two, which
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Figure 7: Number of errors during peg transfer task.

is lower than the first seven, meaning that the subjects have
acquired enough skills to cause fewer or no errors. The linear
fitting equation portray 𝑦 = 3.34 − 0.13 × (𝑅2 = 0.7),
indicating a decreasing trend; however, such decrease is very
scant. Between 13th and 20th trials, the number of errors
is increasing and the function runs uphill, when a subject
is acutely fatigued, with linear regression equation of 𝑦 =
−5.96 + 0.62 × (𝑅2 = 0.796). This means that maximum
learning benefits will be gained by subjects until 13th trials
and decrease afterwards due to fatigue. From the regression
equation, it is shown that the slope of the regression line
is 0.62 and the number of errors is expected to increase by
0.62 on average when the training proceeds to the next trial.
Being fatigued significantly increases the chance of errors and
decreases the learning curve. Therefore, when the same task
in the training is repeated in a series of trials, there should be
monitoring to observe where in the learning curve a trainee
gains maximum learning benefits and then stop the training.

3.1.2. Completion Time. In terms of completion time, the
laparoscopic simulator also calculated time spent for each
subject to complete peg transfer task.The results show that all
subjects took long time to finish the peg transfer task at the
first time (around 130 seconds). However, each subsequent
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Figure 8: Completion time as a function of training trials.

time they did the task took less time than the previous one
until around 12 trials. This indicates that the subjects have
learnt from doing peg transfer task and became faster each
time they repeated the task. Nevertheless, the completion
time started to increase at later trials due to fatigue effect.
Precisely, during the first few training trials, the subjects
took long time to complete the task. This is when they were
acclimatized with the training. As more and more trials
were conducted, significant improvement was found and
the completion time decreased by 24% as predicted by the
regression equation 𝑦 = 2.1 − 1.4 × (𝑅2 = 0.87). However,
the completion time remained stable at later trials until the
14th trial, which is shorter than the other trials. This is
when the subjects have acquired enough skills to perform
more effectively. When fatigue was drawn after 14 trials, the
completion time was increased from 92 to 110 seconds, as
shown in Figure 8. These results have indicated that there
exists significant learning for repeated peg transfer tasks.

3.1.3. Rate of Fatigue. Fatigue exhibited different behavior,
with its rate growing gradually up to around ninth training
trials, as predicted by the linear regression equation 𝑦 =
2.35 + 0.15 × (𝑅2 = 0.96), and then the trend started to
fluctuate around 3.6 until 14th training where it increased
sharply, as shown in Figure 9. This means that subjects
are fully alerted, their self-regulatory capacities are normal,
and they can concentrate on the training until 13th trials.
Thereafter, the subjects undergo ego depletion and their
capacities become exhausted [18]. It can be seen that the
rate of fatigue was increased by 62.8% from 13th to 14th
trials, which indicate that excessive number of training times
reduces efficiency. During 14th to 20th trials, fatigue values
behaved like an increasing function and run uphill to seven,
with regression equation 𝑦 = 3.15 + 0.212 × (𝑅2 = 0.84).

4. Discussion

Prolonged working hours and lack of sleep have been asso-
ciated with loss of attention, performance decrements, and
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Figure 9: The measured rates of fatigue.

increase in errors in medical practitioners [19–21]. Following
these findings, some countries had set some regulations
regarding the working hours for physicians. For example,
in Scandinavia the shift work is restricted to 16–24 hours
and the physicians have the day off after a night shift. In
United Kingdom, it is allowed to work for a maximum of 16
hours in 24 hours [22]. In United States, interns are limited
to a maximum of 16 hours per shift in the 80 hours’ work
week [6].The residents association inCanada (Fédération des
médecins résidents du Québec) had set a limit of maximum
16 hours of consecutive working due to the fact that 24-
hour continuous work endangers residents’ health [23]. In
the present study, regression analysis indicates that working
for a long period of time induces fatigue that can increase
number of errors and time to complete peg transfer task
during laparoscopic simulation. These results are consistent
with what was found in the previous studies [6, 9]. However,
they are very different from those of Bagrodia et al. [24] and
Uchal et al. [5], who detailed that fatigue and performance
are covariates. Increase in errors and time to complete
laparoscopic task is more likely to be caused by trainee
during acclimatization; however, as more and more trials
are performed, the learning curve increases, which gradually
decreases errors and completion time. Yet, when fatigue is
developed, the number of errors and completion time start to
increase again. Nevertheless, the consequence is more severe
during the acclimatization than when being fatigued after
making many trials. Though, sometimes, it does not matter
how long it takes the trainee to complete the task; if he/she can
operate without errors, then such surgical procedure can be
considered as safe. It is important to understand that subject is
novice during the first few trials and learns gradually as more
and more trials are performed. In fact, poor performance
during the first few trials was probably a reflection of
new procedures [17] and of fatigue afterwards. The results
support the regulation of work hour’s restrictions for surgical
residents, and further they emphasize that medical educators
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should address these negative effects of fatigue in medical
students.

5. Conclusion

This paper has explored and evaluated effects of fatigue on
efficiency and accuracy during laparoscopic surgical training
using direct measurement of brain activity. The findings
indicate that there are significant learning and fatigue effects
when peg transfer task in the training is repeated in a series of
trials. However, for the training to be effective and efficient,
there should be monitoring to observe where in the learning
curve a trainee gains maximum learning benefits. Moreover,
fatigue is a significant indicator of efficiency in terms of
time to complete laparoscopic task and accuracy in terms of
errors made while doing the task. Even though these results
reflect laparoscopic surgical training, the principles also apply
to surgeons during patient operation, which provides some
useful fundamental lessons for workplace or in hospital.
Future work should entail investigating effects of fatigue in
surgeons during laparoscopic surgery simulation based on
Electroencephalography.
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