
RESEARCH ARTICLE

Reversal of Endothelial Dysfunction by
GPBAR1 Agonism in Portal Hypertension
Involves a AKT/FOXOA1 Dependent
Regulation of H2S Generation and
Endothelin-1
Barbara Renga1, Sabrina Cipriani2, Adriana Carino1, Michele Simonetti1,
Angela Zampella3, Stefano Fiorucci1*

1 Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy, 2 Department of
Medicine, University of Perugia, Perugia, Italy, 3 Department of Pharmacy, University of Naples 'Federico II',
Naples, Italy

* Stefano.Fiorucci@unipg.it

Abstract

Background

GPBAR1 is a bile acids activated receptor expressed in entero-hepatic tissues. In the liver

expression of GPBAR1 is restricted to sinusoidal and Kuppfer cells. In the systemic circula-

tion vasodilation caused by GPBAR1 agonists is abrogated by inhibition of cystathione-γ-

liase (CSE), an enzyme essential to the generation of hydrogen sulfide (H2S), a vasodilatory

agent. Portal BAR501 is a semisynthetic bile acid derivative endowed with a potent and

selective agonistic activity toward GPBAR1.

Methods

Cirrhosis was induced in mice by carbon tetrachloride (CCL4) administration for 9 weeks.

Liver endothelial dysfunction was induced by feeding wild type and Gpbar1-/- mice with

methionine for 4 weeks. In both models, mice were administered BAR501, 15 mg/kg/day.

Results

By transactivation assay we demonstrate that BAR501 is a selective GPBAR1 agonist

devoid of any FXR agonistic activity. In naïve rats, BAR501 effectively reduced hepatic per-

fusion pressure and counteracted the vasoconstriction activity of norepinephrine. In the

CCl4 model, 9 weeks treatment with BAR501 effectively protected against development of

endothelial dysfunction by increasing liver CSE expression and activity and by reducing

endothelin (ET)-1 gene expression. In mice feed methionine, treatment with BAR501 atten-

uated endothelial dysfunction and caused a GPBAR1-dependent regulation of CSE. Using

human liver sinusoidal cells, we found that modulation of CSE expression/activity is
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mediated by both genomic (recruitment of CREB to CRE in the CSE promoter) and non-

genomic effects, involving a Akt-dependent phosporylation of CSE and endothelial nitric

oxide (NO) synthase (eNOS). BAR501, phosphorylates FOXO1 and inhibits ET-1 transcrip-

tion in liver sinusoidal cells.

Conclusions

BAR501, a UDCA-like GPBAR1 agonist, rescues from endothelial dysfunction in rodent

models of portal hypertension by exerting genomic and non-genomic effects on CSE,

eNOS and ET-1 in liver sinusoidal cells.

Introduction
Bile acids are amphipatic molecules synthesized in the liver from oxidation of cholesterol.
Beside their role in nutrient absorption, primary bile acids, chenodeoxycholic acid (CDCA)
and cholic acid (CA), and secondary bile acids, deoxycholic acid (DCA) and lithocholic acid
(LCA), and their glycine and taurine conjugates, act as signaling molecules by activating a fam-
ily of receptors collectively known as the “bile acid activated receptors” (BARs) [1–3]. The G
protein coupled receptor, GPBAR1 (also known as TGR5) is a cell surface receptor highly
expressed by non parenchimal liver cells [3], enterocytes and endocrine intestinal cells [1,2].
GPBAR1 mediates non-genomic activities of secondary bile acids by increasing intracellular
concentrations of cAMP, leading to downstream activation of cAMP-response element (CRE)-
binding proteins (CREBs) in target cells.

Portal hypertension is a common complication of liver cirrhosis. Importantly, while liver
fibrosis represents the main causative factor involved in development of increased intrahepatic
resistance, a vasculogenic component contributed to by an insufficient production of NO by
LSEC, endothelial dysfunction, makes also an important contribution, [4–6]. The endothelial
dysfunction occurring in liver cirrhosis, leads to enhanced contraction of activated perisinusoidal
hepatic stellate cells (HSC) and increased intrahepatic vascular resistance to portal flow [4–6].

Along with resident macrophages (Kuppfer cells), the liver sinusoidal endothelial cells
(LSEC) express GPBAR1, whose activation regulates the activity of endothelial nitric oxide
(NO) synthase (eNOS) [3], suggesting a potential role for this receptor in the treatment of
endothelial dysfunction in the setting of liver cirrhosis. One conundrum in targeting eNOS in
LSEC, however, is the fact that impaired NO generation in liver cirrhosis is largely due to an
impaired Akt signaling along with excessive sequestration of the eNOS protein by caveolin 1.
Both mechanisms contribute to a reduced eNOS activity, while the expression of the gene and
the protein is generally conserved [7–9].

We have recently shown, that in arterial (HAEC) end venular (HUVEC) endothelial cells,
GPBAR1 agonism increases the expression/ activity of cystathione-γ-liase (CSE, CTH, EC 4.4.1),
a key enzyme in the “trans-sulfuration pathway” that generates hydrogen sulfide (H2S), a vasodi-
latory agent [10]. Regulation of CSE by GPBAR1 ligands occurs trough genomic and genomic
mechanisms. Molecular analysis has revealed that the CSE promoter contains two functional
CRE and that CREB is recruited to these CRE upon activation of GPBAR1 by LCA [10].

Alterations of the trans-sulfuration pathway are relatively common in liver cirrhosis, with
two/third of cirrhotic patients developing a hyper-homocysteinemia regardless the etiology of
liver damage [11–14]. In the systemic circulation homocysteine promotes endothelial dysfunc-
tion by impairing eNOS activity in endothelial cells [15]. Alterations of the trans-sulfuration
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pathway induced by a methionine feeding in rodents leads to hyper-homocysteinemia, reduced
generation of H2S and increased intrahepatic resistance to portal flow [15–17]. Previous studies
have shown that in the liver CSE expression/activity is increased by Farnesoid-x-receptor
(FXR) ligands [18] but, whether GPBAR1 protects against development of endothelial dysfunc-
tion in rodent models of portal hypertension is unknown.

The 6β-ethyl-3a,7b-dihydroxy-5b-cholan-24-ol (BAR501) is a UDCA derivative that selec-
tively activates GPBAR1 (Fig 1A). In the present study, by using pharmacological and genetic
approaches we demonstrate that GPBAR1 activation protects against development of endothe-
lial dysfunction in rodent models of portal hypertension, providing a molecular ground for the
exploitation of GPBAR1 ligands in the treatment of portal hypertension in liver disorders.

Fig 1. Pharmacological characterization of BAR501. (A) Effect of BAR501 on GPBAR1 transactivation. BAR501 causes a concentration-dependent
transactivation of GPBAR1 in HEK293 T cells transfected with a CREB responsive element. Data are mean ± SE of 3 experiments. (B) BAR501 fails to
promote FXR transactivation. (C) Effect of BAR501 on mRNA expression of pro-glucagon in GLUTAg cells. Data are mean ± SE of 3 experiments. *p<0.05
versus not treated cells. (D) Effect of BAR501 on cAMP production in GLUTAg cells. Results are the mean ± SE of 3 experiments. *p<0.05 versus not treated
cells (NT). F is forskolin. (E) Effect of BAR501 on vasomotor activity of nor-epinephrine (NE) on rat liver. Administering rats with 15 mg/kg/day BAR501 for 6
days attenuated the vasomotor response to NE at any concentration tested. (F) Effect of BAR501 on liver perfusion pressure caused by shear stress in rats.
Data are mean ± SE of 4–6 animals per group. *p<0.05 versus shear stress alone (G) BAR501 attenuates vasomotor response to methoxamine in rats. Data
are mean ± SE of 7 livers. *p < 0.05 versus methoxamine alone.

doi:10.1371/journal.pone.0141082.g001
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Materials and Methods

Chemicals
BAR501 was synthesized as described elsewhere [19]. Norepinephrine (NE), L-methionine,
methoxamine, TLCA, oleanolic acid, betulinic acid, UDCA and LY294002 were from Sigma
Aldrich (Milan, Italy).

Animals
C57BL6 and male Wistar rats were from Harlan Nossan (udine, Italy). GPBAR1 null mice
(generated directly into C57BL/6NCrl background), and congenic littermates on C57BL/6NCrl
mice were originally donated by Dr. Galya Vassileva (Schering-Plough Research Institute, Ken-
ilworth) [20]. The colonies were maintained in the animal facility of University of Perugia.
Mice were housed under controlled temperatures (22°C) and photoperiods (12:12-hour light/
dark cycle), allowed unrestricted access to standard mouse chow and tap water and allowed to
acclimate to these conditions for at least 5 days before inclusion in an experiment. A total num-
ber of 96 mice and 21 rats were used in this study. The study was conducted in agreement with
the Italian law and the protocol was approved by a ethical committee of University of Perugia
and by a National committee of Ministry of Health (permission n. 245/2013-B). The health
and body conditions of the animals were monitored daily by the veterinarian in the animal
facility. The study protocol caused minor suffering, however, animals that lost more than 25%
of the initial body weight were euthanized. At the day of sacrifice (prior to measure the portal
pressure the animals (mice) were deeply anesthetised with a mixture of tiletamine hypochoride
and zolazepam hypocloride/xylazine at a dose of 50/5 mg/Kg. Similarly rats, at the day of sacri-
fice rats were deeply anesthetised with a lethal dose tiletamine hypochoride and zolazepam
hypocloride/xylazine and liver were isolated and perfused.

Animal models
Liver cirrhosis was induced by carbon tetrachloride (CCl4) administration. For this purpose,
C57BL6 mice (40 animals) were administered i.p. 500 μL/Kg body weight of CCl4 in an equal
volume of paraffin oil twice a week for 9 weeks. CCL4 mice were randomized to receive
BAR501 (15 mg/Kg daily by gavage) or vehicle (distilled water). In another experimental set-
ting, wild type C57BL6 mice were administered 500 μl/Kg body weight of CCl4 in an equal vol-
ume of paraffin oil twice a week for 3 weeks. CCL4 mice were then randomized to receive
BAR501 (30 and 45 mg/Kg daily by gavage) or vehicle (distilled water). Serum bilirubin, albu-
min, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phospha-
tase (ALP) were measured by routine biochemical clinical chemistry (S2 Table). For
histological examination, portions of the right and left liver lobes were fixed in 10% formalin,
embedded in paraffin, sectioned and stained with Sirius red and Hematoxylin/Eosin (H&E).

In a further model, moderate hyperhomocysteinemia [15] was induced in Gpbar1+/+ and
Gpbar1-/- mice (56 animals) by administration of L-methionine (1 g/kg daily by gavage) for a
period of 4 weeks (n = 20). Mice administered L-methionine were randomized to receive
BAR501 (20 mg/Kg daily by gavage) or vehicle (distilled water).

Isolated and perfused rat liver preparation
To investigate the effect of BAR501 on intrahepatic microcirculation, naïve rats were adminis-
tered BAR501 (15 mg/Kg daily by gavage) or water for 6 days. At the end of this period, analy-
sis of hepatic vascular responses to NE (from 0.01 to 100 μmol/L) or methoxamine (100 μM)
was performed using the isolated and perfused rat liver preparation, as described previously
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[15–18]. The vasomotor responses to changes of liver flow (shear stress) was measured as
described previously [15–18,21]. During these studies, the global viability of livers was assessed
by standard criteria: i.e. inspection of gross appearance, stable pH of the perfusate, stable perfu-
sion pressure for 20 min and bile flow>1 μl/min per g liver. The flow rate during each individ-
ual perfusion was maintained at a constant rate of 20 ml/min (S1 Table).

Cell cultures
Human liver sinusoidal cells (LSEC) were from Innoprot (cat. N° P10652; Barcelona, Spain).
LSEC were cultured in endothelial cell medium (Innoprot) additioned with 5% fetal bovine
serum, endothelial cell growth supplement (ECGS) (Innoprot) and antibiotics. HepG2 (HB-
8065), THP1 (TIB-202) and HEK293T (CRL-1573) cell lines were from ATCC (Manassas, VA;
USA). HepG2 cells were cultured in E-MEM supplemented with 10% FBS, 1% glutamine, 1%
penicillin/streptomycin. HEK293T cells were cultured in DMEM supplemented with 10% FBS,
1% glutamine, and 1% penicillin/streptomycin. GLUTAg cells, a murine intestinal endocrine
cell line, were kindly donated by Dr. D. J. Drucker, Banting and Best Diabetes Centre, Univer-
sity of Toronto, Toronto, Canada, and cultured in D-MEM, supplemented with 10% FBS, 1%
glutamine, and 1% penicillin/streptomycin.

Transactivation assay
For FXR mediated transactivation, HepG2 cells were plated at 5 × 104 cells/well in a 24 well
plate. Cells were transfected with 200 ng of the reporter vector p(hsp27)-TK-LUC containing a
FXR response element (IR1) cloned from the promoter of heat shock protein 27 (hsp27), 100
ng of pSG5-FXR, 100 ng of pSG5-RXR, and 100 of pGL4.70 (Promega), a vector encoding the
human Renilla gene. For GPBAR1 mediated transactivation, HEK-293T cells were plated at
1 × 104 cells/well in a 24 well-plate and transfected with 200 ng of pGL4.29 (Promega), a
reporter vector containing a cAMP response element (CRE) that drives the transcription of the
luciferase reporter gene luc2P, with 100 ng of pCMVSPORT6-human GPBAR1, and with 100
ng of pGL4.70. At 24 h post-transfection, HepG2 and HEK293T cells were incubated with
10 μM BAR501 for 18 h and luciferase activities were assayed and normalized against the
Renilla activities. For CRE1 mediated transactivation HEK-293T cells were transfected with
200 ng of pGL4(CRE1)5X, 100 ng of pCMVSPORT6-human GPBAR1 and 100 ng of pGL4.70
(a vector encoding the human Renilla gene). Forty-eight hr post-transfection, cells were stimu-
lated 18 hr with a dose response of BAR501 (1, 10, 25 and 50 μM) (S1 Table).

cAMP assay
cAMP concentrations were assayed using the Direct Cyclic AMP enzyme immuno-assay kit
(Arbor Assay cat. no. K019-H1). For this assay, GLUTAg cells were serum starved overnight
and then stimulated for 30 min with 10 μM forskolin (F) or BAR501 (S1 Table).

RNA extraction and Real-Time PCR
Total RNA was isolated from LSEC or tissues using the TRIzol reagent according to the manu-
facturer’s specifications (Life Technologies). One microgram of RNA was purified from genomic
DNA by DNase-I treatment (Life Technologies) and reverse-transcribed using random hexamer
primers with Superscript-II (Life Technologies) in a 20-μL reaction volume. Ten ng cDNA were
amplified in a 20 μl solution containing 200 nM of each primer and 10 μl of KAPA SYBR FAST
Universal qPCR Kit (KAPA BIOSYSTEMS). All reactions were performed in triplicate, and the
thermal cycling conditions were as follows: 3 min at 95°C, followed by 40 cycles of 95°C for 15 s,
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56°C for 20 s and 72°C for 30 s. The relative mRNA expression was calculated accordingly to the
Ct method. PCR primers were designed using the software PRIMER3 (http://frodo.wi.mit.edu/
primer3/) using published data obtained from the NCBI database. Forward and reverse primer
sequences were as follows: hGAPDH: gaaggtgaaggtcggagt and catgggtggaatca
tattggaa; hCSE: cactgtccaccacgttcaag and gtggctgctaaacctgaagc; hCBS:
tcgtgatgccagagaagatg and ttggggatttcgttcttcag; hTGR5: cactgttgt
ccctcctctcc and acactgctttggctgcttg; heNOS: agtgaaggcgacaatcctgtat
and agggacaccacgtcatactcat; hET1: agggctgaagacattatggaga and
cctggtttgtcttaggtgttcc; mGAPDH: ctgagtatgtcgtggagtctac and
gttggtggtgcaggatgcattg; mpro-glucagon: tgaagacaaacgccactcac and
caatgttgttccggttcctc; mTGFb1: ttgcttcagctccacagaga and tggttgta
gagggcaaggac; mCOL1A1: acgtcctggtgaagttggtc and cagggaagcctcttt
ctcct; maSMA: tgtgctggactctggagatg and gaaggaatagccacgctcag; mTNFa:
acggcatggatctcaaagac and gtgggtgaggagcacgtagt; mTGR5:
ggcctggaactctgttatcg and gtccctcttggctcttcctc; mIL1b: tcacagcagca
catcaacaa and tgtcctcatcctcgaaggtc; mCBS: agaagtgccctggctgtaaa and
caggactgtcgggatgaagt; mCSE: tgctgccaccattacgatta and gatgccaccctcc
tgaagta; meNOS: agaagagtccagcgaacagc and tgggtgctgaactgacagag; miNOS:
acgagacggataggcagaga and cacatgcaaggaagggaact; mET1: tgccaagcagg
aaaagaact and acgaaaagatgccttgatgc; mCAV1: ttgaagatgtgattgcagaacc
and tcgtagacaacaagcggtaaaa (S1, S3, S4–S6 Tables).

CSE activity
CSE activity was measured in liver tissues or in serum starved LSEC administered with 10 μM
TLCA or BAR501 for 24 and 48 hr according to a previously published method [18] (S3
Table).

Nitrite/Nitrate
Hepatic nitrate/nitrite concentrations were measured by a colorimetric assay (Cayman Chemi-
cal, Ann Arbor, Michigan; USA) (S3 Table).

Chromatin Immunoprecipitation (ChIP)
Detailed methods for ChIP protocol and Real-Time data analysis have been described previ-
ously [21]. Briefly, 10 x 106 serum starved SEC cells were stimulated 18 hr with 10 μM BAR501
or received the vehicle alone (1% DMSO). Chromatin was immunoprecipitated with an anti-
phospho-CREB antibody (Santa Cruz) or with an anti-IgG as negative control. The sequences
of primers used for the amplification of the human CREB responsive sequence CRE1s were:
ctggtctcgaactcttgacttcag and gctaacgcctattaatcccagcac (S5 Table).

In another experimental setting LSEC cells were exposed to 10 μM BAR501 for 18 hr. Chro-
matin was immunoprecipitated with an anti-phospho-FOXO1 antibody (Santa Cruz) or with
an un-relevant anti-IgG as negative control. The sequences of primers used for the amplifica-
tion of the human FOXO consensus sequence were: gcctgttggtgactaataacac and
cagctctgccggctttttatat (S6 Table).

Immunoprecipitation
Overnight serum starved LSEC cells were exposed to BAR501 (10 μM) for 0, 5, 15, 30 and 60
min. After stimulation, cells were washed with cold PBS and lysed in 500 μl E1A lysis buffer
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containing protease and phosphatase inhibitors. Lysates were sonicated and clarified by centri-
fugation at 13,000g for 10 min, and the protein concentrations was measured by Bradford
assay. Five-hundred μg total proteins were pre-cleared on a rotating wheel for 1 h at 4°C using
protein A Sepharose beads (Amersham Biosciences) and 1 μg of irrelevant antibody of the
same species and isotype as CSE. Immunoprecipitation was performed overnight at 4°C with
1 μg CSE antibody (Santa Cruz) or anti-IgG as a negative control antibody in the presence of
40 μl of protein A Sepharose (Amersham Biosciences). The resultant immunoprecipitates were
washed five times with 1 ml of E1A lysis buffer and then used for Western blotting.

Western blotting
To investigate protein expression of GPBAR1 and CSE, LSEC were serum starved overnight
and then stimulated with 10 μM BAR501 for 18 h. In another experimental setting serum
starved LSEC were incubated 5, 15, 30 and 60 minutes with 10 μM BAR501. Total lysates were
prepared by solubilization of endothelial cells in E1A lysis buffer containing protease and phos-
phatase inhibitors. The proteins were separated by SDS-PAGE, transferred to nitrocellulose
membranes (Bio-Rad) and probed with primary antibodies CSE (Santa Cruz), GPBAR1/TGR5
(Abcam), tubulin (Sigma), phospho-Akt (Thr308—Santa Cruz), Akt (Santa Cruz), phospho-
Serine (Abcam), phosphoeNOS (ser1177 –Cell Signaling), eNOS (Cell Signaling), phospho-
FOXO1 (Thr24 –Santa Cruz) and FOXO1 (Santa Cruz). Nitrocellulose membranes from
immunoprecipitation (IP) experiments were first probed with a phospho-serine antibody,
stripped and then re-probed with the CSE antibody. Similarly, nitrocellulose membranes from
IP experiments were first probed with the phospho-Akt antibody, stripped and then re-probed
with the Akt antibody. The anti-immunoglobulin G horseradish peroxidase conjugate (Bio-
Rad) was used as the secondary antibody, and specific protein bands were visualized using
Super Signal West Dura (Pierce), following the manufacturer’s suggested protocol.

Statistical analysis
All values are mean ± Standard Error (SE) of number (n) observations per group. Comparisons
of more than two groups were made by one-way ANOVA with post-hoc Tukey’s test. The Stu-
dent’s t-test for unpaired data was used when appropriate.

Results

BAR501 is a selective GPBAR1 agonist and reduces hepatic
vasoconstriction caused by NE
BAR501 (structure in Fig 1A) is a selective GPBAR1 ligand [19,22]. Indeed, as shown in Fig 1A
and 1B, while it failed to transactivate FXR in HepG2 cells overexpressing a FXRE, the com-
pound effectively transactivates GPBAR1 in HEK293 cells overexpressing a CRE along with
GPBAR1, with a EC50 of 1 μM (Fig 1A and 1B, �p<0.05 versus not treated cells).

To further confirm that BAR501 activates GPBAR1 directly, we have assessed whether it
boosted pro-glugagon-1 gene (GLP-1) expression by GLUTAg cells, a murine endocrine cell
line that express high levels of GPBAR1 [23]. As shown in Fig 1C and 1D, exposure of GLU-
TAg to BAR501 (10 μM) increased the expression of GLP-1 mRNA by 2.5 folds. This effect
associated with a robust increase of cAMP concentrations (Fig 1C and 1D, p<0.05 versus con-
trol cells). Taken together these data indicate that BAR501 is a selective GPBAR1 agonist
devoid of FXR agonistic activity.

Because in the liver the expression of GPBAR1 is restricted to LSEC, we have then examined
whether BAR501 effectively modulates LSEC function in vivo by assessing intrahepatic
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resistance to portal flow using the model of rat liver isolated and perfused [15, 16, 20]. Concen-
tration–response curves to NE were investigated at a constant perfusion flow rate of 20 mL/
min. As shown in Fig 1E, addition of NE to the perfusion solution resulted in a concentration-
dependent increase in portal perfusion pressure, that reached the maximum at 10 μM. Pretreat-
ing rats for 6 days with BAR501, 15 mg/kg, reduced basal portal pressure and blunted the vaso-
constriction activity of NE (Fig 1E, �p<0.05 versus baseline, �P>0.05 versus NE alone).
Additionally, pretreatment with BAR501 attenuated the hepatic vasomotor activity induced by
shear stress (Fig 1F, �P<0.01) and methoxamine (Fig 1G, �p<0.05).

BAR501 protects against development of portal hypertension in the
CCL4 model
We have next investigated whether BAR501 modulates the hepatic microcirculation in mice
administered CCl4, a model of liver cirrhosis/fibrosis. As shown in Fig 2, mice administered
CCl4 for 9 week developed a severe liver injury (AST levels), liver fibrosis (Sirius red staining)
and impaired biosynthetic function (reduced albumin levels) (�p<0.05 versus naïve mice).
Additionally, CCL4 administration increased intrahepatic resistance, as measured by direct
cannulation of portal vein (Fig 2A; p<0.05 versus naive mice)

Treating mice with BAR501 at the dose of 15 mg/Kg reduced portal pressure and AST
plasma levels, thought it had no effect on serum biochemistry including alkaline phosphatase,
albumin and bilirubin (Fig 2A–2E). Morphometric analysis performed on liver section stained
with H&E and Sirius red revealed that while a bridging fibrosis developed in CCl4-treated mice
(Fig 2, panels F-H and I-N), these changes were only minimally affected by BAR501.

Quantitative Real-Time PCR analysis of liver homogenates confirmed these biochemical
and morphometric observations. Thus, as illustrated in Fig 3A, administration of mice ren-
dered cirrhotic by CCl4 with BAR501 failed to reverse the expression of pro-fibrogenic (i.e.
TGFβ1, Col1α1 and α-SMA) and pro-inflammatory markers (i.e. TNFα). Similar findings
were observed in mice administered CCl4 in combination with BAR501 at doses of 30 and 45
mg/Kg (S1A–S1F Fig).

BAR501 attenuates endothelial dysfunction by regulating CSE
expression/activity
Because the above mentioned data indicate that BAR501 exerts portal pressure-lowering effects
but has no anti-fibrogenetic activities, suggesting a potential role of this agent in regulating
endothelial mechanisms in the liver microcirculation, we have investigated markers of endo-
thelial dysfunction in mice administered with CCl4 alone or in combination with BAR501. As
shown in Fig 3B, RT-PCR analysis demonstrated that only the relative mRNA expression of
CSE, but not that of CBS, eNOS and iNOS, was significantly decreased in mice exposed to CCl4
compared to control animals and that administration of BAR501 reversed this pattern (Fig 3B,
�p<0.05 versus control mice, #p<0.05 versus CCl4). The quantification of CSE activity and
nitrites/nitrates levels in liver specimens obtained from mice administered BAR501 confirmed
RT-PCR data, being liver activity of CSE markedly reduced in CCL4 treated mice (Fig 3C,
�p<0.05 versus control mice). This pattern was reversed by treating animals with BAR501.
Interestingly, the GPBAR1 ligand increased CSE expression and activity but had no effect on
nitrite/nitrate concentrations (Fig 3C and 3D, �p<0.05 versus control mice). Because, impaired
eNOS activity in the CCL4 model has been ascribed to enhanced binding by caveolin-1, we
have examined the effect of the GPBAR1 ligand on this gene. As shown in Fig 3B, caveolin-1
gene expression increased dramatically in CCL4 treated mice and this pattern was only slightly
affected by exposing CCL4 mice to BAR501.
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Endothelin-1 (ET-1) is a potent vasoconstrictor produced in the liver by LSEC. Noteworthy,
while ET-1 gene expression was markedly upregulated in mice administered CCL4 alone, the
regulation of this gene was potently reversed by BAR501.

BAR501 corrects endothelial dysfunction caused by L-methionine
feeding in mice
Because these data highlight that activation of GPBAR1 in vivo resets the molecular mecha-
nisms involved in development of endothelial dysfunction in the CCL4 model, we have then
examined whether BAR501 has the ability to counteract endothelial injury in Gpbar1+/+ and
Gpbar1-/- animals administered with methionine for 4 weeks. The methionine feeding induces
a severe endothelial dysfunction leading to increased intra-hepatic resistance to portal flow
[15]. Of interest, administration of BAR501 significantly reduced resistance to portal flow
caused by methionine intake in both Gpbar1+/+ and Gpbar1-/- animals (Fig 4A, #p<0.05 versus
Gpbar1+/+ mice fed methionine; °°p<0.05 versus Gpbar1-/- mice fed methionine).

Fig 2. Administration of BAR501 exerts a direct vasodilatory activity in the CCl4 model. Effect of BAR501 on (A) portal pressure, (B) AST, (C) alkaline
phosphatase (ALP), (D) Albumin, (E) Bilirubin in mice renedered cirrhotic by administration with CCl4. (F-H) Hematoxylin and eosin (H&E) staining. (I-M)
Syrius red staining. (N) Image J quantification of Syrius red staining. Data are mean ± SE of 8–10 animals per group. *p<0.05 versus naïve mice. #p<0.05
versus CCl4.

doi:10.1371/journal.pone.0141082.g002
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Administering Gpbar1+/+ mice with methionine diet had no effect on the expression of ET-1,
CBS, eNOS and CAV-1, while the expression of CSE and iNOS genes was significantly down-
regulated (Fig 4C–4H, �p<0.05 versus GPBAR+/+ mice). Treating Gpbar1+/+ with BAR501
increased the expression of CSE, eNOS and iNOS (Fig 4C–4H, #p<0.05 versus Gpbar1+/+ mice
fed methionine). However, BAR501 failed to regulate CSE, eNOS and iNOS in Gpbar1-/- mice,
indicating that these genes are directly regulated by GPBAR1 in vivo (Fig 4C–4H).

BAR501 regulates CSE expression/activity activity in human LSEC
Serum starved LSEC were exposed to GPBAR1 ligands including TLCA, oleanolic acid, betuli-
nic acid, UDCA and BAR501. As shown in Fig 5A, RT-PCR analysis of CSE mRNA revealed
that all these agents, but UDCA, increased the expression of CSE mRNA, with betulinic acid
being by far the most potent (Fig 5A, �p<0.05 versus not treated cells). Importantly, while
incubating LSEC with TLCA or BAR501 (10 μM) increased the expression of CSE, mRNA and
protein, the two agents had no effect on the relative expression of CBS, eNOS and GPBAR1
(Fig 5B, �p<0.05 vs NT cells).

Fig 3. BAR501 regulates the expression of CSE and ET-1 in the CCl4 model of liver cirrhosis.C57BL6 mice were treated for 9 weeks with CCl4 or with
the combination of CCl4 plus BAR501 15 mg/kg. The relative hepatic mRNA expression of TGFβ1, COL1α1, αSMA, TNFα, IL1β, GP-BAR1 (panel A) and
CBS, CSE, eNOS, iNOS, CAV-1 ET-1 (panel B) was assayed by Real-Time PCR. (C) Effect of BAR501 on CSE activity in the CCl4 model. (D) Effect of
BAR501 on nitrite/nitrate in CCl4 treated mice. Results are the mean ± SE of 4–8 mice per group. *p<0.05 versus naive mice. #p<0.05 versus CCl4 alone.

doi:10.1371/journal.pone.0141082.g003
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We have recently shown that the CSE promoter contains two conserved CRE (CRE1 and
CRE2) and demonstrated that both these CRE were responsive to GPBAR1 activation in
HUVEC [10]. Consistent with these observations, results from luciferase reporter gene assay con-
ducted in HEK293T cells transiently transfected with GPBAR1 and a pGL4 vector containing
five copies of CRE1 demonstrated that the activation of this CRE by BAR501 was concentration-
dependent (Fig 5C, �p<0.05 versus NT cells). To confirm that the induction of CSE gene expres-
sion in LSEC was CREB dependent, we performed a ChIP experiment. The results of these stud-
ies demonstrated that the interaction of CREB to the CSE promoter occurs in basal conditions
and is strongly increased following treatment with BAR501 (Fig 5D, �p<0.05).

Fig 4. BAR501 correct for endtothelial dysfunction caused by methionine diet.Gpbar1+/+ and Gpbar1-/- mice administered L-methionine for 4 weeks
were randomized to receive BAR501 (20 mg/Kg daily by gavage) or vehicle (distilled water). Effect of BAR501 on (A) portal pressure, (B) ET-1 mRNA, (C)
CBSmRNA, (D) CSEmRNA, (E) eNOSmRNA, (F) iNOSmRNA and (G) CAV-1. Results are the mean ± SE of 4–8 mice per group. *p<0.05 versus pbar1+/+

mice. #p<0.05 versus Gpbar1 +/+ mice fed methionine. °p<0.05 versus Gpbar1-/- mice. °°p<0.05 versus Gpbar1-/- mice fed methionine.

doi:10.1371/journal.pone.0141082.g004
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The exposure of LSEC to BAR501 also regulates CSE activity (Fig 5E, �p<0.05). Because we
have previously shown, that CSE activity might be regulated by Akt through phosphorylation
on Ser377 (10), we have next investigated whether BAR501 changes the CSE phosphorylation
status in these cells. Results from IP experiments demonstrated the existence of a protein com-
plex between the CSE and Akt1 which is assembled already in basal conditions (Fig 5F). Of
interest, the interaction between CSE and Akt1 (both phosphorylated or total) in LSEC
increased after 5 min of incubation with BAR501 (Fig 5F). Moreover, 30 min treatment with
BAR501 increased the phosphorylation of CSE on serine residues without affecting total CSE
protein levels (Fig 5F).

Fig 5. GPBAR1 activation by BAR501modulates the expression/activity of regulates CSE in human LSEC. (A) Serum starved LSEC were exposed to
10 μM TLCA, OA, BA, UDCA or BAR501 for 18 hr. CSEmRNA expression was evaluated using Real-Time PCR. (B) Serum starved LSEC were exposed to
10 μM TLCA or BAR501 for 18 hr. Relative mRNA expression of CSE, CBS, eNOS and TGR5 was assayed by Real-Time PCR. Protein expression of CSE,
GPBAR1 and tubulin was measured byWestern blotting. (C) LSEC were transiently transfected with pCMVSPORT-hTGR5 and pGL4(CRE1)5X as described
inMaterials and Methods. Forty-height h post-transfection cells were stimulated 18 h with BAR501 (10 μM). (D) ChIP assay carried out in LSEC left untreated
or primed with BAR501 as described inMaterials and Methods. RT-PCR was performed with specific primers flanking the responsive element CRE1 on
human CSE promoter. (E) CSE activity in LSEC administered 10 μM TLCA or BAR501 for 24 and 48 h. (F) Effect of BAR501 on phosphorylation of CSE on
serine residues. Serine phosphorylation of CSE was assessed by immunoprecipitation of CSE followed byWestern blot determination of phosphoserine and
phospho-Akt1 content in SEC exposed to BAR501 (10 μM) for 0, 5, 15, 30, and 60 min. (G) Exposure of LSEC to BAR501 increases eNOS phosphorylation.
All analyses were carried out in triplicate and the experiments were repeated twice. *p<0.05 versus not treated cells.

doi:10.1371/journal.pone.0141082.g005
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Because eNOS phosphorylation is Akt dependent, we have then investigated whether
GPBAR1 activation in LSEC regulates eNOS phosphorylation, and, as shown in Fig 5G, found
that exposure to BAR501, caused a time-dependent phosphorylation of eNOS.

BAR501 downregulates ET-1 in LSEC
We have next investigated the molecular mechanism involved in downregulation of ET-1 by
BAR501. For this purpose serum starved LSEC were exposed to TLCA or BAR501, both
10 μM. As shown in Fig 6A, RT-PCR of ET1 mRNA revealed that both TLCA and BAR501
downregulated the expression of this gene in LSEC (Fig 6A, �p<0.05 versus not treated cells).
The ET-1 promoter contains a consensus sequence for FoxO1, a transcription factor that
resides constitutively into the nucleus [24,25]. FoxO1 proteins are phosphorylated by Akt/PKB
through the PI3K-dependent pathway, resulting in FoxO1 nuclear export and inhibition of tar-
get gene expression [26,27]. Thus, we have inspected whether BAR501 activates Akt to regulate
FoxO1 expression. For this purpose serum starved LSECs were treated for 5, 15, 30 and 60 min
with 10 μM BAR501 in order to analyze by immunoblot the phosphorylation status of Akt and
FoxO1 proteins. As shown in Fig 6B, the phosphorylation of both Akt and FoxO1 proteins
occurred as early as after 5 min. Consistent with these observations results from ChIP con-
firmed that FoxO1 complexes were removed from ET-1 promoter after treatment with
BAR501 (Fig 6C, �p<0.05). To further investigate the role of PI3K/Akt in mediating down-reg-
ulation of ET-1 by BAR501, LSECs were co-incubated with the LY294,002, a PI3K kinase
inhibitor. Exposure to LY294002 abrogated the effect of BAR501 on ET-1 gene expression (Fig
6D, �p<0.05 versus not treated cells, #p<0.05 versus BAR501 stimulated cells).

BAR501 mediated down-regulation of ET-1 was CSE independent as demonstrated by fact
that co-incubating LSEC with BAR501 and propargylglicine (PAG), a CSE inhibitor failed to
revert the effect of BAR501 (S2A–S2C Fig). Moreover, BAR501 was also effective in reducing
the phosphorylation of STAT1 (another transcription factor involved in the regulation of ET-1
promoter) induced by IFNγ (S3 Fig). [28]

Discussion
GPBAR1 is a G protein coupled receptor for secondary bile acids highly expressed in entero-
hepatic tissues, spleen and immune cells [1]. In the liver, expression of GPBAR1 is restricted to
non parenchymal cells, specifically LSEC and Kuppfer cells [1,3]. In LSEC activation of
GPBAR1 by LCA causes eNOS phosphorylation, a mechanism that could be of functional rele-
vance in regulating intrahepatic vasomotor activity [29]. A conundrum for exploitation of this
mechanism in the setting of portal hypertension, however, resides in the fact that in liver cir-
rhosis an enhanced binding of eNOS to caveolin-1 [6–9,30,31], alters the post-translational
handling of the protein in LSEC leading to impaired generation of NO (Fig 7), a mechanism
that is deemed essential for development of portal hypertension in patients with liver cirrhosis
[6–9,30–33].

GPBAR1 is also expressed in the systemic vascular system and its activation mediates the
vasodilatory effects of secondary bile acids [1, 10]. We have recently shown that vasodilation
caused by LCA in large conductance vessels (aortic rings) requires an intact expression of this
receptor [10]. Additionally, activation of GPBAR1 in arterial and venular endothelial cells reg-
ulates the expression/activity of CSE an enzyme that is critical for the generation of H2S [10].
Consistent with this finding, CSE inhibition by PAG reverses GPBAR1 agonism blunts the
vasodilatory effect of LCA in wild type mice, but not in Gpbar1-/- mice [10]. The functional rel-
evance of this pathway is further highlighted by the observation that L-NIO, a non-selective
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inhibitor of eNOS and iNOS, had no detectable effect on aortic vasodilation caused by
GPBAR1 ligation in mice [10].

Here, we report the pharmacological characterization of BAR501, a UDCA derivative
endowed with a potent agonistic activity on GPBAR1 (Fig 7). Using the model of isolated and
perfused rat liver we demonstrate that BAR501, effectively counteracts vasoconstriction caused
by NE and methoxamine in intact rats, and that this effect relays on H2S since it was completely
reversed by treating rats with PAG, a CSE inhibitor. Further on, BAR501 protects against
development of portal hypertension in rodent models of liver injury and endothelial dysfunc-
tion. The portal hypertension that develops in rodents exposed to CCL4 is the results of

Fig 6. GPBAR1 activation down-regulates ET-1 expression in human LSEC by displacing FOXO1 transcriptional complex from the ET-1 promoter.
(A) Serum starved LSEC were stimulated 18 h with 10 μMTLCA or BAR501. At the end of stimulation CSEmRNA expression was evaluated using Real-
Time PCRmethod. (B) representative Western blot analysis of Akt1, phospho-Akt1, FOXO1 and phospho-FOXO1 proteins in SEC exposed to BAR501
(10 μM) for 0, 5, 15, 30, and 60 min. (C) ChIP assay carried out in SEC left untreated or primed with BAR501 as described inmaterials and methods. RT-PCR
was performed with specific primers flanking the FOXO1 responsive element on human ET-1 promoter. Inset of Fig 6C. Representative qualitative PCR of
ET-1 promoter immunoprecipitated with an anti-FOXO1 antibody on SEC left untreated or primed with BAR501 (D) Effect of PI3K inhibitor LY-294,002 (LY)
on ET-1 mRNA expression in SEC coadministered with BAR501. *p< 0.05 versus not treated (NT) cells; #p<0.05 versus BAR501 treated cells.

doi:10.1371/journal.pone.0141082.g006
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extracellular matrix deposition and endothelial dysfunction due to two major mechanisms, i.e.
insufficient NO production and enhanced ET-1 generation [4,6–9,15–18,30–33]. We have pre-
viously shown that activation of FXR, by 6-ECDCA (INT-747/obeticholic acid) protects
against development of portal hypertension in rodent models of liver cirrhosis by reducing

Fig 7. Schematic representation of the effect of BAR501 on LSEC in models of LSEC dysfunction. CCl4 and methionine feeding alter liver sinusoidal
cell function. In these settings LSEC express high levels of endothelin 1 (ET-1) along with reduces eNOS activity due to enhanced binding of eNOS with
caveolin-1, and reduced expression of CSE, a H2S-generating enzyme. Activation of GPBAR1 by BAR501, increases CSE expression by CRE-mediated
activity, and causes both eNOS and CSE phosphorylation by AKT-mediated mechanism. In addition, AKT-driven phosphorylation of FOXOA1, attenuates
ET-1 production. However since eNOS is bound to caveolin 1 the generation of nitrite/nitrate do not increase. Thus, activation of GPBAR1 in CCl4-treated
mice, leads to eNOS-independent reduction of intravascular resistance, that is mostly mediated by inhibition of ET-1 and increased release of H2S.

doi:10.1371/journal.pone.0141082.g007
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liver fibrosis and enhancing, among other mechanisms, the generation of H2S [18, 34–36]. In
the present study we report that activation of GPBAR1 in mice administered CCL4, failed to
attenuate liver fibrosis, but protected against development of portal hypertension. The fact that
BAR501 failed to reduce liver collagen deposition, was expected, since GPBAR1 is not
expressed by hepatic stellate cells [3]. At molecular level, we found that, while treating CCl4
mice with BAR501, had no effect on TGFβ1, collagen α1 and αSMA (i.e. on tissue markers of
liver fibrosis), the GPBAR1 agonist effectively increased the expression of CSE without modu-
lating the expression of eNOS and iNOS genes. Consistently, BAR501 increased the liver activ-
ity of CSE but had no effect on liver nitrites/nitrates. The lack of effect of BAR501 on eNOS, is
likely due to the elevation of caveolin-1, we have observed in this model [6–9, 30–33].

Because data from the CCl4 model suggest a putative role of GPBAR1 in regulating liver
microcirculation at the level of LSEC, we have further examined whether activation of
GPBAR1 protects against development of portal hypertension in a model of liver endothelial
injury, caused by feeding mice with methionine. This model leads to endothelial dysfunction,
that is mostly linked to defective generation of NO [15–17]. We have previously shown that
H2S donors protect against endothelial dysfunction caused by methionine in a NO-indepen-
dent manner [16–18]. Results from current investigations demonstrate that BAR501 effectively
attenuates development of increased vascular tone in methionine feed mice, but this protection
results from both GPBAR1-dependent and GPBAR1-independent mechanisms. Indeed,
BAR501 attenuates changes in portal pressure in an equal extent in both Gpbar1+/+ and
Gbar1-/-, thought that different molecular mechanisms were involved. Indeed, in Gpbar1+/+

mice feed methionine, administration of BAR501, increased the expression of CSE, eNOS and
iNOS, while these effects were not observed in mice harboring a disrupted Gpbar1. These
results, are fully consistent with the view that activation of GPBAR1 effectively regulates H2S
and NO production by LSEC. In contrast to the CCl4 model, however, endothelial dysfunction
caused by methionine feeding, is not due to an enhanced production of ET-1 or caveolin-1.

The fact that BAR501, reduces portal pressure in Gpbar1-/- administered methionine could
be linked to the UDCA scaffold. Indeed, there is evidence that UDCA might be effective in
reducing portal pressure is experimental models of liver injury, such as the bile duct ligated
model [37].

The molecular mechanisms involved in the portal pressure-lowering activity of BAR501,
was examined in vitro using LSEC. Using human primary LSEC we found that exposure to
BAR501, along with other GPBAR1 ligands, increases the expression of CSE and that this effect
results from both genomic and non-genomic effects. Previous studies have shown that CREB, a
cyclic AMP response element (CRE)-binding protein is activated following GBBAR1 ligation
by bile acids [1]. We have previously demonstrated that the CSE promoter contains two CRE
elements that are conserved across the species [10]. Here, we have determined that GPBAR1
activation by BAR501 increases the transcriptional activity of human CSE promoter, while
ChIP experiments provided robust evidence that BAR501 recruits CREB in its active form to a
region of human CSE promoter that contains the two CREB binding sites, resulting in a func-
tional increase of CSE activity.

In addition, data shown in Fig 5F and 5G, provide evidence that BAR501, exerts non geno-
mic effects in LSEC, causing an Akt-dependent phosphorylation of CSE and eNOS. Taken
together these results provide a molecular explanation to the potent vasodilatory activity
exerted by BAR501 in the liver microcirculation. Importantly, while BAR501, causes eNOS
phosphorylation, this effect does not explain the vasodilatory effects observed in the CCl4
model, because in this model the eNOS is sequestered by caveolin-1 (Fig 7).

One important observation made in this study, was the demonstration that exposure to a
GPBAR1 agonist, negatively regulates ET-1 expression in cirrhotic livers. Because regulation of
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ET-1 has a major clinical readout [4], we have examined whether BAR501 directly regulates ET-
1 expression in LSEC. The results of these experiments demonstrate that GPBAR1 agonism
results in a Akt-dependent phosphorylation of FoxO1. Previous studies have shown that FoxO1
functions as a coactivator for ET-1 gene transcription and is constitutively recruited to the ET-1
promoter [24,25]. In contrast, FoxO1 phosphorylation disrupts the co-activator complex [26].
Data shown in Fig 6 demonstrate that BAR501, phosphorylates FoxO1 in a Akt-dependent
manner and causes its release from the ET-1 promoter, thus blocking ET-1 transcription.

In conclusion, we have demonstrated that BAR501, a UDCA derivative, endowed with
robust agonistic activity on GPBAR1, exerts portal pressure-lowering effects in rodent models
of portal hypertension by directly regulating the expression/activity of CSE and eNOS in LSEC.
BAR501 might represent a novel approach to attenuate hemodynamic changes in patients with
liver cirrhosis.

Supporting Information
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of CCl4 plus BAR501 (30 and 40 mg/Kg body weight). Effect of BAR501 on (A) portal pressure,
(B) AST, (C) ALT, (E) COL1α1 mRNA, (F) αSMA and (F) TGFβ1. Results are the mean ± SE
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