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Abstract

The partial success of tumor immunotherapy induced by checkpoint blockade, which is not

antigen-specific, suggests that the immune system of some patients contain antigen recep-

tors able to specifically identify tumor cells. Here we focused on T-cell receptor (TCR) reper-

toires associated with spontaneous breast cancer. We studied the alpha and beta chain

CDR3 domains of TCR repertoires of CD4 T cells using deep sequencing of cell populations

in mice and applied the results to published TCR sequence data obtained from human

patients. We screened peripheral blood T cells obtained monthly from individual mice spon-

taneously developing breast tumors by 5 months. We then looked at identical TCR

sequences in published human studies; we used TCGA data from tumors and healthy tis-

sues of 1,256 breast cancer resections and from 4 focused studies including sequences

from tumors, lymph nodes, blood and healthy tissues, and from single cell dataset of 3

breast cancer subjects. We now report that mice spontaneously developing breast cancer

manifest shared, Public CDR3 regions in both their alpha and beta and that a significant

number of women with early breast cancer manifest identical CDR3 sequences. These find-

ings suggest that the development of breast cancer is associated, across species, with bio-

marker, exclusive TCR repertoires.

Author summary

More than 1,100 cancer treatments are currently in clinical testing. Of these, 295 are

immune-oncology medicines and vaccines. For Checkpoint Immunotherapy alone,

52,539 patients were enrolled in 2017. Of these treatments, 108 are for breast cancer, the

leading cancer diagnosed in women. Although checkpoint immunotherapy has yet to be

proven beneficial in most types of breast cancer, current observations of which specific T

cell go into the tumor, and how these cells are connected to the response to treatment,
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have lead to a new understating of the role of the immune system. Yet, and in spite of this

intense research into the role of T cells in tumors, very little is known about how clones of

T cells behave during tumor formation. The paper we present here studies this clonal

behavior over time. We study it during mammary tumor development in mice. We see

that a set of T cell clones, which comes from a diversity of different nucleotide sequences,

stands out in its behavior compared with other T cell clones. Importantly, we show that

these mouse T cell clones have a strong connection to human breast cancer. The specific

identification of a subset of T cell clones, together with the behavior of these clones over

time, is critical to our understanding of the effect of modifications to the immune system,

such as the modifications made by immunotherapy treatments, and to our understanding

of how to better control the behavior of the immune system.

Introduction

The CDR3 region of the TCR binds the peptide epitopes presented by MHC molecules to antigen-

specific T cells; the CDR3 region thus directs T-cell antigen specificity [1]. Despite the astronomi-

cal numbers of possible CDR3 nucleotide (NT) recombinations [2], more than 10^18 different

TCR sequences, healthy mice and humans manifest shared, Public TCR CDR3 amino acid (AA)

sequences that seem to be enriched for associations with self-reactivity, allo-reactivity and tumors

[3,4]. These Public TCR repertoires seem to emerge as a consequence of selection and are rich in

convergent recombination–different (NT) recombinations encode identical (AA) CDR3

sequences. Notably, prevalent CDR3 regions appear across species in mice and humans [3].

The present study was done to test whether the spontaneous development of a tissue-spe-

cific tumor might be associated with detectible Public TCR CDR3 sequences; such tumor-asso-

ciated sequences could function in T-cells that might mediate tumor immunity or,

alternatively, might protect tumors by immune suppression [5]. The first question, however,

was whether a developing tumor, in the absence of premeditated immunization, might induce

or enhance the expression of tumor-associated CDR3 TCR sequences. The use of multiple

sequences across individual animals, different phenotypes groups and across species, led us to

use the term “Public” in the context of this manuscript, to indicate CDR3 sequences that

appear in two animals, or in two subjects. Since mice and humans have been found to share

prevalent Public TCR sequences, we carried out this study in two stages: In the first stage we

carried out a longitudinal study of TCR repertoires in mice undergoing the development of

spontaneous, transgene-engineered breast cancer; the results uncovered multiple CDR3

regions sequences that were Public and Exclusive to mice developing tumors; these sequences

were undetectable in mice lacking the breast-cancer transgene. In the second stage, we devel-

oped a metric to learn whether women with breast cancer manifested specific TCR sequences

also present in mice developing breast cancer.

Results

Tumor-associated Public CDR3 amino acid sequences are a feature of the

TCRα and TCRβ repertoires of mice developing tumors

We sequenced CDR3 repertoires in the peripheral blood of 10 FVB/N-Tg(MMTVneu), a

mouse model of HER2 human breast cancer mice, and from 5 FVB/NJ Control mice (Fig 1).

We will use the term "Transgenic" for FVB/N-Tg(MMTVneu) 202 Mul/J and "Control" for the

FVB/NJ strain. The group of Transgenic mice developed tumors (see Fig 1). In the text, we

refer to these mice as tumor-developing or, alternatively, as Transgenic mice, according to
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Fig 1. Experimental procedure. (A) 120 blood samples were drawn from the retro-orbital sinus of 10 FVB/N-Tg

(MMTVneu), a mouse model of HER2 human breast cancer mice, and from 5 FVB/NJ Control mice. Over these 8 time-

points, none of the Control mice (blue) developed any tumors. We will use the term "Transgenic" for FVB/N-Tg(MMTVneu)

202 Mul/J and "Control" for FVB/NJ strain. Progress of tumor in the ten Transgenic mice is demonstrated using the red

colored samples in the figure. The last time point before tumors are shown was defined as pre-cancer and marked light red.

(B) At each time point, the peripheral blood mononuclear cells were isolated and stained for flow cytometry. Cells were

analyzed and gated for sorting using a FACS ARIA III sorter, and the CD4+CD62LhiCD44lo naïve population was separated
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context. We focused on the largest recoverable subset of T cells, those bearing the markers

CD4+CD62LhiCD44lo, which comprises 65% to 85% of the T cells in a blood samples. These T

cells are of the naïve compartment. While some literature discusses subsets of this compart-

ment, which include various sub populations, including some that have been referred to as

atypical naïve–like memory/effector cells [6], the vast majority of these cells are naïve. Some

recent works show that the unique TCR reactivity to immunogenic pathogen-derived epitopes

is present already in the naïve repertoire prior to immune expansion in B6 mice [7] and that

Naïve T cells can manifest shifting to Teffs, which can effectively kill tumor cells [8]. Interest-

ingly, recent evidence has shown that CD4+ naive T cells significantly more heterogeneous

than was previously thought, and that these sub populations of T cells are diverse in pheno-

types, differentiation stages, persistence, functions, and anatomic localizations [6].

To minimize the possible bias that accompanies the use of multiple groups and diverse sam-

ple sizes, we combined samples from all the time-points of a mouse and subsampled equal

numbers of sequences in 5 mice each of the test and Control sets: 843,326 CDR3 β chain

sequences and 116,751 α chain sequences (see Methods). We first filtered for Public AA

sequences, which are CDR3 AA sequences appearing in at least two different mice. Public

CDR3 types are termed Inclusive if they appear in both Control mice and tumor-bearing

Transgenic mice (FVB/N-Tg(MMTVneu) 202 Mul/J). Exclusive CDR3 AA sequences are

shared only by mice bearing tumors or only by tumor-free Control mice. We found that Exclu-

sive Public CDR3 types in both the α and β chains are more prevalent in the tumor-developing

group than in the Control group (α chain: 14% and 5% respectively; Figs 2A, S1A and S1B; t-

test: p<7.4E-08; S1 Table; β chain: 8% and 5% respectively; S1C–S1F Fig; t-test: p< 0.0097; S2

Table). In other words, tumor-associated Public sequences mark the tumor-developing mice.

Interestingly, Public CDR3 types occupy between 35–40% of the sequences in all the mice.

This level of sharing is consistent with the sharing levels reported in [4]. Note that we found

no significant differences between tumor-developing and Control groups in repertoire unique

clones, diversity, clonality or CDR3 length distributions (S2 Fig).

The metric by which we are looking at the (dis)similarities first aims to see if the complete

set of mice share higher similarities during the early time points. We calculated overlaps

between samples, by following these steps: (1) We defined samples from young mice as sam-

ples from time points 1–4, and samples from old mice as samples from time points 5–8. (2)

We calculated Morisita’s overlap index for each pair of samples. (3) For each combination of

groups, we averaged all the pairs related to this group. For example, for the combination of

‘Control Young’ and ‘Transgenic Young’, we averaged over all pairs of samples where one

sample belongs to the ‘Control Young’ group, and the other sample belongs to the ‘Transgenic

Young’ group. As shown in S3A Fig, the ‘Control Young’ and ‘Transgenic Young’ groups

indeed display higher similarities compared to the ‘Control Old’ and ‘Transgenic Old’ groups.

Although we screened relatively small numbers of mice, those developing tumors clearly

manifested Exclusive Public CDR3 types; a smaller proportion of Control mice manifested

Exclusive Public CDR3 types not found in the mice developing tumors.

Convergent recombination (CR) dominates Public CDR3 repertoires

We measured CR levels over time in the tumor and Control mice. For each CDR3 AA

sequence, we calculated the number of different NT sequences encoding that AA sequence in

for RNA extraction and T cell receptor library preparation (see Methods). TCR alpha and TCR beta were obtained separately

and not via single-cell TCR sequencing (alpha-beta pairing is not possible).

https://doi.org/10.1371/journal.pcbi.1008486.g001
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Fig 2. Convergent Recombination Dominates the Public Repertoire and the tumor-developing mice repertoire. Public

repertoires and their subtypes are shown in tumor-developing mice and in Control mice using nucleotide sequences (A) and using

AA sequences (B) in α chain. The Y-axis in the panels shows the percentages of “unique” clones, where we used the common
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the individual mice, that is, each AA sequence has a “CR level” value, which is the number of

different NT sequences encoded to that sequence in our subsampled data. CDR3 sequences

may end up identical despite different VJ origins. That is, in our workflow, a single CDR3

could be the result of multiple, different, VJ pairs. We found a somewhat higher frequency of

CR in mice developing tumors compared to Control mice in both the α chain (47% and 40%,

respectively; t-test; p< 0.016; S4A Fig) and the β chain (37% and 33%, respectively; t-test;

p< 0.011; S4B Fig). We also found that the α chain manifests higher CR levels compared to

the β chain.

These results confirm that Public CDR3 AA sequences manifest greater CR levels than do

Private sequences [9]. Fig 2A and 2B show that CR in the Public-Inclusive groups is double

that of the Private CDR3 types. Fig 2C and 2D show that the Public tumor-associated CDR3

(publicness is determined according to AA sequence) types originate from a smaller portion of

the Private types (determined according to NT sequence) in the Control group compared to

the Tumor group (5% and 11%, respectively). Moreover, non-CR CDR3 types dominate the

Private repertoires (S4C and S4D Fig). In addition, we identified a significant contribution of

CR to the Public TCR repertoire– 98% of the CR types in the α chain are Public (Fig 2E) com-

pared to 22%-40% of the non-CR types (S4C Fig). The same phenomenon was observed in β
chain– 96%-97% of the CR CDR3 types were Public (Fig 2F), in comparison to 16%-28% of

the non-CR types (S4D Fig). We compared the tumor-Exclusive frequency to the Control-

Exclusive frequency. We calculated the levels of CR for each group of Exclusive clones. As

shown in S4E Fig, the averaged CR level in the tumor-developing group is significantly higher

than the averaged CR level found in the Control group (t-test: p<0.0001).

Finally, we observed evolution of CR and publicness over time. We quantified CR levels

linked to publicness in the following groups of mice: Controls, Transgenic mice before palpa-

ble tumors, Transgenic mice with early-tumors and Transgenic mice with large tumors. Fig

2G and 2H show that CR levels increase in tandem with the degree of the averaged publicness

in all the groups. However, the connection between CR and Public sharing is specific to the

group. In the tumor-developing group, compared to the Control group, Public sharing

increased as CR increased (lr test: p<2.2e-16; Fig 2G). This suggests that selection of specific

CDR3 types is dominant in Transgenic mice. Separating the Transgenic group into early-

tumor and cancer samples, we observed that sharing was greater in the cancer group than in

the early-tumor group (lr test: p<2.2e-16; Fig 2H); thus, high degrees of CR and highly shared

between mice, Public sequences develop early, even before the emergence of palpable tumors.

Human patients and tumor-developing mice express many of the same

Public-Exclusive clones

We studied the TCRβ-CDR3 repertoire of three human sources: 1) TCR sequences that we

extracted from RNA-seq data of breast cancer patients obtained from The Cancer Genome

definition of “unique” sequences as that in which we count each sequence only once and disregard its copy-number. The two panels

show the repertoire in the α chain, but a similar effect is seen in the beta chain (S1 Fig). The different categories included in the

panel bars are relative abundance of the different categories. That is, together they represent 100% of the sequences. Therefore, the

color bars together sum up to 100%. (C, D) Convergent recombination in Control and Transgenic mice in α chain. The upper bars

indicate nucleotide (NT) sequences and their division to the different Public groups (Private, Public-Inclusive and public-Exclusive),

while the lower bars indicate amino-acid (AA) sequences in Control mice (C) and tumor-developing mice (D). The lines between

NT and AA represent the effect we see in convergent recombination–in which different NT sequences encode to the same AA

sequence and change the Public/Private balance. For example, in panel C, we can see that 5% of the NT sequences that were Private

in an NT view, became 66% of the Public Exclusive when we looked in an AA view. (E, F) Frequencies of CR clones in the Public

repertoire in α and β chains. (G, H) Correlation between the averaged mouse-mouse sharing level and CR level in Control versus

tumor-developing groups (G) and in the Early-tumor group versus Cancer group (H) in β chain.

https://doi.org/10.1371/journal.pcbi.1008486.g002

PLOS COMPUTATIONAL BIOLOGY Breast cancer view by the T cell repertoire

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008486 January 19, 2021 6 / 26

https://doi.org/10.1371/journal.pcbi.1008486.g002
https://doi.org/10.1371/journal.pcbi.1008486


Atlas (TCGA) [10]; 2) bulk TCR-seq data from previously published human TCR breast cancer

datasets: Wang et al [11], Page et al [12] and Beausang et al [13]; and 3) Single-cell RNA-seq

TCR data of 3 breast cancer patients obtained from Azizi et al [14] (Fig 3). This analysis,

detailed below, supported a number of conclusions: 1) humans with breast cancer share Public

CDR3 AA sequences with mice developing spontaneous breast cancer; 2) cross-species CDR3

AA sequences rank similarly in mice and human patients, detected by our ranking metric; and

3) Public, cross-species CDR3 AA sequences arise from NT recombinations that do not over-

lap in humans and mice–in other words, mice and humans manifest identical CDR3 AA

sequences, but the NT recombinations that each species uses to generate these shared AA

sequences are completely different.

As we detail below, mice and humans with breast cancer share TCR CDR3 AA sequences.

We compared the mouse data we produce in this work with data from human samples and

extracted different subsets of CDR3 sequences detailed in the Methods section. The first subset

of cross-species sequences included the set of CDR3s from this work and the set of CDR3s

from the 3 human-data papers mentioned above. We found 7513 cross-species sequences in

this subset. S5 Fig shows a comparison of mouse-specific NT and AA sequences (inner circle)

with cross-species mouse sequences shared with human patients (outer circle); the groups

were divided into Private, Public Inclusive and Public Exclusive as previously described. The

lower two wheels in the figure describe NT sequences. We can see that the tumor-developing

mice express more Public Exclusive and less Public Inclusive sequences than the Control mice.

AA sequences, in contrast, show a significantly greater proportion of Public Inclusive

sequences than Public Exclusive sequences. Nevertheless, tumor-developing mice do express

relatively more Public Exclusive sequences. Thus, the NT view and the AA view portray

Fig 3. Comparing human T cell repertoire data and mouse T cell repertoire data. To learn more about the connection between

the repertoires of mouse mammary tumor and human breast cancer, we studied the three different types of datasets (left to right):

(1) TCR β-seq data from 50 breast cancer patients from 3 different studies, in which different conditions and different tissues were

studied. (2) Single-cell RNA-seq TCR data of 3 breast cancer patients obtained from Azizi et al. (3) TCR sequences extracted from

RNA-seq data of breast cancer patients obtained from The Cancer Genome Atlas (TCGA).

https://doi.org/10.1371/journal.pcbi.1008486.g003
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different perspectives, and mice developing tumors show more Public Exclusive sequences of

both NT and AA types.

We compared the mouse data to samples from early-stage breast cancer patients from

Beausang et al., and found 258 sequences that were shared between these human samples and

the collection of time points across our mouse data (see Methods). To quantify these 258

CDR3 cross-species sequences, we produced the bar-chart shown in Fig 4A. Every time-point

in the bar-chart contains a stack of 258 bars. The area each bar occupies in the stack is inversely

proportional to an area defined by the ranking of the sequence at the specific time-point, mul-

tiplied by the ranking of the sequence in the human samples, such that similarly ranked

sequences occupy a larger area. According to Fig 4A, time-point 5 (which is associated with

early-tumors in mice) is the time-point most similar to early-tumors in patients. We can also

see that a small set of sequences (blue (CASSLSYEQYF), orange (CASSLGYEQYF), and green

(CASSLGDTQYF) in the bar-chart) dominate the chart. The CASSLSYEQYF and CASSL-

GYEQYF CDR3 sequences are ubiquitous to TCR repertoire studies, and have been associated

with Melanoma and Influenza (Table 1). Recent findings from other studies show associations

to these phenotypes [15,16]. Additionally, 829 of the 14,349 (6%) tumor-associated CDR3

sequences found previously, were also tumor-associated in human samples; that is, they were

found in tumor samples but not in normal samples.

To characterize the differences between the specific groups of cross-species sequences and

the general population of CDR3 sequences, we utilized IGoR (Inference and Generation Of

Repertoires) [23], which is a tool that probabilistically annotates sequences. It takes B- or T-

cell receptor sequence reads and quantitatively characterizes the statistics of receptor genera-

tion. Fig 4B shows the results over the three groups discussed here (see Methods): the collec-

tion of all sequences, the collection of all cross-species sequences (7513 AA sequences that

were found in both mouse data and the 3 human datasets), and the collection of the unique set

of 258 cross-species sequences that were inherent to all samples, together with human samples.

As the figure shows, the three curves are significantly different from each other. Moreover,

cross-species sequences and the set of 258 sequences were associated both with a distribution

of relatively low probabilities and with high CR distributions, displayed at the top of the panel.

These findings indicate that, even though the sequences were not produced at higher probabil-

ities, they were selected to appear as such. Of special interest, and highlighted in the figure, are

two sequences–CASSLGYEQYF and CASSLSYEQYF–which, in spite of their single amino

acid difference, appear with very different IGoR scores and with very high CR values (notice

that we did not include the third sequence CASSLGDTQYF as part of the analyses, since it did

not produce as meaningful findings as the other two sequences).

When we examined the tumor-associated sequences that were shared between our mouse

data and the human data subset of 7513 cross-species sequences, we identified 639 tumor-asso-

ciated cross-species sequences. To examine the gene usage origin of these sequences, we ana-

lyzed V, J gene usage. We show the heatmaps in S6 Fig, which represent the correlations

between the different V and J usage in tumor-associated cross-species clones. As shown, there

are multiple Vs that encode these sequences, some of them are close across species, such as

TRBV31 in mouse and TCRBV30 in human, and some are close within species, such as

TRBV5 and TRBV2 in mouse. As for J gene usage, there are closer orthologues across species.

To see if the TCR sequences we singled out as tumor associated through our mouse-human

workflow are associated with human tumors, we analyzed the 258 cross-species tumor

sequences over a set of tumor-peptides, from the McPAS database [24], that are known (from

the literature used to build the dataset) to be associated with human tumors. To perform this

analysis, we used ERGO, a deep-learning based tool for the prediction of TCR-peptide binding

[25]. From MCPAS, we selected for the peptides that are tagged with a cancer classification
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Fig 4. Specific Cross-species TCRβ Clones Dominate the tumor-developing Group. (A) We ranked the 258 cross-species sequences

according to their abundance in each sample. To visualize similarities between the ranking in each time point and the samples from
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(n = 257). We then created all possible CDR3-peptide pairs of these cancer-peptides and our

258 cross-species tumor sequences (n = 258x257 = 66,306 pairs). We used ERGO to find the

predictive binding score for each CDR3-peptide pair. To see the significance of these scores,

we compared them with a set of randomly chosen 258 CDR3 sequences from our data. We

applied the same steps to these randomly selected TCR sequences as we did for the 258 cross-

species TCR tumor associated sequences. To see the significance of these findings, we repeated

the process (random pooling followed by ERGO) five times. Fig 5A provides the results of the

process and the average predictive binding scores. As the figure shows, the cross-species

tumor sequences pairing with human tumor peptides is significantly higher than the other

pairs of CDR3-tumor peptides.

To further examine the significance of the tumor-exclusive clones, we compared the sharing

between control-exclusive and tumor-exclusive clones in mouse to human breast cancer data-

set (Beausang et al.) and to non-breast cancer dataset (Robert et al.; Melanoma). We subsam-

pled an equal number of sequences from all of the examined samples, both mouse and human

samples (n = 27776), and calculated the sharing between every 2 mouse-human samples. The

sharing is defined as the Jaccard overlap index with a modification that takes into account the

frequency of clones [26]. Fig 5B shows that the tumor-exclusive clones have a significantly

higher overlap with human cancer patients compared to control-exclusive in both breast can-

cer human patients (p>3.2E-05) and human Melanoma patients (p>1.7E-04). Additionally,

when we compared the overlap of tumor-exclusive with the 2 types of cancer, we found signifi-

cantly higher mouse-human sharing with breast cancer compared to melanoma (p>1.6E-06).

early-stage breast cancer patients as in Beausang et al., we stacked bars from each of the 258 ranking lines. The area of each bar has been

determined so that it is reciprocal to (ranking in human X ranking in mouse). In that manner, if, in a specific time point, a clonotype is

ranked #1 in mouse samples, and is also ranked #1 in human samples, it would demonstrate the largest area. Color of sequences is

preserved across bars, so that we see that three sequences dominate the similarity between samples: blue, orange and green. These

sequences are included in Table 1, and, as the Table further indicates, have been previously associated with Melanoma, with Influenza,

and with Diabetes. In this panel we collectively used the grey color to indicate all the sequences that were not one of the three sequences

colored differently in the panel. (B) We used IGoR (38) (see Text) to learn of any differences between the populations of cross-species

sequences used in panels and the full collection of sequences. To do that, we plotted each sequence as a dot on the graph. Red dots

represent cross-species sequences, blue dots represent the full set of all sequences, and green dots represent the 4700 NT sequences that

code for the 258 AA sequences that are shared across all time-points in our mouse samples and with human samples. The vertical

location of the dot is determined by its IGoR value and the horizontal location by its CR value. The right-hand side curves present the

histogram over the IGoR values, and the upper-side curves present the histograms over CR values. We used a Kolmogorov–Smirnov test

to estimate p-value for the differences between distributions. Indeed, a highly significant p-value (p<2.2x10-16) has been obtained, that

demonstrates a large difference between the sequence populations. It is interesting to note, as shown by the three CR histograms on the

upper side of the panel, that the CR values of these three populations of sequences also come from extremely different distributions

(p<2.2x10-16). We also highlighted the locations of the two sequences that are described in panel A. (C) The two highly ranked clones in

the cross-species analyses are visualized for their CR sources. In the panel, each nucleotide sequence is connected to its translated AA

sequence. Edges are blue if they originate from a mouse sequence and red if they originate from a human sequence. The colored bars

represent the NT sequences encoded to these AA sequences. Each color represents different nucleotide: T–blue; G–yellow; C–green; A–

red. As the panel shows, there is no overlap between sources for these two AA sequences. (D) The number of sequences that differ from

CASSLGYEQYF (grey bars), CASSLSYEQYF (yellow bars) and from 1000 random sequences (blue bars), by 1 or 2 AA. The X-axis

provides the different time points obtained from our mouse data, and the Y-axis represents the number of similar sequences with

Levenshtein edit distance of up to 2. (E) A representation of the sequences that are close in their edit distance to tumor-associated

sequences (orange bars) and to 1000 random sequences (blue bars). (F) Network representation of similar sequences to CASSLGYEQYF

and CASSLSYEQYF (upper networks), and to 2 random sequences (lower networks) over time.

https://doi.org/10.1371/journal.pcbi.1008486.g004

Table 1. CDR3 sequences that show cross-species, tumor-Exclusive, behaviors.

CDR3 sequence VDJdb Peptide in VDJdb McPAS-TCR Peptide in McPAS-TCR References Ranking

CASSYSYEQYF - - Melanoma - [17] 1

CASSPTGYEQYF - - - - [17,18] 2

CASSLGYEQYF - ELAGIGILTV Influenza LPRRSGAAGA [12,19–21] 3

CASSLSYEQYF - - Influenza LPRRSGAAGA [17,22] 4

https://doi.org/10.1371/journal.pcbi.1008486.t001
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To look at the difference between ‘Transgenic Young’ and ‘Transgenic Old’ samples, we

compared the highly abundant sequences from these two groups with sequences we obtained

from two human cohorts. First, we identified a set of highly abundant sequences in mouse

samples by collecting the CDR3 sequences that appeared both in at least 10 “Transgenic

Young” samples and in at least 10 “Transgenic Old” samples. This initial filtering resulted in a

set of 345 sequences.

To see which of these sequenced is highly abundant in the “Transgenic Old” samples, we

used a t-test, with which we identified 13 such sequences with significant differences in their

Fig 5. Cross-species tumor-associated clones. (A) The averaged predictive binding score to tumor peptides of tumor-

associated cross-species sequences (right bar) and 5 random subsets of sequences. (B) The averaged Jaccard overlap

index between control-exclusive sequences and tumor exclusive sequences to breast cancer samples (left plot) and

Melanoma samples (right plot). (C) The frequency of highly abundant sequences from ‘Transgenic Old’ samples and

random sequences in breast cancer samples (left plot) and melanoma samples (right plot).

https://doi.org/10.1371/journal.pcbi.1008486.g005
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copy numbers between the two groups. We then used these sequences to see their copy num-

bers in a cohort of TCR sequences from breast cancer patients and in a cohort of TCR

sequences from Melanoma patients. For a comparison with other sequences, we repeated the

above steps 1000 times using random choices of 13 sequences (out of the 345 sequences). As

can be seen in Fig 5C, the frequency of the clones that were highly abundant in the “Transgenic

Old’ is significantly higher compared to the random clones both in samples from breast cancer

patients (p<0.013) and in samples from melanoma patients (p<0.003). Interestingly, the fre-

quency of the ‘Transgenic old’ highly abundant clones is higher in the breast cancer samples

compared to melanoma samples.

Public, cross-species CDR3 AA sequences in humans and mice arise from

different NT recombinations

To learn about the nucleotide source of the specific sequences we identified to be simulta-

neously high ranking in mouse and human samples (blue and orange in Fig 4A and 4B), we

compared the NT sequences that generated these AA sequences. The results are shown in Fig

4C and 4D, where we connected each NT sequence to its end-result AA sequence. Edges are

blue if they originate from a mouse NT sequence and red if they originate from a human NT

sequence. As the figure shows, the same AA sequence originates from multiple NT sequences.

However, the NT sequences show no overlap between mouse and human samples. The AA

sequence in Fig 4C is the result of 27 different NT sequence recombinations in mice and 29

different NT sequences in humans. The AA sequence in Fig 4D originates from 29 different

NT sequences in mice and 27 different NT sequences in humans. Whatever the upstream NT

recombination, the CR process strongly selects for a specific AA sequence. S7 Fig shows the

NT display of the AA compositions presented in Fig 4C. The figure reveals the recombination

effect: the same AA sequences were built on a combination of 9 different TRBVs

(-2,3,4,5,19,21,24,26,29), while TRBJ2-7, both for mouse and for human, was used. The colored

bars represent the NT sequences encoding to these AA sequences.

To further research the importance of the two AA sequences CASSLGYEQYF and CASSL-

SYEQYF, we calculated the numbers of other sequences very similar to them in a network con-

figuration [27,28]. Here, we define similar sequences as AA sequences with an edit distance

(Levenshtein distance) of up to 2. We created a pool of all the sequences from the tumor-devel-

oping group for each time point, and then only used the top 10,000 sequences–in order to

avoid a bias stemming from different sample sizes. We then counted the number of sequences

close to the two given AA sequences, and compared these results with 1000 random sequences.

Fig 4D shows that the number of sequences differing from CASSLGYEQYF and to CASSL-

SYEQYF by 1 or 2 AA is significantly higher than the average number of sequences equally

similar to any of 1000 random sequences. We can also see that this organization does not sig-

nificantly change over time. Similar behavior is observable in the tumor-associated sequences

(Fig 4E). Fig 4F shows the differences between the distance networks of CASSLGYEQYF and

CASSLSYEQYF and two random sequences. Each node represents a similar sequence to these

two sequences. We can see that the networks of CASSLGYEQYF and CASSLSYEQYF are sig-

nificantly larger than those of the random sequences.

The relationship between TCR clones and different breast cancer stages

To learn more about the connection between the CDR3 types we identified in the mouse

model and those from human patients, we analyzed RNA-seq samples from breast cancer

patients that were part of the TCGA cohort. Using data from genome alignment and TCR

alignment on the 1,256 breast cancer samples, we extracted roughly 60 α/β sequences per
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sample with a total number of 38,068 α NT sequences and 30,524 β NT sequences. Out of

these sequences, 874 AA β sequences and 300 AA α sequences were also found in our mouse

subsampled data.

When examining the different Public groups of the sequences shared with our mouse sam-

ples and TCGA samples, we found that the sequences from the tumor-developing group share

significantly more Public Exclusive clones compared to the Control group in both the α chain

(20% and 3%, respectively; Fig 6A; t-test: p< 0.0003) and β chain (9% and 2%, respectively; Fig

6B; t-test–p< 0.0005). In addition, the percent of CR clones in this subset of cross-species

CDR3 types is significantly higher than that observed in our data for both α and β chains

(71%-81% and 37%-63%, respectively; Figs 6C, 6D, S4A and S4B).

TCGA breast cancer data includes clinical information about each patient, including the

stage of the disease. We compared TCGA disease stage data to our longitudinal time point

data (see Methods). For each time point we calculated the similarity between sample and stage

using the following formula: (Shared clones between sample and stage) / (# of clones in a sam-

ple x # of total cases of a stage). S3 Table shows the number of mouse-human-shared clones

between each sample and each stage. The analysis indicated that across all mouse time points

in the α chain, the greatest similarity is between mouse sequences and stage 1 breast cancer.

Least similar is stage 4 breast cancer (Fig 6E). The same is seen in β chain data (S8 Fig). These

results might be influenced by the source of T cells: The TCGA data come from the tumor

sample itself, but the mouse data come from blood samples. The findings might suggest that T

cells from later stages of tumor development are not present in peripheral blood or, that the

similarity between mouse and human CDR3 sequences is limited to early stages of breast can-

cer. It is also conceivable that cancer treatments might lead to major modifications of the T-

cell repertoire, absent from the mouse population.

Tumor-developing mice show higher similarity to human breast-cancer

patients than do Control mice

Single-cell data from T cells can provide a more refined resolution than bulk populations; it is

possible to match α and β sequences and to study whole transcriptomes. To gain a better view

of the TCR repertoire in human breast-cancer patients and its relevance to the longitudinal

mouse study, we analyzed single-cell data available from Azizi et al. [14], who sequenced tumor

tissue from 3 patients with breast cancer using 10x single-cell RNA-seq sequencing. We identi-

fied the set of α and β sequences that overlapped with our mouse data and found the α-β pair of

each cell. This resulted in 3168 unique cells with 2110 different α-β pairs. Next, we searched for

these α-β pairs in our data. An α-β pair was defined as shared with a mouse sample if both the α
CDR3 sequence and the β CDR3 sequence were present in that sample. We found 582 α-β (sin-

gle-cell) pairs whose alpha and beta chains appeared in the same sample in our mouse data.

We found that the tumor-developing mice shared a significantly higher number of human

α-β pairs in comparison to the Control group (27 α-β pairs per sample and 11 α-β pairs per

sample, respectively; Fig 7A; t-test: p< 0.024). To learn whether CR is dominant in this subset,

we averaged the CR levels of the α and β sequences. Indeed, this subset of the repertoire

showed a much higher rate of CR in comparison to the total repertoire (Figs 7B and S4A–

S4B). The Public repertoire presented the same effect as the CR, and was expended in both the

Control and the tumor-developing mice (9% and 30%, respectively, in comparison to 7% and

12% in the total repertoire). However, the Public Exclusive repertoire was significantly higher

in the tumor-developing mice compared to the Control mice (Fig 7C and 7D; 30% and 9%

respectively; t-test: p< 0.0009), and compared to the total repertoire of α and β chains in

tumor-developing mice (16% and 12%, respectively; Figs 2B and S1D).
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Finally, we mapped single cells to the different groups. For each cell, we checked whether its

α-β pair appeared in only or in both of the groups. For each group (Control, tumor-developing

and shared between these 2 groups), we calculated the Levenshtein distance between the sub-

sets of α-β pairs. In this analysis, we allowed up to 3 different AA between two pairs. As can be

Fig 6. The relationship between TCR clones and different breast cancer stages. Public repertoires of the TCGA-associated

TCR clones and their subtypes are shown in tumor-developing mice and in Control mice for α chain (A) and β chain (B).

Frequency of Convergent recombined clones shared between TCGA samples and mouse samples in α (C) and β chain (D). (E)

Frequency of shared clones between TCGA samples and tumor-developing mice in different stages of breast cancer in α chain

clones. For each sample, we calculated the number of shared clones according to the following formula: (Shared clones between

sample and stage) / (# of clones in a sample x # of total cases of a stage).

https://doi.org/10.1371/journal.pcbi.1008486.g006
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Fig 7. Transgenic mice share a higher similarity with human breast cancer patients than Control mice. (A) The number of

different human α-β pairs shared with our mouse data within the Control group (blue bar) and the Transgenic group (red bar).

(B) The percent of convergent recombined (CR) human α-β pairs in the Control and Transgenic mice. (C) The percent of the

different Public groups (Private, Public-Inclusive and Public-Exclusive) in the Control group (blue bars) and the Transgenic

group (red bars). (D) Distance networks of all the α-β pairs shared with our mice subsampled data that appear only in the Control

group (blue network), only in the Transgenic group (red network) and in both groups (green network).

https://doi.org/10.1371/journal.pcbi.1008486.g007
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seen in Fig 7D, the tumor-developing network (red circles) was significantly larger than the

Control network (blue circles) or the shared network (green circles); this suggests that the

tumor-developing mice share significantly higher similarity with human breast-cancer patients

than do the Control mice. Interestingly, we also found that the tumor-developing network can

be divided into 2 main subnetworks. Combining all the human datasets, we found that the

Control group dominates the subset of CDR3 types that are Public Inclusive, and that the

tumor-developing group dominates those that are Public Exclusive (S9 Fig).

Discussion

The objective of this study was to investigate whether the TCR repertoires of mice with breast

cancer develop representative CDR3 sequences. We focused on the CDR3 regions of the alpha

and beta chains of the TCR because the CDR3 domain binds the processed antigen epitope

presented to the responding T cells [29]; thus, the CDR3 region of the TCR is responsible for

antigen-specific T-cell recognition.

We initiated the study with a longitudinal survey of TCR repertoires monitored in the

peripheral blood of individual mice that were in the process of spontaneously developing

breast tumors; We recovered a subset of T cells based on their CD4+CD62LhiCD44lo markers.

CD4+ T cells are a key component of tumor immunity via their communication with several

types of immune cells, direct tumor killing and by providing support to CD8+ T cells [30].

Based on molecular markers, these traits in human immunity are usually attributed to cells

with an effector phenotype (CD62LloCD44hi). In our study, the CD4+CD62Lhicd44lo subset

was the largest recoverable subset out of peripheral blood.

Sorting to the CD4+CD62LhiCD44lo group still leaves multiple cell types that should be sep-

arately discussed. These include conventional CD4+ T cells that will recognize antigen pep-

tides presented by MHC class I. These cell types, in human, might include different stages of T

cell development and differentiation of naïve CD4+ cells from unprimed quiescent to effector

and central memory cells [6,31] and Stem cell memory T cells [32]. Several other prominent

populations of ‘unconventional’ T cells might also be included, and were analyzed and found

at small frequencies in our data. We further studied data from these cell types, even though

they are CD44hi, to exclude the possibility that they are responsible for some of the trends we

saw. These T cells recognize non-peptide antigens presented by specialized monomorphic

MHC class I–like molecules [33] and have unique and conserved TCR repertoires. These

include CD1-restricted natural killer T cells (NKT cells) [34–36], MR1-restricted mucosal

associated invariant T cells (MAIT cells) [37,38]. We found only 4 CDR3 sequences that can

be classified as MAIT cells. We also identified 96 sequences in the Control group, and 201

sequences in the Transgenic group, that could be tagged as iNKT cells. However, there was no

statistically significant difference in the frequency of these cells between the groups.

Another aspect of the compartments we sorted using the markers is that these are some of

the T cells previously addressed as naïve, while in fact this is not a homogeneous pool of cells

awaiting activation. The compartment previously addressed as naïve T cells is actually a com-

plex mixture of cells at different developmental stages and of diverse ages [39]. Further, there

are inflows of new cells from the naive pool that strongly impact memory cell [40].

In mice there are differences between RTEs (recent thymic emigrants) and mature naive T

cells and between naive populations that are not replaceable and high-rate renewed cells [41].

High-throughput biology, high-resolution biology and a host of technologies are quickly

adding changes to current immunological theory. The nature of memory T cell differentiation

signals, the extent of their fate diversity, the lineage relationship between different fates, and

the degree of plasticity at different stages of differentiation [42] are projecting on the previous
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stages of these cells maturation. Together with the various sub populations we mentioned ear-

lier, we see many degree of freedom in T cell populations in spite of phenotype characteristic.

We here show that the TCR repertoires of these T cells do reflect the tumor-bearing state.

Most importantly, this mouse model provided two advantages in the quest for tumor-associ-

ated CDR3 sequences: sampling inbred mice enabled us to circumvent the genomic variability

inherent in outbred humans, and the longitudinal monitoring of T-cell repertoires during

actual cancer development supported a level of confidence in the association of repertoire

changes with the actual development of breast cancer; in contrast, a collection of repertoire

snapshots from a mixed collection of women sampled at different stages of the disease would

not match the precision of the controlled longitudinal mouse experiment. As one of the

reviewers to this manuscript suggested, it would have been extremely useful to compare the

timeline of TCR repertoire changes in these mice with an equivalent set from another Trans-

genic mouse. Such a set could have allowed a comparison between the changes that were

caused by the tumor with changes that are caused by the transgene itself. However, we were

unable to identify such a dataset, and the limit of this comparison remains. It is our opinion

that the significant findings we identified with human tumor samples eliminate much of the

inherent randomness that may be associated with the comparison between the repertoires.

Although the numbers of mice in the mouse study were necessarily small, the information

yield was meaningful; we were able to detect and characterize 7513 CDR3 AA sequences that

appeared both in the mice and in the various human populations of breast cancer patients.

Most importantly, 829 of these Public sequences appeared to be Exclusive for breast-tumors in

both mice and humans. The results of the present study stimulate us to think anew about the

host-tumor relationship.

Our most notable finding is that the development of breast cancer selects for CDR3 regions

exclusive to tumor-bearing mice, shared by both mice and humans (Fig 7D). This raises the

possibility that the development of breast cancer involves the expression of particular antigens;

antigen selection is the simplest way to explain cross-species CDR3 AA sequences despite the

fact that each species mobilizes a different set of NT recombinations to generate exactly the

same AA sequence; there was no NT overlap between the species in any of the NT recombina-

tions leading to marked convergent recombination (Fig 4C). Thus, mouse-human-shared

CDR3 AA selection must come about by way of similar antigens expressed by both mice and

humans in the process of tumor development–this immune similarity takes place despite the

genetic differences between inbred mice and natural human populations.

It has been taught that the TCR repertoire and tumor development are stochastic events:

TCR molecules are thought to be generated by a huge number of possible NT recombinations

between V-D-J gene segments augmented by NT deletions and additions at the joining seg-

ments. This process is thought to be able to produce more than 1018 different TCR sequences

[43]. Moreover, an individual TCR antigen receptor has been reported to recognize with sig-

nificant avidity upwards of a million or so peptide epitopes [44]. Consequently, the chances

are vanishingly small that different mice and humans would randomly select for T cells bearing

identical CDR3 binding sites, even in response to the same immunogenic epitope. It is likely

that certain TCR gene segments are located in positions that favor recombination events rela-

tive to other TCR gene segments [45]. However, the effects of chromosomal positioning would

not be expected to determine identical repertoire recombinations in mice and humans, which

show no overlap in convergent recombination (Fig 4C).

Likewise, the development of a malignant tumor is believed to result from random combi-

nations of many mutations in various genes–including so-called driver mutations that drive

tumor development, which differs markedly from the outcome of the multitude of mutations

often found in so-called normal or healthy cells [46]. The observation that mice and humans
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bearing diverse MHC genes can express identical TCR CDR3 amino acid sequences has a pre-

cedent in the study by (Madi, Poran et al. 2017) (Madi, Shifrut et al. 2014) [47,48] showing

that different strains of mice bearing diverse MHC genes expressed identical CD-4 TCR CDR3

amino acid sequences known to recognize a single defined peptide epitope; apparently, differ-

ent MHC class II molecules can present the same processed peptide to their TCR CDR3

regions. The present finding of Public, tumor-associated TCR repertoires in both mice and

humans developing breast cancer hints at a uniformity in the tumorogenic process as it devel-

ops in different individuals in at least two different species. Understanding the generation of

immunogenic markers shared across species is likely to deepen our understanding of patho-

physiological uniformities inherent in tumor development itself. Mutations may turn a normal

cell into a potentially malignant transformed cell, but a single aberrant cell is not a tumor; a

growing tumor is like an organ that requires the support of a microenvironment that includes

blood vessels, stromal cells, a supply of growth factors, and particular metabolic energy

sources, all dynamically integrated [49]. It is conceivable that breast cancer development

might require similar microenvironmental interactions in both mice and humans, which are

highly structured and, therefore, quite similar. Requirements for the development of breast

cancer in mice and humans, across species, may impose shared processes that stimulate shared

TCR repertoires. The present investigation needs to be followed up by identification of the key

immunogenic entities that drive the evolution of Public, tumor-associated TCR repertoires. At

present it is not possible with any degree of certainty to infer the selecting antigen from the AA

sequence of the responding CDR3 TCR; new technologies are needed. Moreover, the possible

candidate antigens are many and varied: normal developmental antigens expressed aberrantly

by dedifferentiated tumor cells; neo-antigens generated by mutations; regulatory molecules

expressed by the activated immune system itself–ergotypic activation markers, for example;

tumor-associated bacteria or viruses; epitopes of stress proteins; the list goes on and on. Some

Public CDR3 specificities may be annotated by their appearance in other situations [50]. In

any case, Public, tumor-associated TCR repertoires might arise from common factors needed

for tumor development; the elucidation of the antigenic molecules that drive Public, tumor-

associated TCR repertoires could help identify commonalities in tumor development. The

challenges underlined by the present study are difficult but promising.

Methods

Ethics statement

Approval number: 39-10-2012, Dr. Benny Motro, the committee chairman, Bar Ilan University.

Mice

We purchased from Jackson Laboratories transgenic mice, at the age of 1 month, expressing

the inactivated rat neu (Erbb2) oncogene under the transcriptional Control of the mouse

mammary tumor virus promoter (FVB/N-Tg(MMTVneu) 202 Mul/J). Female mice of this

strain serve as a mouse model of mammary tumor in humans–the HER2/ Erbb2 / Neu human

breast cancer model [51]; this test group included 10 female mice. The transgenic mouse

model we used, FVB/N-Tg(MMTVneu)202Mul/J (Jackson laboratories) is homozygous for

the MMTVneu (rat) transgene. The mice are viable and fertile. There is no phenotypic effect

in males. The transgene is expressed at low levels in normal mammary epithelium, salivary

gland, and lung. Higher expression is detected in tumor tissue. Focal mammary tumors first

appear at 4 months, with a median incidence of 205 days (6.8 months). Both virgin and

breeder mice develop tumors. Tumors arise as foci in hyperplastic, dysplastic mammary
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glands. Seventy-two percent of tumor-bearing mice that live to 8 months or longer develop

metastatic disease to the lung.

FVB/NJ strain mice, bearing the same genetic background as the transgenic mice, but with-

out the breast-cancer transgene, served as Controls; the Control group included 5 mice. The

mice were housed under specific pathogen-free conditions in accordance with applicable laws

and regulations, and approved by the responsible animal care and ethical committee. Mice

were monitored by palpation for tumor development and bled monthly for up to 9 months, or

until they had to be sacrificed because of tumor growth.

T-cell isolation and testing

Peripheral blood was sampled from the retro-orbital sinus of each of 15 mice once a month for

8 time points (a total of 120 samples). Mononuclear cells were isolated by density gradient cen-

trifugation using Ficoll (Ficoll Paque plus, GE Health Care–according to the manufacturer’s

instructions). At the termination of the experiment, single-cell suspensions were prepared

from the thymus and spleen of each mouse. For cell sorting, the cells were stained with the fol-

lowing fluorescently labeled monoclonal antibodies: anti-CD4 Pacific Blue (BD), anti-CD25

PE (eBioscience), anti-CD44 APC (BD) and anti-CD62L PE-Cy7 (eBioscience); viability was

determined using the Fixable Viability stain 450 (BD Horizon). Cell sorting was performed

using a FACS ARIA III sorter; CD4+CD62LhiCD44lo T cells, the most prevalent T-cell popula-

tion, was used for CDR3 sequencing. After sorting, the cells were pelleted and resuspended

with 300μl of RNAprotect cell reagent (Qiagen). The cells were stored at minus 80˚C until

RNA extraction. RNA was purified from RNAprotect-stabilized cells using the RNeasy Plus

Mini Kit. After RNA extraction, samples were run on TapeStation to estimate quality.

High-throughput sequencing of the T cell repertoire

Cells were FACS sorted (by ARIA III sorter) to obtain CD4+CD62LhiCD44lo T cells. RNA was

prepared using Qiagen’s RNeasy kit. Isolated RNA was reverse transcribed using a biotinylated

oligo dT primer. An adaptor sequence was added to the 3’ end of all cDNAs, which contains

the Illumina P7 universal priming site and a 17-nucleotide unique molecular identifier (UMI).

Products were purified using streptavidin-coated magnetic beads followed by a primary PCR

reaction using a set of the following primers:

mouse-TCRalpha

5’ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCTTTTAACTGGTACACAG

CAG3’

mouse-TCRbeta

5’ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAAGGAGACCTTGGGTGGAG 3’

The primers were designed to target the constant regions of mouse-TCRalpha and mouse-

TCRbeta. The TCRalpha/beta-specific primers contained tails corresponding to the Illumina

P5 sequence. PCR products were then purified using AMPure XP beads. A secondary PCR

was then performed to add the Illumina C5 clustering sequence to the end of the molecule

containing the constant region. The number of secondary PCR cycles was tailored to each

sample to avoid entering plateau phase, as judged by a prior quantitative PCR analysis. Final

products were purified, quantified with Agilent Tapestation and pooled in equimolar propor-

tions, followed by high-throughput paired-end sequencing on the Illumina MiSeq platform.

For sequencing, the Illumina 600 cycle kit was used with the modifications that 325 cycles

were used for read 1, 6 cycles for the index reads, 300 cycles for read 2 and a 20% PhiX spike-

in to increase sequence diversity.
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Processing of raw sequencing data

RNA-seq raw reads were aligned and mapped to V-D-J sequences using MiXCR, a computa-

tional tool that enables the processing of big immunome data from raw sequences and output

quantitated clonotypes [52]. The method performs paired-end read merging and extracts

human or animal TCR clonotypes providing corrections for erroneous sequences introduced

by NGS [53–55]. Using MiXCR, we obtained CDR3 sequences of α and β chains. The counts

of TCRα and TCRβ sequences are presented in S4 Table.

Subsampling of the data

To minimize any bias that might stem from diverse sample sizes, we initially combined all

time points of each mouse. Next, we used the set of samples from the 5 mice of the Control

group, and 5 mice from the tumor-developing group, who had the highest sequences coverage.

We then subsampled equal numbers of sequences for each of these 10 mice, as the lowest num-

ber of sequences obtained for each chain: 843,326 CDR3 β chain sequences and 116,751 α
chain sequences, allowing us to keep as much of the information as possible while still normal-

izing the data.

Human breast cancer RNA-seq samples

We studied the TCRβ-CDR3 repertoire of three human sources: 1) TCR sequences that we

extracted from RNA-seq data of breast cancer patients obtained from The Cancer Genome

Atlas (TCGA) [10]; 2) bulk TCR-seq data from previously published human TCR breast cancer

datasets: Wang et al [11], Page et al [12] and Beausang et al [13]; and 3) Single-cell RNA-seq

TCR data of 3 breast cancer patients obtained from Azizi et al [14].

TCGA data analysis

We downloaded RNA-seq samples publicly available from The Cancer Genome Atlas

(TCGA)– 1256 tumor and normal tissues of breast cancer patients. We applied the following

procedures to extract TCR repertoires: 1) We mapped reads to the human reference genome

using STAR. 2) We designated as somatic recombinations only those reads that at least one of

the mates did not map to the reference whole genome; a recombined V-D-J sequence cannot

map completely to the genome. 3) We utilized MiXCR on all unmapped reads.

For the comparison of TCGA disease stage data to our longitudinal time point data, we

used our full dataset (the entire set of clones within the sample, without subsampling). The dif-

ferent subtypes of stages obtained from the clinical information of each breast cancer patient

was aggregated to the following stages: stage i, stage ii, stage iii and stage iv. We calculated the

similarity between a sample and a stage using the following formula: (Shared clones between

sample and stage) / (# of clones in a sample x # of total cases of a stage). Next, we averaged all

the samples of a specific time point and a stage.

Data from published papers

We used RNA-seq data from the following published articles: Wang et al. [11], Page et al. [12]

and Beausang et al. [13]. In contrast to the bulk TCGA data, these authors carried out directed

TCR repertoire sequencing.

To be able to compare the mouse data produced here and the above mentioned human

data, we studied multiple subsets of sequences. These are the subsets:
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1. Cross-species sequences (7513 sequences)–these are CDR3 sequences that were found in at

least one sample from our mouse data and were also found in data from all three human

papers described earlier.

2. CDR3 sequences shared with early-stage breast cancer patients (258 sequences)–these

are sequences that were found in our mouse, tumor-developing samples across all time-

points, and were also found in human early-stage breast cancer patients analyzed in Beau-

sang et al.

3. Tumor-associated Cross-species clones (639 sequences)–these are sequences that were

found in tumor samples but not in their adjacent normal samples in the human papers

described earlier, and were also found to be tumor-associated in our mouse subsampled

data.

Single-cell data analysis

We developed a computational model for the assembly of CDR3 regions using single-cell

RNA-seq data published by Azizi et al. [14]. The model was built using the following steps: 1)

We applied MiXCR on the samples and extracted the CDR3 sequences for each cell in each

patient. 2) We filtered out CDR3 sequences that did not appear in our mouse data. 3) We con-

structed an α-β pair of each cell barcode. 4) We filtered out all cells with more than one α or β
sequence. And, 5) we searched for these α-β pairs in our mouse sequence data (after subsam-

pling). An α-β pair was defined as shared when both the α CDR3 sequence and the β CDR3

sequence were found in our mouse samples.

A metric to rank human-mouse cross-species CDR3 TCR clones

We developed an additional metric to compare mouse sequences with sequences obtained

from the early-stage breast cancer patients reported by Beausang et al [13]. First, we identified

the sequences that appeared at all the mouse time-points and in the human samples. At each

time-point, we ranked the sequences according to their copy number–the highest copy num-

ber was ranked 1, the second highest ranked 2 and so on. We then ranked the human samples

in the same manner as the mouse samples. The size of each clone is inversely proportional to

an area defined by the ranking of the sequence at the specific time-point, multiplied by the

ranking of the sequence in the human samples, such that similarly ranked sequences will

have a larger size. For example, the largest area would potentially belong to a shared CDR3

sequence that is ranked #1 in both species (since 1 / ((sequence ranking in mouse = 1) x

(sequence ranking in human = 1)) = 1). The smallest potentially belong to a shared CDR3

sequence ranked last in both species (1 / ((sequence ranking in mouse = 258) x (sequence

ranking in human = 258)) = 0.000015).

Versions of the different tools used in this paper

IGOR: Version: IGoR v1.2.0; Non-default parameters: -species mouse -chain beta—ntCDR3.

MiXCR: Version: MiXCR v2.1.5; Non-default parameters: -p rna-seq -s MusMusculus

-OallowPartialAlignments = true.

TCGA analysis—MiXCR: MiXCR v3.0.3; STAR: STAR_2.7.0b_0206.

Databases: VDJdb [50] and McPas-TCR [24] were downloaded in 2018.

Single cell analysis: MiXCR: MiXCR v3.0.3.

ERGO: Parameters: Model Type = LSTM based model; Training Database = McPAS.
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Statistical tests

For the significance tests that quantify differences between means of 2 populations, we used

the t-test; For the significance tests that quantify differences between 2 curves we used the lrtest

function from the R package lmtest–a function that uses a likelihood ratio test to compare gen-

eralized linear models; we used the Kolmogorov–Smirnov test when we compared

distributions.

Values for the error bars were calculated using the standard definition: the standard devia-

tion divided by the square root of the number of measurements that generated the mean.

Supporting information

S1 Table. A list of all the Pubic Exclusive clones found in the tumor-developing mice in α
chain.

(TXT)

S2 Table. A list of all the Pubic Exclusive clones found in the tumor-developing mice in β
chain.

(TXT)

S3 Table. The number of mouse-human-shared clones between a sample and a stage

obtained from the TCGA data of breast cancer patients. Rows are the different samples and

columns are the different stages.

(TIF)

S4 Table. The final count of productive libraries and their count of TCR α and β sequences.

(TIF)

S1 Fig. Public and CR repertoires. The ratios of different Public groups—Private, Public-

Inclusive and Public-Exclusive repertoires in α total NT clones (A) and AA clones (B), β
unique NT clones (C) and AA clones (D) and β total NT clones (E) and AA clones (F).

(TIF)

S2 Fig. Population measures and CDR3 length distribution. (A-D) The number of unique

sequences for the 5 different groups (Control-young, Control-old, no-cancer, pre-cancer and

cancer) in α (A) and β (B) chains in an NT view and in AA view (C, D). (E, F) Ecological

diversity measures of the different groups. (G, H) Clonality measures of the different groups in

α and β chains. (I, J) CDR3 length distribution of the different groups in α and β chains.

(TIF)

S3 Fig. Overlaps between different groups. An heatmap of the averaged overlaps between dif-

ferent combinations of groups. The marked values are the averaged overlaps between Control-

young and Transgenic-young, and between Control-old and Transgenic-old.

(TIF)

S4 Fig. Convergent recombination. Frequency of convergent recombined clones in α (A) and

β (B) and non-convergent recombined clones in α (C) and β (D). (E) The averaged CR levels

of the sequences found as the Control Public-Exclusive (blue bar) and in the tumor-developing

Public-Exclusive (red bar) sequences.

(TIF)

S5 Fig. The Public repertoire in cross-species TCR sequences. The Public repertoires in the

sub-populations of clones shared between our mouse samples and human samples (7513

sequences) are shown an AA view (upper circles) and an NT view (lower circles). The inner

PLOS COMPUTATIONAL BIOLOGY Breast cancer view by the T cell repertoire

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008486 January 19, 2021 22 / 26

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008486.s009
https://doi.org/10.1371/journal.pcbi.1008486


circles are mouse-specific NT and AA sequences, and the outer circles are the cross-species

mouse sequences shared with human patients. The groups are divided into Private, Public

Inclusive and Public Exclusive as previously described.

(TIF)

S6 Fig. V, J usage in the tumor-associated cross-species sequences. The correlations between

the different Vs (A) and Js (B) usage of the tumor-associated cross-species clones.

(TIF)

S7 Fig. Human and mouse NT sequences of CASSLSYEQYF. The NT display of the AA com-

positions demonstrated in Fig 4C. The figure reveals the recombination effect: the same AA

sequences were built on a combination of 9 different TRBVs (-2,3,4,5,19,21,24,26,29), while

TRBJ2-7, both for mouse and for human, was used. The colored bars represent the NT sequences

encoding to these AA sequences. The colored bars represent the NT sequences encoded to these

AA sequences. Each color represents different nucleotide: T–blue; G–yellow; C–green; A–red.

(TIF)

S8 Fig. Frequency of mouse-human shared clones in the tumor-developing group in differ-

ent stages of breast cancer in β clones. For each sample, we calculated the number of shared

clones between TCGA samples and mouse samples according to the following formula:

(Shared clones between sample and stage) / (# of clones in a sample x # of total cases of a

stage). These numbers marked in black. The number of copies in the Control group of each

intersection is marked in blue and the copies of the Transgenic group marked in red.

(TIF)

S9 Fig. Cross-species shared clones between different datasets. Venn diagram representa-

tion of the number of shared clones between the different datasets from human and mouse

(bulk TCR-seq, TCGA RNA-seq data, single-cell data, Control mice and Transgenic mice).

(TIF)
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