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Abstract

Background

Neglected tropical diseases (NTDs) primarily affect the poorest populations, often living in

remote, rural areas, urban slums or conflict zones. Arboviruses are a significant NTD cate-

gory spread by mosquitoes. Dengue, Chikungunya, and Zika are three arboviruses that

affect a large proportion of the population in Latin and South America. The clinical diagnosis

of these arboviral diseases is a difficult task due to the concurrent circulation of several arbo-

viruses which present similar symptoms, inaccurate serologic tests resulting from cross-

reaction and co-infection with other arboviruses.

Objective

The goal of this paper is to present evidence on the state of the art of studies investigating

the automatic classification of arboviral diseases to support clinical diagnosis based on

Machine Learning (ML) and Deep Learning (DL) models.

Method

We carried out a Systematic Literature Review (SLR) in which Google Scholar was

searched to identify key papers on the topic. From an initial 963 records (956 from string-

based search and seven from a single backward snowballing procedure), only 15 relevant

papers were identified.

Results

Results show that current research is focused on the binary classification of Dengue, primar-

ily using tree-based ML algorithms. Only one paper was identified using DL. Five papers

presented solutions for multi-class problems, covering Dengue (and its variants) and Chi-

kungunya. No papers were identified that investigated models to differentiate between Den-

gue, Chikungunya, and Zika.
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Conclusions

The use of an efficient clinical decision support system for arboviral diseases can improve

the quality of the entire clinical process, thus increasing the accuracy of the diagnosis and

the associated treatment. It should help physicians in their decision-making process and,

consequently, improve the use of resources and the patient’s quality of life.

Author summary

Neglected tropical diseases (NTDs) primarily affect the poorest populations, often living

in remote, rural areas, urban slums or conflict zones. Arboviruses are a significant NTD

category spread by mosquitoes. Dengue, Chikungunya, and Zika are three arboviruses

that affect a large proportion of the population in Latin and South America. The clinical

diagnosis of these arboviral diseases is a difficult task due to the concurrent circulation of

several arboviruses which present similar symptoms and, sometimes, inaccurate test

results. In this paper, we present the state of the art of studies investigating the automatic

classification of arboviral diseases based on Machine Learning (ML) and Deep Learning

(DL) models. Results show that current research is focused on the classification of Den-

gue, primarily using tree-based ML algorithms. The use of an efficient clinical decision

support system for arboviral diseases can improve the quality of the entire clinical process,

thus increasing the accuracy of the diagnosis and the associated treatment. It should help

physicians in their decision-making process and, consequently, improve the use of

resources and the patient’s quality of life.

1 Introduction

Neglected tropical diseases (NTDs) include a wide range of parasitic, viral, and bacterial dis-

eases that prevail in tropical and subtropical conditions in 149 countries and affect one billion

people every year [1]. One major category of NTDs are arthropod-borne viruses (or arbovirus

diseases), a group of viruses that are found in nature and biologically transmitted between sus-

ceptible vertebrate hosts by hematophagous arthropods [2].

Arboviruses included a wide variety of diseases including African swine fever virus, Japa-

nese encephalitis virus (JEV), Rift Valley fever virus, tick-borne encephalitis virus, West Nile

virus and yellow fever virus however the most common are Dengue, Chikungunya and Zika

[3]. These three arboviruses are primarily transmitted by Aedes spp. mosquitoes, of which

Aedes aegypti and Aedes albopictus are the most common vectors [4, 5]. The Aedes aegypti can

easily adapt to urban and semi-urban areas [6, 7]. Population growth, unplanned urbanization,

habitat modification, human and animal migration, and climate change, combined with low-

quality housing and neglected peri-domestic environments, all contribute to creating ideal

ecological conditions for urban Aedes spp. populations to thrive [5, 8–10]. These factors, dis-

proportionately affecting the poor, increase the geographical area at risk to arboviral diseases

and contribute to establishing arboviruses as a global health problem [8–11]. These arboviruses

are maintained outside of rainy seasons by transovarial transmission from female mosquitoes

to offspring [12, 13]. Other modes of transmission include vertical and sexual transmission

[14, 15], and contaminated transfusions [5, 16]. The overall burden of arboviral diseases in

general is significant. The incidence and number of deaths due to Dengue are increasing
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resulting in a global burden of disease of 2.9 million disability-adjusted life years (DALYs) for

2017 alone, a 107% increase since 1990 [17]. Recent analysis on the global burden of Chikun-

gunya and Zika suggest an average yearly loss of over 106,000 and 44,000 DALYs, respectively,

between 2010 and 2019 [18]. In each case, the burden of these diseases disproportionately

impacts the Americas.

While the clinical presentation of these diseases are well-established [19, 20], diagnosing

these diseases is a difficult task. Three primary reasons are cited in the literature to explain why

there are difficulties in making an arboviral diagnosis. Firstly, the majority of cases are asymp-

tomatic thus arbovirus may be present in an area without an identifiable outbreak [21, 22].

Secondly, their symptomatic infection is usually clinically indistinguishable from each other.

All of them share common symptoms like fever, arthralgia, myalgia, headache, and retro-

orbital pain [21]. While Dengue and Zika have some distinct symptoms, for example, hemor-

rhagic diathesis (Dengue) and edema in limbs (Zika), and Chikungunya is related to joint

complaint, their diagnosis requires a high degree of experience and clinical insight which can

be further complicated in special populations [22, 23]. In addition, Dengue and Chikungunya

symptoms may include hemorrages and leukopenia/thrombocytopenia, while Chikungunya

and Zika symptoms may include non-purulent conjunctivitis [22]. Thirdly, co-infection is also

common thus increasing the difficulty of diagnosis of these conditions [5, 21, 24, 25].

Despite the difficulties in differential diagnosis, the progression and impact of these diseases

varies significantly. After infection by Dengue, the disease may manifest asymptomatically and

patients may not even know that they are infected. Serologically, after 7-10 days after the mos-

quito bite, a diagnosis of Dengue can be confirmed [26]; some people may experience symp-

toms such as fever, headache, pain in the muscles and joints, and fatigue. For some, the disease

may progress to a more severe condition resulting in bleeding, organ damage, and plasma leak-

age [19]. Dengue can be classified into two stages—the febrile phase and the critical phase. The

febrile phase typically lasts for 2-7 days. The critical phase of dengue begins at defervescence

and typically lasts 24–48 hours. While most patients clinically improve, some may experience

systemic vascular leakage syndrome, characterised by increasing hemoconcentration, hypopro-

teinemia, pleural effusion, and ascites [27]. Severe Dengue can result in death due to plasma

leaking, fluid accumulation, respiratory distress, severe bleeding, or organ impairment [19].

Chikungunya infection may manifest symptoms similar to Dengue between the fourth and sev-

enth day after the bite, but with greater joint pain. The progression of Chikungunya has three

phases. The acute phase is characterised with sudden onset symptoms manifesting with high

fever, rash, and arthralgia, affecting mainly the small and large joints. The subacute phase is

characterised by worsening arthralgia. While Chikungunya is rarely fatal, it can progress to a

chronic state. Post-Chikungunya rheumatism is common and can last from weeks to years with

associated adverse effects on quality of life [5, 28–31]. Zika was initially considered a mild dis-

ease sometimes with no fever episode [5], however it is now clear that its major threat is related

to microcephaly and other congenital abnormalities in the fetus and newborn; it may trigger

Guillain-Barré syndrome, neuropathy, and myelitis in adults and older children [31]. Symp-

toms of Zika include arthralgia, edema of the extremities, low fever, maculopapular rash that is

often pruritic, headaches, retro-orbital pain, without purulent conjunctivitis, vertigo, myalgia,

and digestive disorders [32]. The most serious manifestation of infection is Congenital Zika

Syndrome (CZS). The risk of the infection can occur during any gestational trimester [33]. CZS

is related to fetal microcephaly, fetal brain disruption sequence, subcortical calcifications, pyra-

midal and extrapyramidal signs, ocular abnormalities (focal pigmented mottling, chorioretinal

atrophy), congenital contractures, fetal growth restriction, and even death [33–35].

Early identification of specific arbovirus infections can have a significant impact on the

clinical course and decisions related to treatment and care. The adverse impacts of poor
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arbovirus diagnosis are exacerbated where there are competing pressures for funding and

trained and experienced staff, due to multiple concurrent disease epidemics [36]. Novel low-

cost scalable approaches to the differential diagnosis of arboviral diseases for epidemiological

surveillance are required. One such approach is the development of computational models for

monitoring and diagnostic classification based on clinical data and symptoms. Machine Learn-

ing (ML) and Deep Learning (DL) models have been widely proposed in the biomedical field

to support the diagnosis and prediction of disease [37]. ML is a computational method that

makes use of experience to make predictions, i.e., it is an algorithm that receives input data

(training data set) to learn or find a pattern. Data quality and size are fundamental to the

success of the learning process and as consequence to guarantee the efficiency of the model

predictions. When designing a ML model, the goal is to find a configuration (a set of hyper-

parameters) that produces a model able to generalise and produce satisfactory performance

when dealing with previously unseen new data. DL is a sub-field of ML which emphasises

learning based on successive layers of increasingly meaningful representations [38]. Here,

“deep” is related to the idea of successive layers of representations. DL models are based on

early iterations of Neural Networks (NN) and are increasingly reported as the most effective

ML approach with the advantage of combining the feature extraction and the classification

task at the same time. However, the “black box” nature of most DL models is a significant chal-

lenge in the health space which values transparency. As such more transparent ML models are

commonly used due to their interpretability.

In this paper, we present an SLR on how existing research employs ML and DL techniques

to automatically classify arboviral diseases and support clinical diagnosis.

2 Methods

The purpose of an SLR is to identify, select and critically appraise research on a specific topic.

SLRs typically comprise three main phases: planning the review, conducting the review, and

reporting the review results [39]. The goal of this paper is to present evidence on the state of

the art of studies investigating the automatic classification of arboviral diseases to support clin-

ical diagnosis based on ML and DL models. To accomplish this goal, this SLR follows the

methodology present in Fig 1 and seeks to address the following research questions:

• RQ 01: What arboviruses are the focus of research on ML and DL classification of arboviral

diseases to support clinical diagnosis?

• RQ 02: Which ML and DL techniques are being used in research relating to the classification

of arboviral diseases to support clinical diagnosis?

• RQ 03: How are ML and DL models being designed and how do they perform when classify-

ing arboviral diseases?

• RQ 04: What data characteristics are considered when applying the ML and DL techniques?

• RQ 05: What are the metrics being used to evaluate the performance of the ML and DL

techniques?

2.1 Search strategy

The search strategy comprised an automated and manual phase. A literature search was con-

ducted using Google Scholar with the following search string: ((“deep learning” OR “machine
learning”) AND (“arbovirus” OR “arboviral”) AND (“classification” OR “diagnosis” OR
“analysis”) AND (“clinical data”)), in March, 2021. Google Scholar was selected due to the
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comprehensiveness of articles indexed in its database [40]. The authors performed quality

checks on other common academic and bibliometric databases, to ensure no major articles

were left out.

Wohlin [41] defines snowballing as “. . .the usage of a reference list of papers or citations
to the paper to identify additional papers”. There are two ways to use this procedure: back-

ward and forward. The backward snowballing uses the reference list to find new papers to

include in the systematic review, while the forward snowballing identifies new papers based

Fig 1. Study selection.

https://doi.org/10.1371/journal.pntd.0010061.g001
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on those papers that cite the relevant papers. To expand the sample of papers in the SLR,

we performed a manual search to identify and download relevant studies from a single itera-

tion reverse snowballing procedure applied to relevant studies found in the automated

search.

2.2 Study selection

To ensure the selection of only studies relevant to our review, we consider studies that meet

specific inclusion criteria. The inclusion criteria required that papers be in the English lan-

guage and use clinical data in the application of ML or DL models for arbovirus diagnosis in a

primary study. Papers were excluded if they (1) did not examine the diagnosis of arboviruses,

(2) were in a language other than English, (3) were a secondary or tertiary study, (4) used con-

ventional statistical techniques, or (5) did not use clinical data as inputs to the ML and DL

models.

The initial automated search returned 956 records. These had their title and abstracts

assessed by two independent authors according to the inclusion and exclusion criteria. Where

a conflict arose, a third author arbitrated on selection. Based on the inclusion and exclusion

criteria, nine papers were retained in the sample. We performed a single backward snowballing

procedure. This returned a further seven papers, six of which were retained in the sample fol-

lowing review. The final sample was 15 papers.

2.3 Data extraction and coding

The following data was extracted for each study: authors, publication year, arboviral disease

type(s), ML and DL technique(s) employed, the data set used in the study, the data characteris-

tics used as input, and metrics used to evaluate the ML and DL performance.

3 Results and discussions

3.1 What arboviruses are the focus of research on Machine Learning and

Deep Learning classification of arboviral diseases to support clinical

diagnosis?

Surprisingly, given the range of arboviral diseases, the focus of research, albeit a small sample,

was the three most popular diseases i.e. Dengue, Chikungunya, and Zika. Although these three

are common arboviral diseases, no studies were found that carried out multi-classification

considering between these three arboviral diseases or other arboviral types, such as West Nile

virus, yellow fever virus, Saint Louis Encephalitis virus, Mayaro virus, Oropouche virus and

others, showing that there is space for further investigations in this area.

Most of works presented models for binary classification—Dengue or not [42–47]; Dengue

Hemorrhagic Fever (DHF) or not [48]; Chikungunya or not [49]; and Zika classified between

“Discarded cases” and “Somewhat probable” for CZS [50]. It is interesting to note that the only

work that deals with Zika is focused on CZS, not covering Zika in general.

Four studies sought to address multi-class problems. Thitiprayoonwongse et al. [51] classi-

fied between Dengue Fever (DF), Dengue Hemorrhagic Fever 1 (DHF1), Dengue Hemor-

rhagic Fever 2 (DHF2) and Dengue Hemorrhagic Fever 3 (DHF3). Fahmi et al. [52] focused

only on Dengue, classifying between DF, DHF and Dengue Shock Syndrome (DSS). Veiga

et al [50] classified between “Discarded cases”, “Somewhat probable”, “Moderately probable”

and “Highly probable” of having CZS, while Lee et al. [53] proposed models to differentiate

between DF, DHF and Chikungunya.
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3.2 Which Machine Learning and Deep Learning techniques are being used

in research relating to the classification of arboviral diseases to support

clinical diagnosis?

ML has basically four categories of learning techniques: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning. The techniques identified in

this SLR are based on supervised learning. Supervised learning systems solve the function

approximation problem in which the training data is a set of (x, y) pairs and the aim is to pro-

duce a prediction y� in response to a x� [54]. Supervised classification is one of the most fre-

quent tasks performed and unsurprisingly a large number of techniques leverage ML

including Decision Trees, NN, Support Vector Machine (SVM), Naive Bayes, Logistic Regres-

sion and K-Nearest Neighbours (kNN)) [55].

Despite the advantages and wide applicability of ML models, they suffer from selectivity-

invariance issues [56]. Such issues limit their capacity to process raw data thus requiring care-

ful (and time consuming) feature selection engineering before model training. DL (also

known as deep structured learning, hierarchical learning, or deep ML) models negate this ML

issue. DL models are composed of multiple abstraction layers that are able to automatically

learn from features of the original data thereby removing the need for feature selection. The

usage of non-linear models facilitate the discovery of solutions for more complex problems.

Commonly, DL architectures have many hidden layers composed of neurons connected

through an activation function. Sub-section 3.2.7 describes a common DL, the Convolutional

Neural Network (CNN).

Fig 2 presents the ML and DL techniques used to perform arboviral diseases classification

in the SLR sample (for the purpose of this paper, we consider traditional statistical techniques

(e.g. Decision Trees, Logistic Regression and Naive Bayes) as ML as per [57]. Only one paper

in the SLR sample used DL. Ho et al. [47] compared a CNN with Decision Tree and Logistic

Regression models. All other papers employ common ML techniques, including tree-based

algorithms (Decision Trees, Random Forest, AdaBoost and Gradient Boost), NN, SVM, Naive

Bayes, Logistic Regression, and kNN.

3.2.1 Tree based algorithms: Decision Tree, Random Forest, AdaBoost and Gradient

Boost. A Decision Tree is a non-parametric method that can be applied in problems with cat-

egorical variables (classification tree, the focus of this work) and also with continuous variables

Fig 2. Models used in the works divided by the main problems.

https://doi.org/10.1371/journal.pntd.0010061.g002
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(regression tree). A tree is composed of a root node, internal nodes, and leaf nodes, and it is

built successively dividing data according to one of the predictor variables [58]. To build a

Decision Tree, it is necessary to define the node-splitting algorithm to minimise the impurity

of the node. If the split achieves the maximum reduction of impurity, then the node is defined

as a leaf [59]. The most common splitting algorithms are the Information Gain (used by Classi-

fication and Regression Tree (CART)) and the Gini index (used by Iterative Dichotomiser 3

(ID3) and C4.5 algorithms). The main advantage of using Decision Tree algorithms is the

implicit feature selection during the model building process and the interpretability of results.

Decision Trees are also able to handle missing values, which are commonly encountered in

clinical studies [42]. On the other hand, over-complex trees do not generalise the data well,

often presenting overfitting (or underfitting), and are prone to errors with a relatively small

number of samples for training. The SLR sample includes eleven Decision Tree models—[42,

44–47, 50–53, 60, 61].

In contrast to Decision Trees (sometimes referred to as ‘strong learner’ approaches) opti-

mised to solve a specific problem by looking for the best possible solution, ensemble learning

techniques are based on a set of “weak learners”. Ensemble learning techniques can be catego-

rised into three classes: (1) bagging (or bootstrapping), (2) boosting, and (3) stacking [62].

Random Forest is an ensemble technique based on bagging that combines several Decision

Trees. It is built randomly from a set of possible trees with K characteristics in each node. Ran-

dom in this context means that in the set of trees, each tree has an equal chance of being sam-

pled. Multiple classification trees are obtained from bootstrap samples in order to calculate the

final majority classification. The SLR sample includes three Random Forest models—[48, 50,

52]. As Random Forest models combine different Decision Trees, their results are not as easy

to understand as a Decision Tree and are also more expensive computationally. Notwithstand-

ing this, Random Forests typically outperform Decision Trees and handle balancing errors bet-

ter when working with an imbalanced data set [63].

Boosting is an ensemble technique that combines k low performance models (M1, M2. . .,

Mk) in order to improve the final model, M� [64]. The k classifiers are learned iteratively and

after a Mi is learned, the weights are updated in order to generate the next classifier, Mi + 1.

Performance is improved by training tuples that were misclassified by Mi. The final boosted

model, M�, combines the results of each k classifier. The Adaptive Boosting (AdaBoost) [65] is

the first stepping stone in boosting techniques and it uses Decision Trees with a single split

(one node and two leaves), also named Decision Stumps, as “weak learners”. Gradient Boost

uses a technique named forward stage-wise additive modelling that adds a new Decision Tree

at each step to minimise a global cost function using the Steepest Gradient Descent method

[62]. The main advantages of boosting algorithms in general, including AdaBoost and Gradi-

ent Boost, are intrinsic automated variable selection, and flexibility regarding the type of pre-

dictors and stability when handling high-dimensional data [66]. AdaBoost, in particular, is

also known to be quite resistant to overfitting. While these advantages have attracted the atten-

tion of biomedical researchers [66], only one paper in the SLR sample proposed an AdaBoost

model (Fahmi et al. [52]) and another, Veiga et al. [50], proposed a Gradient Boost model.

3.2.2 Support Vector Machine (SVM). SVM is a classifier based on Vapnik’s statistical

learning theory [67]. To perform classification, SVM builds hyperplanes in a multidimensional

space in order to separate instances of different classes. The goal is to find the optimal separat-

ing hyperplane and, at the same time, maximise the distance between the support vectors

(which are the extreme delimiters) [62, 67].

Robustness is one of the main advantages of SVM models. Data with outliers do not impact

negatively in SVM model performance. While Decision Tree models benefit from interpret-

ability, lack of transparency is a drawback of SVM models, especially when dealing with
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high-dimensional data sets. SVM models can also be quite memory-intensive and therefore

processing large and complex data sets can be slow [62]. SVM models feature in five studies in

the SLR sample—[43, 46, 48, 49, 52].

3.2.3 Neural Networks (NN). Inspired by the human nerve system, an NN is composed

of groups of nodes (or units) simulating layers of neurons. Each neuron is multiplied by

weights to simulate synapses and the result is passed to the neuron of the next layer. All results

received by a neuron are summed up and a mathematical formula, called an activation func-

tion, is used to convert the received value to be transported to the next layer of neurons, simu-

lating the activation of a human neuron. This type of architecture allows the training of a NN

model by adjusting the weights that connect neurons through a learning experience. During

the NN training, different sets of neurons in the NN are “activated” and at the end, the goal is

that the model can generalise past patterns.

The most basic NN model is a perceptron [68]. It is composed of only two layers of neu-

rons: (1) the input layer to receive the data, and (2) the output layer to perform the prediction.

Once it has a simple activation function, it is possible to solve linearly separable problems. The

Multilayer Perceptron (MLP) is an evolved form of perceptron with additional layers of neu-

rons in the middle, the hidden layers, and a more complex activation function in the neurons.

These additions make the MLP very useful to solve complex problems for both classification

and regression. MLPs are often referred to as NN and the terms are used interchangeably. In

general, NNs present many advantages including high capacity to learn and generalise, and the

ability to deal with imprecise, fuzzy, noisy, and probabilistic information [69, 70]. As such,

they are widely used in health research [71–73].

MLP was a popular ML solution in the 1980s with applications in various fields. Recently

the interest in this type of model was renewed due to the success of DL. Several authors classify

MLP as a traditional model of ML [74, 75], but with the advent of DL, concepts of MLP were

improved and it can also be classified as a DL [76]. In this paper, we classify MLP as a tradi-

tional model of ML due to the context observed in the selected proposals. Five papers

employed NN models in the SLR sample: [44, 45, 49, 52, 77].

3.2.4 Naive Bayes. Naive Bayes is a probabilistic classifier that performs classification

based on the Bayes’ Theorem, selecting the most likely class according to its independent vari-

ables [78]. The term naive is due to the way the model calculates the probabilities of each event

i.e. all attributes of the data set are equally important and independent.

In general, Naive Bayes models are simple, fast and effective, and perform well when a data

set contains outliers or is missing data [62], common features in many health data sets. How-

ever, Naive Bayes models are not without drawbacks. They assume that all attributes of a data

set have the same importance which is often not true. If a data set has large numbers of attri-

butes, the reliability of the results may be limited. Four works in the SLR sample applied Naive

Bayes models—[43, 45, 48, 52].

3.2.5 Logistic regression. Logistic Regression is a classification technique based on idea of

modelling the odds of belonging to Class 1 using an exponential function [62]. In this tech-

nique, the dependent variable, Y, is binary and the independent variables, X = {x1, x2, . . ., xn},

are used to estimate the value of Y by using a logistic function. The goal is to find an optimal

hyperplane, that separates the two target classes (binary classification). In case of multi-class

problems, the one-vs-all strategy can be used to address the problem.

Some advantages of this model include dealing with categorical independent variables and

a high degree of reliability. As disadvantages, this type of model does not generalise well when

using a large number of features, it is vulnerable to overfitting, and cannot solve non-linear

problems, requiring a transformation of non-linear resources [79]. Two works employed

Logistic Regression in the SLR sample—[47] and [52].
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3.2.6 k-Nearest Neighbours (kNN). kNN is a classification technique that defines a min-

imum number of neighbours, k, and calculates the distance, the similarity, of each data ele-

ment with respect to its k neighbours. There are many measures of similarity, and the most

commons approaches are the Euclidean distance and the Minkowski metric [62]. The most

frequent class among the neighbouring k is determined as the class of the target instance

[80].

Simplicity is the main advantage of kNN. kNN is a good choice when working with a small

low-dimensional data set however it can be extremely inefficient when dealing with large data

sets because it is computes all pairwise distances [62]. Only one paper in the SLR sample pro-

posed a kNN model, Fahmi et al. [52], using Euclidean distance with k = 5.

3.2.7 Convolutional Neural Networks (CNN). A CNN is a DL technique. CNNs are

designed to process input data in the form of multiple arrays [81]. A basic CNN comprises

convolutional layers, pooling layers, nonlinear function (generally ReLU), and fully connected

layers. Units in a convolutional layer are organised into feature maps and each unit is con-

nected to local patches in the feature maps of the previous layer. It is done by using a set of

weights called filters. The result of this local weighted sum is passed through a nonlinear acti-

vation function. All units in a feature map share the same filter bank, and different feature

maps in one layer can use different filter banks. The result of this whole process feeds fully con-

nected layers resulting in a final classification. As discussed earlier, DL models, including

CNN, often outperform traditional ML models however their adoption in health settings has

suffered due to an inherent lack of transparency.

Although the methodology of training and testing models is clearly well-defined, the resul-

tant models themselves can be often unexplainable to humans [82]. Even when techniques are

used to select attributes resulting in good model performance, the relationships between those

attributes and the output classification may not directly track causal relationships in the real

world [82]. One paper in the SLR sample, Ho et al. [47], uses a CNN, DenseNet. DenseNet is a

CNN architecture in which each layer is connected to all others within a dense block [83]. In

this case, all layers can access feature maps from their preceding layers enabling heavy feature

reuse. As a direct consequence, the model is more compact and less prone to overfitting. Fur-

thermore, each individual layer receives direct supervision from the loss function through the

shortcut paths, which provides implicit deep supervision [84].

3.3 How are Machine Learning and Deep Learning models being designed

and how do they perform when classifying arboviral diseases?

As presented in Section 3.1, studies included in the SLR sample focused on only three arbovi-

ruses—Dengue, Chikungunya, and Zika. Before detailing the models, we present some basic

concepts to better understanding the proposals in the sample.

Most of ML and DL models have a set of hyperparameters that can be adjusted to achieve a

better performance [85]. There are basically two types of hyperparameter optimisation meth-

ods: manual search and automatic search [86]. In manual research, testing is done manually

based on the basic intuition and experience of users in identifying the important parameters,

i.e. those that have the greatest impact on the results. The best known automatic search

method is the grid search. In this method, the combination of all possible values of hyperpara-

meters is defined given a range; their performance is compared according to some predefined

metric, and the configuration that achieves the best performance is selected. Although this

method is widely used and presents interesting results, it suffers from dimensionality, i.e., the

efficiency of the algorithm rapidly decreases as the number of hyperparameters being adjusted

and the range of hyperparameter values increase.
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Given this disadvantage of grid search, the random search algorithm is an alternative which

reduces the search for hyperparameters, pointing to an approximate solution of an optimisa-

tion function, i.e. random combinations are performed within a range of values. By comparing

random search with grid search, we have increased efficiency in processing time however as

the search space is limited, better solutions may be excluded [86].

Another process widely used in ML is the selection of attributes for the construction of a

model, so-called feature selection. Feature selection can be divided into three categories: wrap-

per, filter, and embedded [87]. Wrapper methods use the predictive performance of a prede-

fined learning algorithm to assess the quality of selected attributes. With the selection of a

specific learning algorithm, the typical wrapper method performs two steps: (1) it looks for a

subset of attributes, and (2) it evaluates the selected attributes. It repeats the steps until some

stopping criteria is met. Filter methods are independent of the learning algorithm. They look

at data characteristics to assess the importance of a given attribute. This method is generally

more computationally efficient but due to the lack of a specific learning algorithm in the attri-

bute selection step, the selected features may not be ideal for the target learning algorithm.

Finally, embedded methods are a trade-off between filter and wrapper methods, incorporating

feature selection into model learning. This method inherits the advantages of wrapper and fil-

ter methods including interactions with the learning algorithm. As such, it is much more effi-

cient than wrapper methods as it does not need to iteratively evaluate sets of attributes.

Basically, this method proposes to reduce the computation time used to reclassify different

subsets by incorporating the selection of resources as part of the training process [88].

In ML and DL modelling, overfitting is a common problem. According to Ying [89], over-

fitting happens when the model does not generalise the observed data well with the unseen

data i.e. the model fits very well in the training set but fits poorly in the test set. Overfitting can

occur because noise may be present in the training set. This can happen when the training set

is very small or when data is not very representative or there is too much noise. Overfitting

may also occur when the algorithm has too many hypotheses (many inputs) thus compromis-

ing the balance between the accuracy and consistency of the learned model. In this case, the

model does not handle different source data sets well.

There are at least four approaches to addressing the overfitting problem: early-stopping,

network-reduction, expansion of the training data, and regularization [89]. Early stopping

involves stopping training at the point that performance on a test data set starts to degrade.

This phenomenon is known as “learning speed slow-down”. In this case, the model continues

to learn after a given point, increasing the validation error and consequently decreasing the

training error. Two problems can arise. Firstly, stopping before the best result point thus mak-

ing the result sup-optimal. Secondly, stopping after the point with the best result which results

in an over-adjustment. Therefore, the main objective of this solution is to find the exact point

that training should be interrupted [89, 90].

In network-reduction, the concept of pruning is used, reducing the classification complex-

ity by eliminating less significant or irrelevant data, preventing overfitting and improving clas-

sification accuracy. There are two standard pruning approaches: pre-pruning and post-

pruning. In pre-pruning, its functioning takes place during the learning process, using, for

example, stopping criteria through some rule (length, cost, significance test etc.). In post-prun-

ing, the training set is divided into two sets: crescent set and pruning set. This approach

ignores the overfitting problems during the learning process in the growing set, so they avoid

overfitting by excluding rules from the model generated during learning [89, 91].

Adjusting hyperparameters brings balance and regularity in model training, but to make

these adjustments sufficient samples are needed for learning. In this sense, an expanded data

set can greatly improve the accuracy of these models. This type of approach has been widely
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used to improve the generalisation performance of models. Commonly, four approaches are

used to expand a data set: (1) acquire more training data; (2) add some random noise to an

existing data set; (3) re-acquire some data from an existing data set through some form of addi-

tional processing; and/or (4) produce new data based on the distribution of the existing data

set [86, 89]. Expanding data sets has drawbacks. With greater data, there will consequently be

an increase in training time. In addition, such data can be difficult to acquire and often require

human intervention for labelling data.

Finally, regularisation is a technique that applies a small variation to the original data to effi-

ciently train a model such that the model generalises better [92]. To carry out this process

another term is added, a penalty, also known as regularizer. There are three main regularisa-

tion methods: L1 regularisation, L2 regularisation, and dropout. With L1 regularisation, the

absolute value of the weights is penalised. L1 regularisation is also known as the least absolute

shrinkage and selection operator (LASSO) [92]. In contrast, L2 regularisation defines the

weights of each feature and removes features from the model, only keeping the most valuable

features. This allows the model to be simpler and more interpretable. This regularisation

method uses the Euclidean distance as a penalty term. The dropout method is a solution to

avoid overfitting in neural networks. Basically, it randomly eliminates units and connections

in the network during the training process. This process usually takes place using the following

steps: (1) releasing half of the randomly hidden neurons and building a simpler network; (2)
training the simple network using a stochastic descending gradient; (3) restoring the neurons

removed in Step 1; (4) removing half of the hidden neurons from the new network to form a

new simple network; and, (5) repeating the entire process until the ideal set of parameters is

reached [89, 93, 94].

Table 1 presents a list of included studies by year of publication, classification target, ML

and/or DL techniques used, model configurations, software, evaluation metrics, and optimisa-

tion techniques employed for hyperparameter and feature selection.

3.3.1 Dengue. Of the 15 relevant papers in the SLR sample, 12 included the diagnosis of

Dengue in their studies including binary classification and multi-class classification:

• Binary classification

• Dengue or not Dengue: Tanner et al. [42], Fathima and Hundewale [43], Sajana et al.

[44], Gambhir et al. [45], Sanjudevi and Savitha [46], Ho et al. [47];

• Severity of Dengue: Tanner et al. [42], Potts et al. [60], Phakhounthong et al. [61];

• Risk of Dengue: Faisal et al. [77]; and

• DHF or not: Arafiyah et al. [48]

Tanner et al. appeared twice because they presented two distinct classification problems.

• Multi-class classification

• DF, DHF or DSS: Fahmi et al. [52]; and

• DHF1, DHF2 or DHF3: Thitiprayoonwongse et al. [51]

Tanner et al. [42] proposed two Decision Tree models. First, the Dengue Diagnostic Model

(DDM) sought to classify if a patient had Dengue or not using 1,200 records of patients with

acute febrile illness. The second, the Dengue Severity Prediction Model (DSPM), sought to

classify the severity of Dengue in adults using data from 161 patients. A C4.5 Decision Tree

classifier was built using the Inforsense software. A k-fold cross-validation approach (k = 10)

was used to avoid model over-fitting. Both models presented good performance however the
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Table 1. Overview of the primary studies.�: The study seems to present a model overfitting or an inappropriate benchmarking methodology.

Primary studies Year Target

classification

ML and/or

DL

Model configuration Software Metrics Hyperparameter

optimisation

Feature

selection

Tanner et al. [42] 2008 (1) Dengue or

not

(2) Severity of

Dengue

Decision

Tree

Not described Not

described

Sensitivity,

specificity error

rate, AUC

Not applied Decision Tree

Fathima and

Hundewale [43]

2012 Dengue or not Naive Bayes Default values from the

package e1071

R Accuracy,

sensitivity,

specificity, rate

risk

Not applied Not applied

SVM Not described Grid Search

Sajana et al. [44]� 2018 Dengue or not Decision

Tree

Not described Not

described

Accuracy,

precision, recall,

F-Measure

Not applied Not applied

NN Not described

Gambhir et al. [45] 2018 Dengue or not NN hidden layers = 3

lr = 0.3

momentum = 0.25

Not

described

Accuracy,

sensitivity

specificity, error

rate

Not applied Not applied

Decision

Tree

criterion = Information

Gain

size of split = 2

min leaf size = 2

min gain = 0.01

max depth = 20

confidence = 0.5

Naive Bayes estimation

method = greedy

min bandwidth = 0.01

num of kernels = 10

Sanjudevi and Savitha

[46]�

2019 Dengue or not Decision

Tree

Not described WEKA Accuracy,

sensitivity,

specificity, AUC

Not applied Not applied

SVM Not described

Ho et al. [47] 2020 Dengue or not Decision

Tree

criterion = gini

min leaf size = 20

xval = 10

cp = 0.01

Not

described

ROC, AUC Not applied Crude odds

ratios

Adjusted

odds ratios

Logistic

Regression

solver = lbfgs

CNN hidden layers = 16

Potts et al. [60] 2010 Severity of

Dengue

Decision

Tree

criterion = gini

min samples split = 0.05

max depth = 5

min impurity

decrease = 0.0001

SPSS

Answer

Tree 3.0

Sensitivity,

specificity

Not applied Decision Tree

Phakhounthong et al.

[61]

2018 Severity of

Dengue

Decision

Tree

Not described WEKA Accuracy,

sensitivity,

specificity

Applied but not

described

Logistic

Regression

Faisal et al. [77] 2010 Risk of Dengue NN neurons = 10

lr = 0.1

momentum = 0.99

iterations = 20.000

Not

described

Accuracy Grid Search SOM

Thitiprayoonwongse

et al. [51]

2012 DF, DHF1,

DHF2 or DHF3

Decision

Tree

(1) confidence = 0.4 Not

described

Accuracy,

sensitivity,

specificity

Not applied Decision Tree

(2) confidence = 0.3

(Continued)
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Table 1. (Continued)

Primary studies Year Target

classification

ML and/or

DL

Model configuration Software Metrics Hyperparameter

optimisation

Feature

selection

(3) Not described

Arafiyah et al. [48] 2018 DHF or not Random

Forest

Not described Orange Accuracy,

sensitivity

Not applied Not applied

SVM Not described

Naive Bayes Not described

Fahmi et al. [52] 2020 DF, DHF or DSS NN neurons = 100

activation = Relu

solver = Adam

reg alfa = 0.0001

iterations = 200

Orange Accuracy,

sensitivity,

precision

Not applied ReliefF

Decision

Tree

criterion = Information

gain

min leaf = 5

min instances = 2

max deph = 100

SVM c = 100

kernel = rbf

tolerance = 0.0010

max iteration = 100

KNN k = 5

distance

metric = euclidean

weight = uniform

Random

Forest

n estimators = 10

size of split = 5

criterion = gini

Naive Bayes Not described

AdaBoost base estimator = Decision

Tree

n estimators = 50

lr = 1.0

algorithm = SAMME.R

loss function = linear

regression

Logistic

Regression

Default configuration

Hossain et al. [49] 2019 Chikungunya or

not

NN Not described Matlab AUC Not applied Not applied

SVM Not described

Veiga et al. [50] 2021 Zika (CZS) or

not

Random

Forest

n estimators = 100

max depth = 5

size of split = 40

Sensitivity,

precision

F1-score

Grid search Applied but

not described

Gradient

Boost

max depth = 8

size of split = 5

KNN Not described

Decision

Tree

Not described

Adaboost Not described

Lee et al. [53] 2012 DF, DHF or

Chikungunya

Decision

Tree

Binary recursive

partitioning

R Sensitivity,

specificity AUC

Pruning Logistic

Regression

https://doi.org/10.1371/journal.pntd.0010061.t001
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DDM performed better across all metrics, i.e., sensitivity (71.2%), specificity (90.1%), overall

error rate (15.7%) and Area Under the Curve (AUC) (0.88). This is unsurprising given the

larger data set available to the DDM.

Fathima and Hundewale [43] compared two classification models, SVM and Naive Bayes,

to classify if a patient had Dengue or not. To determine the best SVM hyperparameters, a Grid

Search was performed changing the gamma parameter and the cost (c). Despite executing the

Grid Search, neither the best configuration nor the configuration of the Naive Bayes model

was detailed. In general, the SVM model presented the best performance, despite its low sensi-

tivity (47%). The Naive Bayes model presented high sensitivity and very low specificity, accu-

racy and risk rates, all above 18%.

Sajana et al. [44] proposed three models for binary classification of Dengue using clinical

and laboratory data: an MLP, and two Decision Trees (C4.5 and CART). Like Fathima and

Hundewale [43], the configurations of the models were not detailed. The CART model pre-

sented the best results, achieving 100% in all metrics (accuracy, sensitivity, precision and

F-Measure). There is no mention regarding the use of feature selection and hyperparameter

optimisation. Given the results, it is possible that the models were overfitting due to the small

amount of data available, i.e., only 20 records.

Gambhir et al. [45] proposed three models (NN, Decision Tree and Naive Bayes) to classify

whether a patient had Dengue or not. The configuration of the models were described in the

paper and are summarised in Table 1. K-fold cross-validation (k = 10) was used to validate and

test the models. The NN presented the best results—79.09% accuracy, 55.55% sensitivity, and

88.5% specificity. However, the other models achieved similar performance. Gambhir et al.

[45] did not describe whether hyperparameter optimisation or feature selection was applied in

the data set.

Sanjudevi and Savitha [46] compared Decision Tree and SVM models to classify whether a

patient had Dengue or not. Model configurations were not described. The WEKA tool was

employed to run the experiments and calculate the metrics. The SVM model obtained the best

results achieving 100% sensitivity, 100% specificity, 100% precision, and AUC of 99%. The

extremely high performance results suggest model overfitting.

Ho et al. [47] proposed three models to classify Dengue using clinical data—a Decision

Tree, a Logistic Regression, and a CNN. Models were validated and tested using k-fold cross-

validation (k = 10). Feature selection was performed using crude odds ratio and adjusted odds

ratio analysis. From 18 available attributes, four were initially selected—age, body temperature,

White blood cells (WBC) count, and Platelet count (PLT). Three experiments were performed

with more attributes: (1) six attributes, the four previously mentioned plus gender and haemo-

globin count; (2) 11 attributes, the previous six and five more vital signals; and (3) the entire

data set with 18 attributes. Results suggested that when using only four attributes, the AUC in

all experiments were close to 84%. The CNN performed marginally better than Decision Tree

and Logistic Regression models.

Potts et al. [60] proposed Decision Trees to classify pediatric patients into “severe” or “non-

severe” Dengue cases. The stopping rules used to create the trees were described in the paper

and are summarised in Table 1. Five scenarios were evaluated with different definitions of

Severe Dengue: (1) Tree 1 considered Severe Dengue as DSS, and used four of 11 available

attributes (WBC, Hematocrit (HTC), Monocyte percent (MONOP), PLT); (2) Tree 2 defined

Severe Dengue as DHF Grade 3 or 4 or pleural effusion index (PEI)> 15, and used five attri-

butes (Age, WBC, PLT, Neutrophil percent (NEUTP), Aspartate aminotransferase (AST)); (3)
Tree 3 defined Severe Dengue as DSS or required intravenous fluid; (4)Tree 4 defined Severe

Dengue as DSS or PLT less than 50,000; and (5) Tree 5 defined Severe Dengue as DSS or

received fluid intervention. Trees 3, 4 and 5 were not described in the work because, according
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to Potts et al. [60], they did not obtain any significant improvement in relation to Trees 1 and

2. Both Decision Trees 1 and 2 have the same initial splitting variable, WBC, reinforcing the

utility of this variable in distinguishing Severe Dengue. Models were validated and tested using

k-fold cross-validation (k = 5) and results (the work did not explicitly present any metrics for

evaluating the models, such as accuracy or sensitivity. However, in the results, a table was pre-

sented with values that can be interpreted as the sensitivity of the “Severe” and “non-Severe”

classes), suggested that Trees 1 and 2 achieved a sensitivity metric in excess of 90% for the

“Severe” class, while the sensitivity for the “non-Severe” class was below 50%.

Phhakhounthong et al. [61] proposed a CART Decision Tree model to classify Dengue

severity based on clinical and laboratory attributes. They performed a Logistic Regression anal-

ysis to determine the significance of each attribute to compose the tree. In their case, the most

significant factor in predicting severe dengue was haematocrit. The results obtained from k-

fold cross-validation (k = 10) for binary classification of Severe Dengue were 60.5% sensitivity,

65% specificity, and 64.1% accuracy. Phhakhounthong et al. [61] state that tree pruning and

tuning parameters were applied to optimise the model but did not describe the settings used

for the experiment. Despite having performed a feature selection with Logistic Regression, the

results did not exceed 65% in the metrics evaluated.

Faisal et al. [77] sought a binary classification of Dengue risk, differentiating patients as

“high risk” or “low risk”. An MLP model was proposed for the classification task, and a Grid

Search technique was performed to optimise the model configuration, changing four parame-

ters: number of neurons, momentum, learning rate, and number of iterations (it is noteworthy

that in the Grid Search technique process, each attribute was tested individually). Seven attri-

butes were selected using Self Organising Map (SOM) and the model achieved 70% accuracy.

Thitiprayoonwongse et al. [51] classified a patient as DF, DHF1, DHF2 and DHF3 using a

Decision Tree. Two data sets were used, one from the Srinagarindra Hospital and another

from the Songklanagarind Hospital. Three experiments were performed: (1) using only data

from the Srinagarindra Hospital; (2) using only Songklanagarind Hospital data; and (3) using

data from both hospitals. The attributes of both two data sets were not described, but the attri-

butes selected to compose the Decision Tree for each experiment were presented. In Experi-

ment (1), six attributes were selected: shock, leakage, bleeding, platelet, liver size and je-

vaccine. In Experiment (2), nine attributes were selected: shock, leakage, bleeding, platelet,

abdominal pain, rash, uri, HTC, AST. In Experiment (3) eight attributes were selected: shock,

leakage, bleeding, platelet, Alanine transaminase (ALT), lymp, WBC (count and minimal

count). The configuration of the Decision Tree was changed only in the degree of confidence

parameter in Experiments (1) and (2); no detail was provided for Experiment (3). Experiment

(1) presented the best overall results. It is interesting that even with the addition of one more

data set, Experiment (3) largely did not achieve superior results. The class posing the greatest

classification challenge, DHF1, reported the lowest values in all three experiments although all

were greater than 80%.

Arafiyah et al. [48] proposed and evaluated three models to classify DHF or not DHF—

Random Forest, SVM and Naive Bayes. Unfortunately, there is no information about the

model configurations. The models were trained and the metrics were calculated using the

Orange tool. Random Forest achieved better results than SVM and Naive Bayes models: 79.6%

accuracy, 84.1% precision, 82.2% sensitivity, 83.1% F1-Score and 89.8% AUC. No details on

hyperparameter optimisation or feature selection were provided.

Fahmi et al. [52] evaluated eight models for classifying Dengue into three categories: DF,

DHF and DSS. The models included NN, SVM, kNN, Decision Tree, Random Forest, Naive

Bayes, AdaBoost, and Logistic Regression. The configuration of all models were described and

are summarised in Table 1. Experiments were carried out in two different scenarios: (1)
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without feature selection, and (2) with feature selection using the ReliefF technique (is an algo-

rithm developed by Kira and Rendell in 1992 [95] that takes a filter-method approach to fea-

ture selection that is notably sensitive to feature interactions). In both scenarios, the best result

was obtained by the NN model with 71.3% accuracy, 70.8% precision, and 71.3% sensitivity in

Scenario (1) and with 72% accuracy, 71.5% precision, and 72% sensitivity in Scenario (2).
Results showed that the feature selection did provide significant improvements.

In summary, those studies in our sample addressing the diagnosis of Dengue primarily

focused on binary classification (11); only two studies performed multi-class classification.

Multi-class classification studies sought to classify Dengue subtypes [51] or different levels of

disease severity [52]. The prevalence of binary classification reflects its simpler nature. Multi-

class classification is both more complex to perform and interpret, and consequently results

are often inferior to simpler models. This is reflected in our SLR [51, 52]. Tree based models

(Decision Tree and derivatives) were the most common technique used in Dengue classifica-

tion (10); nine of which used simple Decision Trees, often obtaining better results than other

benchmark models. It is important to highlight that despite tree-based learning algorithms

being broadly used for classification problems due to their simplicity for implementation and

interpretability of results, the usage of imbalanced data sets can skew the performance of such

models, exacerbating inadequacies inherent in the tree splitting criterion [96]. It was noted

that a number of studies likely suffered model overfitting [44, 46]. Further analysis is not possi-

ble due to the lack of detail in their publications, although it should be noted that each of these

studies used the smallest data sets (see Section 3.4). The usage of different data sets and lack of

detail regarding both model configuration, feature selection, and hyperparameter optimisa-

tions made comparisons of these studies difficult. For example, six of the 12 studies [43, 44, 46,

48, 53, 61] did not present any description of their proposed models thus adversely impacting

future reproducibility.

3.3.2 Chikungunya. Only one study in the SLR sample sought to classify Chikungunya.

Hossain et al. [49] proposed a Specialised Belief Rules System (BRBES) to classify Chikungu-

nya using clinical data containing vital signs and symptoms, and considering severity classes as

output (very high, high, medium and low). The BRBES system was compared with a NN, an

SVM and a Fuzzy Logic Based Expert System (FLBES) as well as expert opinions. Due to the

scope of our work, we consider only the ML models for analysis, i.e., NN and SVM. The NN

outperformed the SVM model, obtaining an AUC of 81.1% vs 80.8%. Notwithstanding the

small difference in performance between these two ML models, neither models outperformed

the BRBES system. A significant limitation of this study is the lack of detail on model configu-

rations thereby adversely impacting comparability and reproducibility.

3.3.3 Zika. In relation to the Zika classification, only one study was identified. Veiga et al.

[50] sought to classify suspected cases of CZS using clinical and non-clinical data. The authors

compared five algorithms: kNN, CART Trees, Random Forest, AdaBoost and Gradient Boost.

After performing a Grid Search, only two of the candidate models were selected and described

in the final publication—(1) the Random Forest model was used with a data set without textual

data to address a binary classification (“Discarded cases” and “Somewhat probable”); and (2)
the Gradient Boost model was used with a data set with supplementary textual data to handle a

multi-class output (“Discarded cases”, “Somewhat probable”, “Moderately probable” and

“Highly probable”). For the binary classification, the Random Forest model obtained 91% sen-

sitivity and and F1-Score of 83% for the “Discarded cases” class however exhibited significantly

poorer results for the “Somewhat probable” class with 50% sensitivity and an F1-Score of 61%,.

During the execution of Grid Search, the tree-based models obtained a similar performance

and all were superior to kNN. The small but better performance of Random Forest in relation
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to other tree-based models is probably due to its bootstrapping process that helps to avoid

overfitting when using small data sets as per Group 1 (272 samples).

For the multi-class problem, the Gradient Boost model presented good performance mainly

for the “Discarded cases” class with 91% in all metrics (precision, sensitivity and F1-score). As

the amount of data used in this experiment is greater (1109 samples) than the binary classifica-

tion, the Gradient Boost obtained a better performance. However, Veiga et al. [50] did not pro-

vide details on the proportion of data in each class. As such, it is not possible to analyse whether

any data imbalance impacted the models performance. This is the only study where the code of

the final models are available for download (https://github.com/rafael-veiga/Classification-

algorithm-of-Congenital-Zika-Syndrome-characterizations-diagnosis-and-validation).

3.3.4 Differential arboviral diagnosis. Given the difficulties in the differential diagnosis

of arboviruses discussed in Section 1, it was surprising that only one study was identified that

sought to distinguish between two different arboviral diseases, in this case Dengue and Chi-

kungunya. Lee et al. [53] proposed models to differentiate between DF, DHF and Chikungu-

nya cases. Four experiments were presented—(1) DF and Chikungunya using only clinical

data; (2) DF and Chikungunya using clinical and laboratory data; (3) DHF and Chikungunya

using clinical data only; and (4) DHF and Chikungunya using clinical and laboratory data. For

each classification, a Decision Tree model was developed using R software. Details on model

configuration were not provided. Results suggested that Decision Trees using clinical and lab-

oratory data outperformed the models using only clinical data.

3.3.5 Cross-validation. It is worth noting that a number of studies used cross-validation

techniques to validate and test their models. [42, 45, 47, 50, 52, 61] used k-fold cross-validation

with k = 10; and [60] also used k-fold but with k = 5. Lee et al. [53] was the only study that

applied the leave-one-out (LOO) cross-validation. Commonly, cross-validations are recom-

mended when handling with small data sets, and in an attempt to minimise the learning bias.

LOO cross-validation is a type of k-fold cross-validation in which k is the number of samples

in the data set. Therefore, despite taking advantage of each data point, LOO cross-validation

can be computationally expensive, especially if the data set is large. While Lee et al. had a data

set composed of 1,034 samples, they did not mention anything about the computational effort

needed to execute the experiments.

3.4 What attributes are considered when applying the Machine Learning

and Deep Learning techniques?

3.4.1 Summary of data sets and attributes. Table 2 summarises the data sets used by the

included studies in this SLR by number of records, number of attributes, input for models,

period of the data, and location. While the number of attributes presented in this table were

described as available in a focal data set, in some cases, the studies did not use all of them for

training and testing their proposed models (see Sub-section 3.4.2).

Tanner et al. [42] used a data set comprising 1,200 patient records from Singapore and Viet-

nam with acute febrile illness. The data set is composed of 15 clinical (symptoms and vital

signs) and 26 laboratory attributes. The selected attributes for the Dengue classification model

were PLT, WBC and Lymphocyte count (LYMPH), body temperature, haematocrit count, and

Neutrophil count (NEUT). For the classification of Dengue severity, the selected attributes were

PLT, the crossover value (Ct) of the real-time Reverse transcription polymerase chain reaction

(RT-PCR) for Dengue viral RNA, and the presence of anti-Dengue Immunoglobulin G (IgG)

antibodies.

Fathima and Hundewale [43] used a data set comprising 5,000 records of patients with

Dengue from Chennai and Tirunelveli, India. The data set includes details on 29 patient

PLOS NEGLECTED TROPICAL DISEASES Techniques to support the clinical diagnosis of arboviral diseases: A systematic review

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010061 January 13, 2022 18 / 37

https://github.com/rafael-veiga/Classification-algorithm-of-Congenital-Zika-Syndrome-characterizations-diagnosis-and-validation
https://github.com/rafael-veiga/Classification-algorithm-of-Congenital-Zika-Syndrome-characterizations-diagnosis-and-validation
https://doi.org/10.1371/journal.pntd.0010061


symptoms. The structure of the data set is not provided in sufficient detail to infer the extent to

which the data set is balanced or unbalanced; most of the data would appear to be related to

non-Dengue patients.

Sajana et al. [44] used the data collected from various medical wards of hospitals in Vijaya-

wada, India; it comprises only 20 records with 12 attributes. As no feature selection technique

is referenced in the paper, we assumed that all attributes were used for model training.

Gambhir et al. [45] used clinical and non-clinical data acquired from patients in Delhi from

2015 and 2016. The data set contains 110 records—85 positive Dengue cases and 25 negative

Dengue cases. Each record has 16 attributes, of which nine are clinical data (age, gender,

vomit, abdomen pain, chills, bodyache, headache, weakness, and fever) and the remainder

physical examination/laboratory data (temperature, heart rate, PLT, dengue antigen NS1 or

serology (Immunoglobulin M (IgM), IgG)). In the original work, these data were mistakenly

classified. Gambhir et al. [45] considered age, gender, vomit, abdomen pain, chills, bodyache,

headache, weakness, and fever as non-clinical data; and PLT, temperature, heart rate, dengue

antigen NS1, IgM, IgG, dengue NS1 antigen as clinical.

Sanjudevi and Savitha [46] used a data set composed of 108 records with 17 attributes. The

attributes were not detailed in the paper and no feature selection technique was performed.

Ho et al. [47] used data from the National University Hospital Cheng Kung (NCKUH) in

Tainan City, Taiwan. The data set comprised 4,894 records of clinical and laboratory data

including 2,942 cases of laboratory-confirmed Dengue cases and 1,952 non-Dengue cases. Ho

et al. [47] analysed odds ratios to select four attributes and create a subset of data; two addi-

tional subsets were created with six and 11 attributes based on the initial subset. In the experi-

ments, the data set with all attributes was also used for comparison purposes, however there

was no evidence that more attributes contributed to improved model performance.

Potts et al. [60] used data from 1,384 pediatric patients with Dengue and DHF, with 11 attri-

butes. After initial screening, 1,230 records were included in the analysis—208 cases of DHF,

Table 2. Characteristics of the data sets used to evaluate Machine Learning and Deep Learning models for arboviral diseases classification.

Classification Records Attributes Input for models Period Location

Dengue

Tanner et al. [42] 1,200 41 3 and 5 Not described Singapore and Vietnam

Fathima and Hundewale [43] 5,000 29 Not described Not described India

Sajana et al. [44] 20 12 12 Not described India

Gambhir et al. [45] 110 16 16 2015 to 2016 India

Sanjudevi and Savitha [46] 108 17 Not described Not described Not described

Ho et al. [47] 4,894 18 4, 6, 11 and 18 2015 Taiwan

Potts et al. [60] 1,230 11 11 1994–97, 1999–2002, 2004–07 Thailand

Phakhounthong et al. [61] 1,180 23 5 2009 to 2010 Cambodja

Faisal et al. [77] 210 40 7 Not described Not described

Thitiprayoonwongse et al. [51] 1001 400 6, 8, and 9 Not described Thailand

Arafiyah et al. [48] 213 4 4 2005 Indonesia

Fahmi et al. [52] 14,019 16 10 2016 to 2019 Indonesia

Chikungunya

Hossain et al. [49] 250 5 5 Not described Bangladesh

Zika

Veiga et al. [50] 1,501 13 7 2015 Brazil

Dengue and Chikungunya

Lee et al. [53] 1,034 33 5 2004 and 2008 Singapore

https://doi.org/10.1371/journal.pntd.0010061.t002
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374 of DF, and 648 of Other febrile illness (OFI). Data was collected in Thailand for the periods

1994 to 1997, 1999 to 2002, and 2004 to 2007.

Phakhounthong et al. [61] used a data set comprising 1,225 records related to febrile epi-

sodes in children from Angkor Hospital for Children, Cambodia. From those 1,225 records,

198 were confirmed cases of Dengue; only 38 were Severe Dengue cases. The data set included

information about demographic, clinical and laboratory data. Logistic Regression was used

and these five attributes were selected for model training.

Faisal et al. [77] used a data set with records of 210 patients with 40 attributes, divided into

demographic, clinical, laboratory and Bioelectrical Impedance Analysis (BIA) parameters

measurements to classify risk of Dengue. Laboratory data were used to classify baseline patient

risk and thus create the output attribute for model training. This procedure was performed

using an unsupervised model, SOM. After that, another SOM model was used to perform fea-

ture selection to define the attributes to be used as input for the proposed model; ultimately

seven attributes were selected.

Thitiprayoonwongse et al. [51] used two data sets: one composed of information from 524

patients from Srinagarindra Hospital, Thailand and another with 477 patients from Songkla-

nagarind Hospital, Thailand to classify DF, DHF1, DHF2 or DHF3. The Decision Tree model

selected different attributes for each experiment.

Arafiyah et al. [48] used a medical data set comprising 213 records using only four clinical

data sources—temperature, presence of spotting, presence of bleeding, and tornikuet test. The

complete list of the attributes present in the data set was not described by the authors, so there

is no way to know if or how feature selection was applied.

Fahmi et al. [52] used a data set that was provided by the Disease Prevention and Control

Division in Central Java, Indonesia to classify DF, DHF or DSS. After the verification of the

missing values, selection of relevant attributes, and data normalisation, the final data set com-

prised 14,019 records with 16 attributes including demographic, epidemiological, clinical and

laboratory (hematological) information. Despite having 16 attributes available, after the appli-

cation of the feature selection procedure, only ten attributes remained for model training and

testing based on their importance.

As discussed, only one study addressed Chikungunya classification. Hossain et al. trained

and tested their model using a data set comprising 250 records collected from various hospitals

in Dhaka and Chittagong, Bangladesh. The data set had five attributes indicative of patient

symptoms i.e. fever, muscle pain, joint pain, headache and swelling in the joints, each classified

as high, medium or low intensity.

In relation to Zika classification, Veiga et al. [50] sought to classify suspected cases of CZS

using clinical and non-clinical data. A data set with 1,501 records of live newborns suspected

of microcephaly reported in the Public Health Event Registry (RESP) and the National Birth

Registration System (SINASC) from Brazil was considered. This data set contains information

about demographic, epidemiological, clinical (signs), laboratory (serological and others).

From 13 attributes, seven were used as input for the model. Additionally, there is also textual

data provided by the health professional when registering the newborns’ information in the

system such as reports, descriptions and other possible observations. Veiga et al. [50] separated

the records into two groups where Group 1 contained only clinical and non-clinical data (272

records), and Group 2 containing clinical, non-clinical and complementary textual notes

(1,109 records). The most frequent terms presented in the notes were used to assist the classifi-

cation. Group 2, which considered these textual notes, obtained better results compared to

Group 1.

Lee et al. [53] used demographic, epidemiological, clinical and laboratory data with 1,034

records to train and test their model to distinguish between two different arboviral diseases:
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Dengue and Chikungunya. While 36 attributes are identified in the study, only five were used

for training and testing the model i.e. period of symptoms, fever, fever (duration), bleeding

and PLT. Of the 1,034 records, 917 were related to adult Dengue patients confirmed by Poly-

merase chain reaction (PCR) test, including 55 records related to DHF. 117 were records

related to Chikungunya patients confirmed by RT-PCR. The Chikungunya data were collected

in August 2008, while the Dengue data were collected during the large 2004 Dengue outbreak,

both in Singapore.

It is important to note that none of the included studies explicitly describe or discuss how

they handle imbalanced data (between-class imbalance). Given how the data sets were

reported in the papers, none of the models were trained with a data set with similar number of

records per class, as presented in Table 3). The data set used by Tanner et al. [42] presents this

imbalancing issue in which the DSS class represents only 0.016 of the entire data set while the

non -DF class presents 0.696. A similar situation is found in the data set used by Lee et al. [53]

in which DHF is 0.053 and DF is 0.833. Although not explicitly mentioned, Lee at al. [53]

applied the LOO cross-validation, as described in sub-section 3.3.4, that can be considered an

alternative when evaluating models with imbalanced data sets. According to He et al. [96],

when presented with complex imbalanced data sets, most standard learning algorithms “fail to

Table 3. Distribution of samples per classes.

Classes Samples Proportion�

Dengue

Tanner et al. [42] Non -DF 836 0.696

DF 173 0.144

DHF 171 0.142

DSS 20 0.016

Gambhir et al. [45] Non-Dengue 25 0.227

Dengue 85 0.772

Ho et al. [47] Non-Dengue 1,952 0.398

Dengue 2,942 0.601

Potts et al. [60] OFI 648 0.526

DF 374 0.304

DHF 208 0.169

Phakhounthong et al. [61]�� Dengue 160 0.808

Severe Dengue 38 0.191

Thitiprayoonwongse et al. [51] DF 488 0.487

DHF 1 222 0.221

DHF 2 229 0.228

DHF 3 62 0.061

Fahmi et al. [52] DF 4,870 0.347

DHF 8,540 0.609

DSS 609 0.043

Dengue and Chikungunya

Lee et al. [53] DF 862 0.833

DFH 55 0.053

Chikungunya 117 0.113

�Numbers were rounded.

��There are 982 samples of non-Dengue cases in this data set with an overall total of 1,180 records as shown in Table 2, but as this class was not considered in the

problem, we did not use it for calculating the proportion.

https://doi.org/10.1371/journal.pntd.0010061.t003

PLOS NEGLECTED TROPICAL DISEASES Techniques to support the clinical diagnosis of arboviral diseases: A systematic review

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010061 January 13, 2022 21 / 37

https://doi.org/10.1371/journal.pntd.0010061.t003
https://doi.org/10.1371/journal.pntd.0010061


properly represent the distributive characteristics of the data and resultantly provide unfavorable
accuracies across the classes of the data”. It happens essentially because ML models learn by

reducing the error and do not take into consideration the class proportion. In health, where

the minority class is commonly the positive case for the target disease (or the rare case), it is

desirable that a classifier provides high accuracy for the minority class, without severely

impacting on the performance of the majority class [96]. Three exceptions were identified in

our sample. Gambhir et al. [45] and Ho et al. [47] used data sets in which the number of Den-

gue cases is larger than non-Dengue; and Fahmi et al. [52] used a large data set, in which there

were more DHF cases than DF.

Additionally, the combination of imbalanced data and small sample size issue was also

found in this SLR. For example, Gambhir et al. [45] used a data set composed of 110 records

with 85 positive cases of Dengue and 25 negative cases. Other works also presented a small

data set, such as [44, 46, 48, 49, 77], having less than 250 records each, however none of them

described the distribution of the classes. In such cases, traditional learning algorithms may fail

to use inductive rules over the sample space [96]. When samples are limited, the rules formed

can become too specific, leading to overfitting [96]. This is likely to be the case in Sajana et al.

[44] and Sanjudevi and Savitha [46]. To address these issues, some methods, such as sampling,

cost-sensitivity, kernel-based and active learning [96] are available in the literature.

3.4.2 Attributes of the data sets. Fig 3 presents the types of attributes found in the data

sets described previously. Demographic, epidemiological and clinical (symptoms, signs and

co-morbidities) data were grouped as resource-limited attributes following the terminology

presented by Lee et al. [53]; specific equipment is not specified for these data as they were col-

lected at the time of the appointment. Laboratory attributes (hematological, biochemical and

serological) and others are grouped as well-resourced attributes because they require specific

equipment to be performed.

Table 4 presents a summary of all demographic, epidemiological and clinical data present

in the data set used by the 15 included studies. Despite the focus on studies that used clinical

data as input for the classifiers as per [48, 49], we also found cases in which clinical data was

used together with other types of data, e.g. [42, 44, 45, 47, 50–53, 60, 61, 77]. Fathima and Hun-

dewale [43] and Sanjudev et al. [46] neither provided details about the data set nor the attri-

butes used in their studies. Thitiprayoonwongse et al. [51] only described the final selected

attributes in the data set.

Age, gender, weight and residence (state) were the demographic information present in the

data set described in [45, 47, 50, 52, 53, 60, 77]. The most common clinical data used to classify

arboviral diseases were: abdominal pain, fever, temperature, and bleeding.

Table 5 presents the summary of all non-clinical (laboratory and others) data found in this

SLR As expected, none of the 15 primary studies used only non-clinical data (since these

works were excluded from our SLR). The non-clinical data presented in the Table 5 is quite

Fig 3. Attributes found in the data sets.

https://doi.org/10.1371/journal.pntd.0010061.g003
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Table 4. Summary of all demographic, epidemiological and clinical data presented in data set used by the primary studies.

Attributes [42] [43] [44] [45] [46] [47] [60] [61] [77] [51] [48] [52] [49] [50] [53]

Demographic data

Age ⌀ - ⌀ ✓$ - ✓$ ✓$ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ✓ ✓

Gender ⌀ - ⌀ ✓$ - ✓ ✓$ ✓ ✓ ⌀ ⌀ ✓ ⌀ ✓$ ✓

Weight ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ✓$ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Residence (state) ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓ ⌀

Epidemiological data

Period of symptoms ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ⌀ ✓$

Epidemiological week ⌀ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓ ⌀
Severity ⌀ - ⌀ ⌀ - ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ✓ ⌀

Japanese encephalitis vaccine ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓$ ⌀ ✓ ⌀ ⌀ ⌀
Clinical data

Symptoms

Abdominal pain ⌀ - ✓$ ✓$ - ⌀ ✓ ✓ ✓$ ✓$ ⌀ ⌀ ⌀ ⌀ ✓

Fever ⌀ - ⌀ ✓$ - ✓$ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ✓$

Headache ✓ - ✓$ ✓$ - ⌀ ✓ ✓ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ✓

Myalgia ✓ - ✓$ ✓$ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ✓

Vomiting ✓ - ✓$ ✓$ - ⌀ ✓ ✓ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Arthalgya ✓ - ✓$ ⌀ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ✓$ ⌀ ⌀
Fever (duration) ⌀ - ⌀ ⌀ - ⌀ ✓ ✓ ⌀ ✓$ ⌀ ⌀ ⌀ ⌀ ✓$

Diarrhoea ✓ - ✓$ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ✓

Retroorbital pain ✓ - ✓$ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Weakness ✓ - ⌀ ✓$ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Chills ⌀ - ⌀ ✓$ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Taste alteration ✓ - ✓$ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Joint swelling ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓$ ⌀ ⌀
Anorexia ✓ - ⌀ ⌀ - ⌀ ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Nausea ✓ - ⌀ ⌀ - ⌀ ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Conjunctivitis ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Cough ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Dizziness ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Itching ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀

Jaundice ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀
Sore throat ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Skin sensitivity ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Signs

Temperature ✓$ - ✓$ ✓$ - ✓ ⌀ ✓ ⌀ ✓ ✓$ ⌀ ⌀ ⌀ ✓

Bleeding ✓ - ⌀ ⌀ - ⌀ ✓ ✓ ✓$ ✓$ ✓$ ⌀ ⌀ ⌀ ✓$

Tornikuet test ⌀ - ⌀ ⌀ - ⌀ ✓$ ⌀ ⌀ ✓ ✓$ ✓$ ⌀ ⌀ ⌀
Hepatomegaly ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ✓$ ✓$ ⌀ ✓ ⌀ ⌀ ⌀

Shock ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓$ ⌀ ✓$ ⌀ ⌀ ⌀
Heart rate ✓ - ⌀ ✓$ - ✓ ⌀ ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ✓

Rash ✓ - ⌀ ⌀ - ⌀ ⌀ ✓ ✓ ✓$ ⌀ ⌀ ⌀ ✓† ✓

Pleural effusion ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ✓$ ⌀ ⌀ ⌀
Ascites ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ✓$ ⌀ ⌀ ⌀

Glasgow Coma Score ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓$ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Gestacional age ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓$ ⌀

Head circumference ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓$ ⌀

(Continued)
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diverse. The most common attribute used as input for models was the PLT used in nine stud-

ies—[42, 44, 45, 47, 51–53, 60, 61]. For model training, most non-clinical data hematological

in nature e.g. PLT, WBC and HTC. Dengue IgM, Dengue IgG and Dengue NS1 antigen were

used by Gamhbir et al. [45]; Zika Virus (ZIKV) RT-PCR, Toxoplasmosis, Rubella, Cytomega-

lovirus, Herpes Symplex, and Syphilis infections (TORCHS) serology (others except Zika) and

neuroimaging reports (US, CT, MRI) were used by Veiga et al. [50]. The biochemical data

used in the models were ALT, creatinine and liver size.

Lee et al. [53] compared two cases in relation to the attributes present in their data set: (1) a

resource-limited case in which only data available at the time of hospital presentation was used

(clinical data), and (2) a well-resourced case in which clinical and laboratory data were used

for classification. As per Sub-section 3.3.4, the majority of the best results of the classification

of DF, DHF or Chikungunya was obtained using a set of clinical and laboratory data. These

results demonstrate that the restricted usage of clinical data for multi-classification may not be

as satisfactory as when clinical and non-clinical data is combined. Based on their results, we

also highlight that the use of few attributes (they considered only five attributes) is feasible for

the classification of DF, DHF and Chikungunya with good performance. Regarding the num-

ber of attributes, a similar conclusion was found by Ho et al. [47]. They stated that the addition

of more attributes did not provide any significant improvement in the results in any of their

models, so the subset with only four attributes was able to provide as much essential informa-

tion as possible and can be easily collected with minimal cost. Ho et al. [47] highlight two

major findings: (1) their “high-sensitivity models can be an effective surveillance tool in the pre-
epidemic period” to complement clinical diagnosis, and (2) high-specificity models, as in their

proposal, can be exploited to identify laboratory-confirmed dengue cases at outbreak sites for

real-time monitoring of epidemic trends.

Table 4. (Continued)

Attributes [42] [43] [44] [45] [46] [47] [60] [61] [77] [51] [48] [52] [49] [50] [53]

Plasma leakage ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓$ ⌀ ⌀ ⌀ ✓$ ⌀
Blood Pressure ⌀ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀

Respiratory rate ⌀ - ⌀ ⌀ - ✓ ⌀ ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀
Flush face ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Palpable lymphadenopathy ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀
Birthwieght ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓ ⌀

Capillary refill time ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Comorbidities

HT ⌀ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

NCDs (except HT) ⌀ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Upper respiratory infection ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀

✓: data available in the data set; ⌀: data not available in the data set;$: data used as input for the models; -: data set not described;
†: maternal history of rash. Some atributes were generalized based on knowledge of the authors.

Equivalent terms: Gender [45, 47, 53, 77] or sex [48, 50, 60, 61]; Period of symptoms [52, 61] or time since onset [53]; Severity (non-hospitalized, hospitalized, Intensive

Care Unit (ICU) admission and death); Myalgia [53, 77], bodyache [45, 77] or muscle pain [42, 44, 49]; Artralgya [53] or joint pain [42, 44, 49]; Fever (duration) [53, 60,

61] or days of defervescence [51]; Retroorbital pain [42, 61] or pain behind eyes [44]; Weakness [45, 61] or drowsiness [42]; Taste alteration [42] or metallic taste [44];

Anorexia [53, 60, 77] or loss of apetite [42]; Conjunctivitis [51] or red eyes [42]; Bleeding [42, 48, 51, 53, 60, 77], spotting [48], petechial rash [77], bruising [51], or

hematuria [61]; Rumpel-Leed test [52], R/L test [52] or tornikuet test [48, 51, 60]; Hepatomegaly [52, 77], grown liver [51] or liver enlargement [61]; Heart rate [45, 47],

pulse rate [42, 61] or tachycardia [53]; Rash [42, 51, 53, 61], macular [77], or maternal history of rash [50]; Pleural effusion [51, 52] or pleural effusion index [60];

Respiratory rate [47, 61] or dyspnea [51]; Palpable lymphadenopathy [42] or lymph node enlargement [51]; NCDs include heart disease, stroke, renal injury, severe liver

disease or cancer.

https://doi.org/10.1371/journal.pntd.0010061.t004
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Table 5. Summary of all non-clinical data (laboratory and others) presented in the data set used by the primary studies.

Attributes [42] [43] [44] [45] [46] [47] [60] [61] [77] [51] [48] [52] [49] [50] [53]

Laboratory data

Hematological

Platelet count (PLT) ✓
$

- ✓
$

✓
$

- ✓
$

✓
$

✓
$

✓ ✓
$

⌀ ✓
$

⌀ ⌀ ✓
$

White blood cells (WBC) ✓
$

- ✓
$

⌀ - ✓
$

✓
$

✓ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ✓
$

Hematocrit (HTC) ✓
$

- ⌀ ⌀ - ⌀ ✓
$

✓
$

✓ ✓
$

⌀ ✓
$

⌀ ⌀ ✓

Lymphocyte count (LYMPH) ✓
$

- ⌀ ⌀ - ⌀ ✓ ✓ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ✓

Hemoglobin (HGB) ✓ - ✓
$

⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ✓
$

⌀ ⌀ ✓

Neutrophil count (NEUT) ✓
$

- ⌀ ⌀ - ⌀ ✓ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Lymphocyte percent (LYMPHP) ✓ - ⌀ ⌀ - ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Neutrophil percent (NEUTP) ✓ - ⌀ ⌀ - ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Monocyte percent (MONOP) ✓ - ⌀ ⌀ - ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Atypical lymphocyte percent (ALYMPHP) ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ✓

Monocyte count (MONO) ✓ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Eosinophile basofile count (EOSBAS) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Eosinophile basofile percent (EOSBASP) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Mean corpuscular hemoglobin (MCH) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Mean corpuscular hemoglobin concentration (MCHC) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

MCV ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Mean platelet volume (MPV) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Platelet distribution width (PDW) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Platelet large cell ratio (PLCR) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Red blood cells count (RBC) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Red cell distribution width (RDW) ✓ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Biochemical

Alanine transaminase (ALT) ⌀ - ⌀ ⌀ - ⌀ ✓
$

✓ ✓ ✓
$

⌀ ⌀ ⌀ ⌀ ✓

Aspartate aminotransferase (AST) ⌀ - ⌀ ⌀ - ⌀ ✓
$

⌀ ✓ ✓
$

⌀ ⌀ ⌀ ⌀ ✓

Creatinine ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Albumin ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ✓

Protein ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ✓ ⌀ ⌀ ✓

Urea ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Alkaline phosphatase (ALP) ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Bilirubun ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Potassium ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Sodium ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Serological

Dengue Immunoglobulin M (IgM) (ELISA) ⌀ - ⌀ ✓
$

- ✓ ✓ ✓� ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀

Dengue Immunoglobulin G (IgG) (ELISA) ✓ - ⌀ ✓
$

- ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀

(Continued)
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It is interesting to note that the data sets used are quite different with regard to the number

of samples and attributes. In addition, the included studies did not use similar attributes for

training and testing their proposed models. In general, the included studies did not describe

clinical and non-clinical data in a standardised way, making it difficult to summarise these

Table 5. (Continued)

Attributes [42] [43] [44] [45] [46] [47] [60] [61] [77] [51] [48] [52] [49] [50] [53]

Dengue NS1 antigen (ELISA) ⌀ - ⌀ ✓
$

- ✓ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Toxoplasmosis, Rubella, Cytomegalovirus, Herpes Symplex, and

Syphilis infections (TORCHS) serology†
⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

$

⌀

Zika serology ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓
$

⌀

Dengue antibodies (Hemagglutination-inhibition assay (HAI)) ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Japanese encephalitis virus (JEV) and Dengue Immunoglobulin M

(IgM) (ELISA)

⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Molecular biology

Dengue Reverse transcription polymerase chain reaction (RT-PCR) ✓ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Dengue viral load ✓ - ⌀ ⌀ - ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Chikungunya Reverse transcription polymerase chain reaction

(RT-PCR)

⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓

Others

Dengue antigen NS1 ⌀ - ⌀ ✓
$

- ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Urine protein ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Blood in stool ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Dengue viral isolation ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Urine red blood cells ⌀ - ⌀ ⌀ - ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Medical imaging

Neuroimaging report ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ✓
$

⌀

Chest radiography ⌀ - ⌀ ⌀ - ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀
Bioeletrical impedance

Extracellular Water ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Body Cell Mass ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Reactance ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓
$

⌀ ⌀ ⌀ ⌀ ⌀ ⌀

Others† ⌀ - ⌀ ⌀ - ⌀ ⌀ ⌀ ✓ ⌀ ⌀ ⌀ ⌀ ⌀ ⌀

✓: Data available in the data set; ⌀: Data not available in the data set;$: Data used as input for the models; -: Data set not described;
†: PLT; WBC; HTC; HGB; NEUT; NEUTP LYMPH; LYMPHP; ALYMPHP; MONO; MONOP; EOSBAS; EOSBASP; MCH; MCHC; MPV; PDW; PLCR; RBC; RDW;

ALT; AST; ALP; IgM; IgG; Enzyme-linked immunoassay (ELISA); HAI; JEV; RT-PCR;

�This article searched Dengue’s antibodies on cerebrospinal fluid samples; TORCHS; Others features as dataset models on article [77] were resistance, phase angle, body

capacitance, TRT = TBW/W, intracellular water, total body water, extracellular water, fat mass, body mass index, lean body mass, (ERB) = (ECM/BCM), basal metabolic

rate, ERI = ECW/ICW. To confirm arboviruses diagnosis, some articles used WHO Dengue’s criteria [51] or didn’t specify how the procedure was made [44, 48, 49, 77].

Some attributes were generalised based on knowledge of the authors. Equivalent terms: PLT [42, 44, 47, 53, 60, 61, 77], maximum and minimum PLT [51], or

thrombocytes [52]; WBC [42, 44, 47, 60, 61], maximum and minimal count WBC [51], or leukocyte count [53]; High and low hematocrit [51, 61], initial or diagnosis

hematocrit [52], or when just one measure was made [42, 44, 45, 47, 53, 60]; RDW CV or SV [42]; Protein [53], hypoproteinemia [52] or globuline [51]; Dengue viral

load [47] or Crossover threshold of Crossover threshold of Dengue Virus (DENV) RT-PCR [42].

https://doi.org/10.1371/journal.pntd.0010061.t005
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data without a health professional. Another challenge when analysing the data sets is related to

the lack of detailed description in the included studies. Data description and experiment meth-

odology are fundamental for replicability of studies; in half of the cases, there is no information

about the model configuration. Additionally, although all studies used data sets, none of these

are available for usage further adversely impacting reproducibility.

3.5 What are the metrics being used to evaluate the performance of the

Machine Learning and Deep Learning techniques?

The common metrics used to evaluate a classifier are calculated based on a confusion matrix.

The confusion matrix is a cross table that records the number of occurrences between the true

classification and the classification predicted by the model [97]. It is composed of four values:

• True Positive (TP): The number of values of the principal class that the model predicts right.

• False Positive (FP): The number of values of the principal class that the model predicts

wrong.

• True Negative (TN): The number of values of the secondary class that the model predicts

right.

• False Negative (FN): The number of values of the secondary class that the model predicts

wrong.

Fig 4 presents the metrics used to evaluate the proposed models in the literature. Some

works used more than one metric and are duplicated in the graph. The evaluation metrics

used by the works found in this SLR are: sensitivity, accuracy, specificity, precision, Receiver

Operating Characteristic (ROC) and AUC, and F1-score. Sensitivity and accuracy were used

in most studies included in the SLR sample.

3.5.1 Sensitivity. Sensitivity, also known as recall, was used by seven studies—[42–48, 50–

53, 61]. It defines how well a model correctly predicted TP cases. It is calculated as the number

of TP divided by the sum of TP and FN, as shown in Eq 1.

sensitivity ¼
TP

TPþ FN
ð1Þ

Fig 4. Metrics used to evaluate the models proposed in the literature.

https://doi.org/10.1371/journal.pntd.0010061.g004
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3.5.2 Accuracy. Accuracy was the most common metric used among the studies in this

SLR—[42–48, 50–52, 77]. It is used to find out how much a model is right. It is calculated as

the sum of TP and TN divided by the total of samples, as shown in Eq 2.

accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð2Þ

3.5.3 Specificity. Specificity was used by five studies included in this SLR—[42, 43, 45–47,

51, 53, 61]. This metric determines how well the model correctly predicted TN cases. It is cal-

culated by the number of TN divided by the sum of TN and FP as per Eq 3.

specificity ¼
TN

TN þ FP
ð3Þ

3.5.4 Precision. Precision was used in [44, 48, 50, 52, 61]. This metric defines how many

cases classified as TP actually are TP, and is calculated as the number of TP divided by the sum

of TP and FP, as shown in Eq 4.

precision ¼
TP

TP þ FP
ð4Þ

3.5.5 Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC).

ROC and AUC were used in four studies—[46, 48, 49, 53]. The ROC curve is a graph to ana-

lyse the discriminating ability of the model, that is, how well the model is able to divide

between two classes. It is a graph with the True Positive Rate (TPR), the sensitivity, in the x
axis, and the False Positive Rate (FPR), the complement of the specificity, in the y axis. Based

on ROC, it is possible to calculate the AUC. The AUC summarises the ROC curve in a single

value, aggregating all the ROC thresholds. Its result varies between 0 and 1; an AUC of 0.5 rep-

resents a test without discriminating ability, while an AUC of 1.0 represents a test with perfect

discrimination [98].

3.5.6 F1-Score. The F1-score is the harmonic mean between two metrics: precision and

sensitivity. It is used when the objective is to seek a balance between these two metrics, being

calculated as presented in Eq 5. This metric was used in [44, 48, 50].

F1 � score ¼ 2�
precision� sensitivity
precisionþ sensitivity ð5Þ

To address the imbalanced data issues mentioned earlier, more informative assessment

metrics can be used to evaluate models. These include AUC, precision-recall curves and cost

curves. Notwithstanding suspected imbalances, most of the included studies employed tradi-

tional metrics such as accuracy, sensitivity and specificity. Relatively few (3) used AUC [42,

46, 49].

4 Discussion

In this SLR on the use of ML and DL to support the clinical diagnosis of arboviral diseases, we

found 963 publications, 15 of which fulfilled the inclusion criteria and were subsequently ana-

lysed in detail. We have reported our findings in five main categories: (1) disease focus, (2) ML

and DL technique, (3) ML and DL model design, (4) data sets and attributes, and (5) evaluation

metrics. Comparing the selected studies, even within these categories, due to the variation in
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focal disease and region, ML and DL technique, and ML and DL model configuration, is chal-

lenging. Results are not uniformly presented. Six of the studies [43, 44, 46, 48, 53, 61] did not

provide sufficient details on their proposed models, none of the selected studies provided

access to their data, and only one study [50] provided details of their models online for

download.

Firstly, given the low number of studies, it is important to note that there is clearly a dearth

of research in the use of ML and DL to support clinical diagnosis of arboviral diseases as a

whole. This paucity of research is further exacerbated when one considers that only three arbo-

viral diseases (Dengue, Chikungunya, and Zika) feature in the selected studies, and most of the

papers (12) focus on one disease, Dengue. Arboviruses, such as yellow fever, which did not fea-

ture in any of the selected studies have a significant burden. 47 countries in Africa, Central and

South America have regions that are endemic for yellow fever. For example, in 2013, the bur-

den of yellow fever in Africa alone was estimated at 84,000–170,000 severe cases and 29,000–

60,000 deaths. While Dengue, Chikungunya, and Zika undoubtedly require further study,

there exists a significant need for research in the wider spectrum of arboviral diseases. Given

the similarity in symptoms across arboviruses, there is a surprising paucity of research on ML

and DL to support differential diagnosis using clinical data. One of the most common reasons

for people in low-resource areas to seek healthcare is febrile illness [99]. Such illnesses include

respiratory tract infections, mononucleosis, malaria, and typhoid fever [100]). Similar to arbo-

viruses, they typically require complex laboratory tests for confirmation, and measuring both

sensitivity and specificity can be challenging. Few studies in the SLR sample pursued multi-

class disease classification. Future studies could explore the efficacy of different approaches to

multi-class classification for arboviruses and other febrile illnesses including (1) the develop-

ment of multi-class algorithms, and (2) decomposing a multi-class problem to multiple two-

class (binary) problems as per Zhou et al. [101].

Systems identified for ML and DL diagnosis of arboviruses using clinical data were gener-

ally found to be effective. However, these findings must be tempered with caution. In some

cases, for example, Sanjudevi and Savitha [46] and Sajana et al. [44], the extremely high perfor-

mance metrics suggest model overfitting. In both cases, there is a lack of detail on model con-

figuration, feature selection, and hyperparameter optimisation. In the case of Sajana et al. [44],

the data set is very small.

We note that only one paper made use of a DL architecture, a CNN [47], and no papers

made use of ensemble methods combining DL and ML. DL models are attracting significant

attention in the health domain [102], especially for dealing with unstructured data such as

images, and time series data. However, our findings suggest that previous studies on the classi-

fication of arboviral diseases mostly use tabular data and are dominated by tree-based models.

This is expected since traditional ML models are suitable for this type of data. To make use of

tabular data with DL models, the main challenge is to reshape the data to fit it into the specific

input representation. Commonly, data sets are high-dimensional and very sparse. Conse-

quently, the challenge of reshaping a good input representation is exacerbated [103]. Another

challenge for DL models working with tabular data is related to the scale and distribution of

the features present in the data set. For tree-based models, this aspect is insignificant however

DLs are very sensitive to this issue which can result in vanishing and exploding gradient prob-

lems [103]. Despite these challenges, one can take advantage of the powerful features that DL

can inherently provide. For instance, by using a DL model and associated convolution and

max pooling layers, one can reduce the time and effort involved in manual feature selection, a

time-consuming task commonly used when pre-processing data sets for ML training and test-

ing. Extant studies have proposed the transformation of tabular data to images (matrix) in

order to feed them into a DL model. For example, Alvin et al. [104] proposed a CNN and a

PLOS NEGLECTED TROPICAL DISEASES Techniques to support the clinical diagnosis of arboviral diseases: A systematic review

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010061 January 13, 2022 29 / 37

https://doi.org/10.1371/journal.pntd.0010061


LSTM to detect sepsis in neonates. Their results show that DLs outperformed selected tradi-

tional ML models, such as SVM and logistic regression, suggesting that significant improve-

ments can be achieved with DL if data is reshaped accordingly. Future research should

consider benchmarking the performance of a wider set of DL architectures, both discretely

and as part of ensembles, including Recurrent Neural Networks (RNNs), Deep Belief Networks

(DBNs), and Deep Stacking Networks (DSNs), amongst others, using different techniques for

reshaping the data sets. In particular, the use of Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRU), both types of RNNs, may prove fruitful.

While ML and DL techniques represent a significant opportunity for research and practice,

they pose their own challenges. Two significant challenges are transparency and data availabil-

ity. ML and DL are often referred to as black box models as their inner workings is too complex

for a human to comprehend. As such they have been criticised for their lack of interpretability,

comprehensibility, and transparency. For legal, ethical, and scientific reasons, this is a signifi-

cant issue for high stakes decisions such as clinical diagnosis [105, 106]. As such, there has

been numerous calls for research on explainable ML and AI (sometimes referred to as Explain-

able Artificial Intelligence (XAI)) [105–107] and some small but significant progress has been

made in the use of XAI in clinical diagnosis, albeit not in arboviruses, the focus of this paper

(see, for example, [108]).

A second significant challenge in the diagnosis of arboviral diseases using clinical data is

more logistical and is related to the size and quality of available data sets. Having a sufficient

data set to train and validate ML and DL models is critical. Firstly, none of the studies in the

SLR sample explicitly describe or discuss imbalanced data, a common feature across the stud-

ies. Imbalanced class distribution can result in models biasing towards the majority class

[109]. This problem can be addressed in a number of ways. For example, Chawla et al. [110]

suggest that at the data level, one can apply random oversampling with substitution, random

undersampling, directed oversampling, or oversampling with an informed generation of new

samples. Similarly, Chawla et al. [110] suggest that at the algorithmic level, cost adjustments of

the various classes to counteract class imbalance, adjustments in the probabilistic estimate on

the tree sheet (when working with decision trees), and adjustments in the decision threshold

and based on recognition rather than discrimination-based learning. Secondly, our findings

suggest that most of the data sets in the selected studies were relatively small. One might argue,

too small. The largest, presented in Fahmi et al. [52] comprised only 14,019 records, while the

smallest comprised 20 records [44]. Thirdly, we note a potential data set shift problem. Data

set shift occurs where there is a change of data source from training to testing. Consequently,

there is a difference in the distributions of training and test data resulting in models learned

on the training data failing on the test data [111]. Common types of dataset shift include sim-

ple covariate shift, prior probability shift, sample selection bias, and imbalanced data [112].

Each of these issues impact confidence in results and generalisability but also have practical

implications for their future operational use. Overcoming some of these problems, such as

sample selection bias, requires a coordinated effort by health surveillance systems and

researchers worldwide and greater sharing of clinical data.

Feature selection and hyperparameter optimisation are key steps in the selection and

optimisation of ML and DL models. A significant issue in many of the selected studies was

the lack of detail on whether feature selection and hyperparameter optimisation were used

and if so, what techniques. Only Fathima and Hundewale [43], Faisal et al. [77] and Veiga

et al. [50] reported using a hyperparameter optimisation technique, grid search, to find bet-

ter model configurations. Others [47, 51–53, 61, 77] explicitly reported applying feature

selection techniques to find the attributes that provided the best results for their models.

Eight studies provide no detail at all [42, 45–50, 60]. Assuming these studies did not use
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these search and optimisation techniques, this represents an opportunity for further perfor-

mance improvement.

Our review focused on studies that made use of clinical data in their ML and DL models. In

some cases, this was not sole data source. For example, most of the selected studies used clini-

cal data with other types of data, such as laboratory test results to support the diagnosis of a

given arbovirus [42, 44, 45, 47, 50–53, 60, 61, 77]. Arboviral diseases are common in some of

the poorest and remote regions of the world. Diagnosis based on laboratory tests requires both

the availability of specialised equipment and staff to operate it. Even if available, in some

instances this may add to the lapsed time and complexity of diagnosis. In contrast, a decision

support tool based on clinical data using ML and DL is low-cost and rapid without the need of

specialised resources.

In their guidelines for developing and reporting ML models in biomedical research, Luo

et al. [113] suggest that the following evaluation metrics should be reported—sensitivity, speci-

ficity, positive predictive value, negative predictive value, AUC, and calibration plot. Our anal-

ysis suggests a significant gap between the selected studies and these guidelines. While most

studies evaluated sensitivity, specificity and predictive values, few studies offered comprehen-

sive evaluation across all metrics. For example, only four studies measured performance using

ROC and AUC.

Finally, disregarding the models that seem to present overfitting or inadequate benchmark-

ing, none of the works exceeded an accuracy of 85%. This performance may be explained by a

range of factors including the quality of the training data set, and the absence or poorly exe-

cuted feature selection or hyperparameter optimisation. Notwithstanding, this given the limi-

tations and potential for improvement, we are optimistic that ML and DL offers significant

opportunities for the development of low cost decision support tools to support diagnosis, par-

ticularly in remote and vulnerable areas, often characterised by poverty.

5 Conclusions

This SLR presented an overview of the current literature that applies ML and DL models for

the classification of arboviral diseases as a support for clinical diagnosis. Of the wide range of

arboviruses, ML and DL research to diagnose arboviruses based on clinical data is limited to

the three most common infections—Dengue, Chikungunya and Zika. We identified the main

goals were largely binary classifications. In the case of Dengue, there is evidence of more

nuanced attempts at multi-class classification e.g. Dengue severity and risk. Similarly, there is

some evidence of differential diagnosis both within viruses (e.g. Dengue/Severe Dengue or

Zika/Congenital Zika) and between viruses however such studies are the exception. Although

a limited sample, the majority of included studies focused on ML techniques rather than DL.

Of the former, most were tree-based models (Decision Tree, Adaboost, Gradient Boost, Ran-

dom Forest). The solitary DL model was a CNN, DenseNet. The most common evaluation

metrics were accuracy, sensibility and specificity. Despite evidence of imbalanced datasets,

only three included studies used AUC. In summary, ML and DL research to diagnose arbovi-

ruses is at a nascent level of maturity.

We suggest that having an efficient and comprehensive arboviral diseases clinical decision

support system can improve the quality of the entire arboviral disease clinical process, thereby

increasing the accuracy, precision, and throughput of diagnosis (and mitigating the risk of

misdiagnosis) and associated treatment. It would also help the physicians in their decision

making process and, as a consequence, improve resource utilisation and patient quality of life

as a whole. However, this requires a sustained, focused, and systematic approach to research

that places differential diagnosis and reproducibility at its core. This implies greater
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coordination and sharing of data sets and greater detail regarding model configuration, feature

selection, and hyper-parameter optimisation.

ML, and DL more specifically, have significant legal, ethical, and scientific limitations par-

ticularly with respect to healthcare decision making, not least the black box nature of many DL

techniques. In terms of future research based on the results and open challenges of a SLR, we

highlight the following directions, regarding the diagnosis and classification of arboviral dis-

eases using ML and DL: (1) use of different data types and sources including clinical and

demographic data, structured and unstructured data, for training and testing models; (2)
applications of techniques to address imbalanced data; (3) greater exploration and evaluation

of DL models and ensemble models, comprising ML and DL models, for arboviral classifica-

tion; (4) greater focus on differential diagnosis within and across a wider range of arboviruses;

(5) application of feature selection and hyperparameter optimisation techniques to fine-tune

models; (6) consistent use of a more comprehensive set of evaluation metrics to accommodate

imbalanced data, and (7) an easy-to-access diagnosis decision support system in remote

regions allowing for intermittent connectivity.
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Investigation: Sebastião Rogério da Silva Neto, Thomás Tabosa Oliveira, Igor Vitor Teixeira,

Samuel Benjamin Aguiar de Oliveira, Vanderson Souza Sampaio, Theo Lynn, Patricia

Takako Endo.
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4. World Health Organization. Keeping the Vector Out: Housingimprovements for vector control and sus-

tainable development; 2017.5.

5. Paixão ES, Teixeira MG, Rodrigues LC. Zika, chikungunya and dengue: thecauses and threats of new

and re-emerging arboviral diseases. BMJ globalhealth. 2018; 3(Suppl 1):e000530.6. https://doi.org/

10.1136/bmjgh-2017-000530 PMID: 29435366

6. Kalbus A, de Souza Sampaio V, Boenecke J, Reintjes R. Exploring the influence of deforestation on

dengue fever incidence in the BrazilianAmazonas state. Plos one. 2021; 16(1):e0242685.7. https://

doi.org/10.1371/journal.pone.0242685 PMID: 33411795

7. LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundationsof transmission potential

and vector-borne disease in urban landscapes. Functional Ecology. 2015; 29(7):889–901.8. https://

doi.org/10.1111/1365-2435.12487 PMID: 26549921
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