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Abstract

Background:New therapeutic approaches in neurological disorders are progressing into clinical development. Past failures in
translational research have underlined the critical importance of selecting appropriate inclusion criteria and primary outcomes.
Narrow inclusion criteria provide sensitivity, but increase trial duration and cost to the point of infeasibility, while broader
requirements amplify confounding, increasing the risk of trial failure. This dilemma is perhaps most pronounced in spinal cord
injury (SCI), but applies to all neurological disorders with low frequency and/or heterogeneous clinical manifestations.

Objective: Stratification of homogeneous patient cohorts to enable the design of clinical trials with broad inclusion criteria.

Methods: Prospectively–gathered data from patients with acute cervical SCI were analysed using an unbiased recursive
partitioning conditional inference tree (URP–CTREE) approach. Performance in the 6-minute walk test at 6 months after injury
was classified based on standardized neurological assessments within the first 15 days of injury. Functional and neurological
outcomes were tracked throughout rehabilitation up to 6 months after injury.

Results: URP–CTREE identified homogeneous outcome cohorts in a study group of 309 SCI patients. These cohorts were
validated by an internal, yet independent, validation group of 172 patients. The study group cohorts identified demonstrated
distinct recovery profiles throughout rehabilitation. The baseline characteristics of the analysed groups were compared to a
reference group of 477 patients.

Conclusion: URP–CTREE enables inclusive trial design by revealing the distribution of outcome cohorts, discerning distinct
recovery profiles and projecting potential patient enrolment by providing estimates of the relative frequencies of cohorts to
improve the design of clinical trials in SCI and beyond.
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Introduction

Novel therapeutics for spinal cord injury (SCI) targeting locomotor
recovery are currently in early clinical development.1,2 As animal
experiments are encouraging, the exploration of human applica-
tion is mandated. This process, however, involves several chal-
lenges beyond the establishment of the efficacy and safety of the
therapeutic, with trial design, in particular the appropriate selection
and enrolment of suitable trial participants, crucial for the success
of this translational effort.3,4 Considering the incidence of SCI is
relatively low and its clinical manifestations heterogeneous,5 the
number of suitable individuals eligible for acute clinical trials is
limited. Both aspects hamper the selection and stratification of
study participants and require a well-designed algorithm for the
identification of suitable participants.

Sequential cohort study designs are fairly common and attempt
to maintain participant homogeneity by using, for example, re-
stricted levels of injury severity as a stratification variable. The
disadvantage of this practice is a staggered and therefore some-
times agonisingly slow recruitment process, prolonging the du-
ration of a clinical trial and increasing costs. A prediction–based
stratification approach would enable the enrolment of individuals
with diverse sensorimotor impairments into a more inclusive,
parallel cohort study design. However, this can only be achieved
with suitable stratification algorithms that can identify homoge-
neous groups with respect to prediction of recovery without being
limited to simple injury severity.3,6

Such algorithms must reliably predict spontaneous neu-
rological and functional recovery in order to allow the dis-
tinction of acute SCI patients with differing recovery
trajectories towards predefined outcomes.6,7 In addition, the
knowledge of the recovery profile of secondary outcome
measures of each stratified subgroup would allow a better
characterization of suitable study participants.

We implemented a prediction–based stratification algorithm
in acute (0-15 days after injury) cervical SCI focused on
walking function at 6 months after injury and based on an
unbiased recursive partitioning technique using conditional
inference trees (URP–CTREE).8 This approach (Figure 1) has
the potential to improve the process of successful translation of
promising interventions into clinical applications to mean-
ingfully enhance locomotor function after neurological injury.

Methods

Data Source

The data for this analysis were obtained from the European
Multicenter study about Spinal Cord Injury (EMSCI;
ClinicalTrials.gov Identifier: NCT01571531), a network of
European SCI centres prospectively collecting data from

people with acute SCI over the first year after injury. The
neurological and functional status ≤15 days and 1, 3, 6 and
12 months after injury is monitored using a standardised as-
sessment protocol. The network is ISO–9001 certified, and
assessors are trained to ensure reliability of the collected data.9

Data of adults (≥18 and ≤70 years) with acute cervical
(injury levels C1–T1) SCI, admitted between July 2001 and
April 2018, were extracted from the database. Both traumatic
and ischaemic patients were considered for the analysis, as
recent findings demonstrate a comparable course of recovery.10

The study protocol was approved by the local ethics
committees of participating centres and conducted in ac-
cordance with the Declaration of Helsinki.

Predictors and Outcome Variables

Clinical baseline predictors (first assessment ≤15 days after
injury) and functional outcomes (assessment at 6 months after
injury) were selected according to previously published lit-
erature11 and based on common clinical research interests in
the recovery of walking function. In addition to age at date of
injury, the following items of the International Standards for
Neurological Classification of Spinal Cord Injury12 (ISNCSCI)
were included as predictors: the single neurological level of
injury (NLI), total lower extremity (LEMS) and upper ex-
tremity (UEMS) motor scores and total sensory scores (light
touch [LT] and pin prick [PP] sensation).

The targeted functional outcome for this study was the 6-
minute walk test (6MWT)13 at 6 months after SCI. To understand
the underlying conditions of the stratified cohorts the following
additional outcomes, generally proposed to be meaningful
measures for clinical trials with a focus on walking function,7

were analysed at every assessment timepoint of the EMSCI
protocol (up to 6 months): 6MWT, Spinal Cord Independence
Measure III (SCIM III, mobility items 12–14 [assessing walking
ability on different distances]), LEMS and UEMS.

Patient Populations

A total of 958 patients with acute cervical SCI were analysed.
We extracted three different patient groups from the database:
i) a study group, ii) a validation group and iii) a reference
group (Figure 2).

The study group (N = 309) was used to develop the prediction
model and recovery profiles. Only subjects with complete pre-
dictor and outcome data at all predefined assessment timepoints
(≤15 days, 1, 3 and 6 months after injury) were selected.

The validation group (N = 172) was used to validate the
prediction model. Requirements for inclusion were complete
documentation of predictors ≤15 days and outcomes at 6 months
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Figure 1. Concept overview. Illustrated are the different conceptual steps for the design of an inclusive clinical trial, with parts A and B being
reported in this study, while parts C and D specifically depend on the study intervention. (A) The EMSCI network (https://www.emsci.org)
includes specialized SCI centres performing standardized assessments in acute SCI, (B) that are applied to develop prediction models for the
stratification of patients depending on the targeted primary outcome. The identified cohorts are further analysed in terms of secondary
outcomes and recovery profiles, and the frequency of patients suitable for enrolment. (C) The power of a clinical trial relies on the
appropriate selectiveness of the included cohorts and the expected effect size of a specific intervention. (D) Manifold aspects (e.g. type of
intervention and time after injury) must be considered when designing a clinical trial, including the protocol, feasibility, finances and duration of
a study. EMSCI, European Multicenter Study about Spinal Cord Injury; SCI, spinal cord injury.
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after injury. Individuals already part of the study group were
excluded from the validation group to ensure group independence.

The reference group (N = 477) was used to investigate
whether the study and the validation groups were repre-
sentative of the acute SCI population and if results could be
generalized. Individuals with complete predictor data
≤15 days after injury were selected, excluding those already
included in the study or validation groups.

A detailed explanation of the data plausibility check is
provided in the supplemental material.

As data completeness is known to vary with severity of
injury in SCI and other datasets,14,15 we expected the dis-
tribution of American Spinal Injury Association impairment
scale (AIS) grades in the three groups to be different.
Therefore, we analysed the LEMS ≤15 days after injury and
the 6MWT 6 months after injury in the three groups by AIS
grade (see supplemental material).

Prediction Modelling

The URP–CTREE is a tree–based regression model. It
successively investigates the dependence between defined

predictors and an outcome, with the aim of splitting a
heterogeneous cohort into more homogenouous ones.8 The
result of such an analysis is a set of nodes and a simple
cutpoint–based rule to assign prospective patients to one of
these nodes. Examples of other applications of this method
are provided elsewhere16,17 and the methodology is fully
detailed in Hothorn et al.8 In brief, the URP–CTREE
comprises two steps, which are repeated iteratively until
an a priori–specified stopping criteria is met. Step 1 tests
which predictor (at baseline) shows the strongest statisti-
cally significant association with the selected outcome (at
end–point). If no such association can be found, the algo-
rithm stops without implementing any split in the cohort.
Alternatively, the predictor with the strongest statistical
association is selected (P values are corrected for multiple-
testing) and the algorithm continues with step 2. In this step,
the actual splitting of the cohort is implemented, targeting a
maximal discrepancy in the resulting nodes (i.e. the two
resulting subcohorts are as distinct as possible). Steps 1 and
2 are recursively applied until no more statistically signif-
icant associations between any predictor and the outcome
are found, resulting in a tree–structured model.

Figure 2. Flow chart of patient numbers. Selection criteria used for data presented here, extracted from the EMSCI database on 15th
October 2018. The study group was used to develop the stratification model which was thereafter validated by an internal yet independent
patient cohort (validation group). With the reference group the representativity of the study and validation groups were analysed. EMSCI,
European Multicenter Study about Spinal Cord Injury; SCI, spinal cord injury.
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The performance of this method in terms of identifying
homogeneous cohorts and prediction has been proven robust
and reliable by a recent study by Buri et al.18

Stratification and Distribution of Outcome

With URP–CTREE, the distribution of the outcome is
displayed in the nodes of the regression tree, which vary in
levels of functional performance. Therefore, by analysing
the outcome distribution, spanning from floor to ceiling,
stratification of potential study participants can be
considered.

The nodes with the poorest outcome level (median = 0; i.e.
no recovery of any walking function over the first 6 months
after injury) are referred to as floor nodes.

The threshold for the ceiling nodes must be set for
each clinical outcome individually with respect to sta-
tistical properties. The endpoint threshold for this study
was computed by subtracting twice the established
minimal detectable change (MDC) from the maximally
achievable score/value of the selected outcome, to pro-
vide a sensitive measurement tool. This procedure should
ensure that even in individuals with a good recovery,
further improvements remain detectable and thus may be
attributed to the intervention under investigation. MDCs
of the selected outcome measures are based on published
values (6MWT [45.8 m],19 LEMS [1.87points],20 SCIM
III12-14 [1.96points]

21). For the continuous scaled 6MWT
we used previously published data from healthy control
participants (6MWTmean = 652 m)22 as a maximum
achievable value.

Recovery Profiles

The detailed information on outcome measures from patients
pooled into each of the URP–CTREE’s nodes allow for
comprehensive clinical characterization. This may permit the
further distinction of subgroups when comparing nodes with
similar levels of magnitude of the targeted outcome. All
selected outcomes (6MWT, LEMS, SCIM III12-14 and
UEMS) at all assessment timepoints (≤15 days, 1, 3 and
6 months) were extracted and used to generate recovery
profiles for the individuals categorized into each node of the
URP–CTREE.

Frequency Analysis

To evaluate how often patients eligible for our prediction
model are admitted to the SCI centres of the EMSCI network,
we performed a frequency analysis. A time window of
five years (2013–2017) was defined, in which we pooled the
data from the study, validation and reference groups (N =
359). Individuals were then entered into the stratification
algorithm and allocated to cohorts, and the hypothetical re-
cruitment frequency for each cohort was analysed.

Statistics

URP–CTREE analysis was performed using the computing
environment R (version 4.0.4, Windows),23 using the sta-
tistical package party.24

Data Availability

The data used for this study, including anonymised in-
dividual participant data and a data dictionary defining
each field or variable within the dataset, can be made
available on reasonable request to the corresponding
author (MB). Written proposals will be evaluated by the
authors, who will render a decision regarding suitability
and appropriateness of the use of data. Approval of all
authors and the EMSCI consortium will be required and a
data sharing agreement must be signed before any data are
shared. The code to run the analysis can be found on our
github repository (https://github.com/adriancathomen/R_
code_for_URP-CTREE_manuscript.git). The study pro-
tocol as well as a detailed description of the project is
accessible on the official website of the EMSCI network
(https://www.emsci.org).

Results

Table 1 outlines characteristics and compares the study,
validation, and reference groups. The majority of patients
were male (∼80%), mean age was ∼45 years and midcervical
single NLIs were the most frequent presentation. The vali-
dation and reference groups were found to be comparable in
terms of LEMS ≤15 days after injury, although there were
significant differences for baseline LEMS in AIS C and D
patients between the study group and the other groups
(eFigure 1). However, as the 6MWT at 6 months after injury
for the study and validation groups did not differ by AIS
grades (eFigure 2), we concluded comparison of the three
groups to be valid. The AIS conversion rate of the study
group is provided in eTable 1.

Stratification and Distribution of Outcome

Figure 3 presents the URP–CTREE for the stratification of the
6MWT at 6 months based on data ≤15 days after injury. The
URP–CTREE selected LEMS, PP, and age as predictor
variables. The model indicated inner nodes (# 1, 2, 3, 6, 9
and 10), hence generating seven terminal nodes (# 4, 5, 7, 8,
11, 12 and 13) with a walking function distribution from
very poor to good performance. Nodes 4, 5 and 7 showed
almost none to no ambulatory function, characterized by the
median inability to complete any distance during the
6MWT, representing a floor effect in this group of non–
walkers. Nodes 5 and 7, however, showed partially restored
walking function in approximately 50% of individuals.
To further reveal cohorts with forms of lower extremity
recovery other than ambulation in node 4, a two-stage
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URP–CTREE approach with LEMS as targeted outcome was
performed (eFigure 3). The AIS distribution ≤15 days after
injury revealed individuals with a sensorimotor–complete
injury (AIS A) were predominantly (97%) assigned into
node 4. Approximately a third of patients withmotor complete,
sensory incomplete injuries (AIS B) were allocated to node 5
and generally showed no improvement in walking function,
despite a partial recovery in LEMS. In contrast, based on the
threshold for a ceiling effect, we did not find any node in which
the maximum achievable value for the 6MWTwas exceeded.

To check for the validity of the prediction model, an in-
ternal validation of the URP–CTREE was performed and is
provided in the supplemental material (eFigure 4 and eTable
2). Validation of the study group was done by applying the
decision rules (determined in the URP–CTREE) to the val-
idation group and comparing the corresponding nodes of the
two groups. Similar distributions for 6MWTwithin the nodes
for study and validation subjects were observed.

Recovery Profiles

Figure 4 outlines the recovery profiles for the outcome
measures mapping walking function, LEMS, and UEMS for

each node. The seven cohorts could be divided into three
categories: i) non–walkers (nodes 4, 5, and 7), ii) therapeutic
walkers (able to walk in a therapy setting, but not in daily
living; nodes 8 and 11), and iii) functional walkers (able to
walk in daily living; nodes 12 and 13) according to their
6MWT outcome.

The category of non–walkers (Figure 4(A)) was charac-
terized by almost none or no recovery of walking function (in
terms of 6MWT performance), although patients in nodes 5
and 7 regained some lower limbmotor strength 6 months after
injury as measured by the LEMS. Further differences could
be found in median age and AIS (ranging from AIS A to C;
Figure 3).

In the category of therapeutic walkers (Figure 4(B)),
the difference in LEMS between nodes 8 and 11, with
lower initial values in node 8, disappeared over the first
6 months of recovery. Higher LEMS at ≤15 days did
appear to lead to better ambulatory function at 6 months
(as measured by the 6MWT and SCIM III12–14) in these
patients.

Functional walkers (Figure 4(C)), pooled into nodes 12
and 13, differed at the first two timepoints of assessment
(≤15 days and 1 month) across all outcome measures (except

Table 1. Baseline Group Characteristics.

Study Group Validation Group Reference Group

N = 309 N = 172 N = 477

Cause of injury
traumatic 301 (97.41%) 169 (98.26%) 457 (95.81%)
ischaemic 8 (2.59%) 3 (1.74%) 20 (4.19%)

Sex
male 251 (81.23%) 138 (80.23%) 379 (79.45%)
female 58 (18.77%) 34 (19.77%) 98 (20.55%)

Age
mean years ±SD 43.25 ± 16.22 45.66 ± 14.61 46.91 ± 15.66

NLI
C1 16 (5.18%) 6 (3.49%) 22 (4.61%)
C2 15 (4.85%) 13 (7.56%) 34 (7.13%)
C3 28 (9.06%) 17 (9.88%) 54 (11.32%)
C4 127 (41.10%) 52 (30.23%) 150 (31.45%)
C5 71 (22.98%) 42 (24.42%) 150 (31.45%)
C6 28 (9.06%) 27 (15.70%) 42 (8.81%)
C7 10 (3.24%) 10 (5.81%) 13 (2.73%)
C8 7 (2.27%) 3 (1.74%) 7 (1.47%)
T1 7 (2.27%) 2 (1.16%) 5 (1.05%)

AIS
A 150 (48.54%) 59 (34.30%) 111 (23.27%)
B 41 (13.27%) 28 (16.28%) 43 (9.01%)
C 62 (20.06%) 26 (15.12%) 114 (23.90%)
D 56 (18.12%) 59 (34.30%) 209 (43.82%)

Characteristics of study, validation, and reference groups. NLI and AIS recorded ≤15 days after injury. Further comparison of the three groups (focussing on AIS
grade distribution) is provided in the supplemental material. AIS, American Spinal Injury Association impairment scale; N, number of patients; NLI, neurological
level of injury; SD, standard deviation.
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UEMS), however recovered similarly to full SCIM III12-14
but limited 6MWT at 6 months post–injury.

Frequency Analysis

Figure 5 presents the frequency with which the 359 included
patients, admitted to 26 SCI centres of the EMSCI network
between 2013 and 2017, were allocated to the corresponding
cohorts. Also shown are the relative distributions of various
clinical parameters, including AIS, which is regularly used
for patient selection in clinical trials. An example comparing
the hypothetical selection of patients based on AIS (grade C;

83 patients) to URP–CTREE (Nodes 5–11; 124 patients;
+49%) is highlighted in the figure.

Discussion

Clinical trials aim to recruit an appropriate number of par-
ticipants within a reasonable time frame. This is a major
challenge in acute SCI, but is applicable to all disorders with
low frequency and/or heterogeneous clinical deficits. Here we
report a method that permits inclusive clinical trial designs
while maintaining homogeneous patient cohorts, along with
projected patient enrolments, in acute cervical SCI (Figure 1).

Figure 3. Stratification model for the outcome 6MWT for individuals (N = 309) with a cervical SCI. URP–CTREE for 6MWT at 6 months
after injury (in boxplot with median), using the predefined predictors (age, LEMS, LT, NLI, PP and UEMS) characterizing the neurological and
functional status of patients ≤15 days (acute) after injury and distribution of 6MWT, SCIM III12–14, LEMS and UEMS outcomes at 6 months
after injury, age and AIS grades for each node of the URP–CTREE. Significance level at p < 0.05. 6MWT, 6-minute walk test; AIS, American
Spinal Injury Association impairment scale; a.u., arbitrary unit; LEMS, lower extremity motor score; LT, light touch; N, number of patients;
NLI, neurological level of injury; PP, pin prick; SCI, spinal cord injury; SCIM III12–14, spinal cord independence measure III: items 12–14; UEMS,
upper extremity motor score; URP–CTREE, unbiased recursive partitioning conditional inference tree.
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Identifying homogeneous subgroups in the heterogeneous
population of cervical SCI offers the opportunity to lower the
inter-subject variability of selected participant cohorts, po-
tentially leading to smaller number of participants needed for
an adequate power in a clinical trial.

The selection of participants in SCI trials is often based on
rather gross injury categories (e.g. sensorimotor complete vs in-
complete), which neglect the heterogeneity of clinical deficits and
fail to distinguish conditions that may be amenable to specific
interventions. Ideally, accurate prediction models could be em-
ployed to stratify the heterogeneous SCI patient population with
respect to the potential for neurological and functional
recovery.3,4,7 To this end, different clinical prediction algorithms,
targeting endpoints related to lower extremity function, have been
developed.25-28 To date, however, these algorithms principally
define only dichotomous or ordinal scaled walking outcomes,
which are insufficient in themselves for the development of

identification rules for homogeneous cohorts and do not consider
the full spectrum of endpoint distribution.16 To address these
deficits, and as a proof of concept for future trials, we developed a
robust and reliable statistical predictionmodel,8,18 and applied it to
prospectively gathered patient data from the EMSCI database.
URP–CTREE has recently been investigated in terms of pre-
diction performance and compared to traditional statistical tech-
niques, such as logistic or linear regression, as well as to a novel
machine learning approach, with favourable or equal results for
URP–CTREE.18 Combined with the straightforward interpret-
ability and the simple clinical application, we argue that URP–
CTREE is a suitable approach for clinical trials in SCI.

Study Population

Despite different distributions in acute AIS grades, we were
able to demonstrate that the three analysed patient cohorts

Figure 4. Neurological and functional recovery within different nodes using the 6MWT URP–CTREE. Recovery profiles (in boxplots with
median) are shown over the first 6 months of rehabilitation for the categories of: (A) non–walkers (nodes 4, 5 and 7), (B) therapeutic
walkers (nodes 8 and 11), and (C) functional walkers (nodes 12 and 13). The dotted lines in the recovery profiles indicate the
correspondingceiling threshold. A more detailed description on the computation of the thresholds is provided in the methods section. Ceiling
threshold for: (i) 6MWT = 560.4 m, (ii) SCIM III12–14 = 20.08 points, and (iii) LEMS = 46.26 points. 6MWT, 6–minute walk test; a.u., arbitrary
unit; LEMS, lower extremity motor score; N, number of patients; SCIM III12–14, spinal cord independence measure III: items 12–14; UEMS,
upper extremity motor score; URP–CTREE, unbiased recursive partitioning conditional inference tree.
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(study, validation, and reference groups) were comparable in
terms of LEMS ≤15 days and/or 6MWT at 6 months after
injury. The potential of a bias introduced in the analysis by
defining the different groups based on data availability could
therefore be migitated since we could demonstrate that this
bias only concerns the frequency in which particular patient
types (based on injury severity) occur in the different groups
but not the baseline predictors and/or the corresponding
endpoint outcome.

Stratification and Distribution of Outcome

URP–CTREE resulted in seven nodes covering the 309 in-
dividuals with acute cervical SCI entered into the model.
Overall, the most relevant predictor of outcome of walking
function was the initially preserved LEMS, in line with
previous data.25,29 The LEMS was instrumental for the
stratification of walkers and non–walkers, and also for the
differentiation of the best outcome cohort. Additionally, age
and PP were significant predictors for the 6-month 6MWT
distance. Generally, younger people do better in functional
outcome assessments such as the 6MWTor SCIM III12-14 but
show comparable values to older patients in terms of muscle
strength (LEMS and UEMS). Age seems to be a determining
factor for the distinct potential of functional recovery, similar
to previous reports,30 potentially prolonging the time frame

an individual needs to regain its walking function.31 The
cohorts with almost none to no ambulation after 6 months
were discriminated by the preservation of PP sensation. PP
sensation probably represents a surrogate marker not only for
spinothalamic integrity but also preservation of central spinal
pathways more generally, hence the relation to motor
recovery.32

The distribution of the 6MWT at 6 months revealed floor
effects in nodes 4, 5 and 7. The 6MWT provides excellent
discrimination in good walkers, but does so poorly in indi-
viduals with low walking capacity.33 In contrast, none of the
nodes showed a ceiling effect in the outcome 6MWT com-
pared to values from healthy controls,22 indicating that all
identified cohorts share the potential of further improvement
in the primary outcome. The question remains, however, as to
whether the regained walking capacity in the cohort(s) with
the best outcome will mask the detection of any additional
treatment benefit. Despite some of the nodes presenting a
similar 6MWT distribution at 6 months after injury, it is
essential to notice that these nodes origin from different
baseline characteristics, indicating a considerably different
pattern of recovery. This fact is further displayed in the
varying recovery profiles of secondary outcomes among the
respective nodes.

Validity of the prediction model was confirmed with an
internal validation of the URP–CTREE, since no external

Figure 5. Frequency analysis and relative distributions of patients (N = 359) based on presentation incidence in 26 EMSCI centres between
2013–2017. The pooled data from the study, validation and reference groups over five years (2013–2017) were considered for this
frequency analysis. Above: frequency of patients allocated to the cohorts according to the stratification algorithm. Below: distributions of
general clinical parameters (AIS, gender and age). Green: an example with two different approaches of patient selection for a hypothetical
clinical trial based on initial clinical predictors is highlighted. URP–CTREE nodes 5-11 (N = 124) versus AIS C (motor incomplete but limited
muscle strength; N = 83), with 49% more patients available for inclusion with the URP–CTREE approach. The rationale for selecting nodes
5-11 is based on the promising potential of improvement in walking function due to a specific intervention. On the other hand, only AIS C
patients were selected for inclusion in this hypothetical clinical trial, because (i) considering AIS D patients bears a substantial risk of
including patients with an already good outcome and (ii) considering AIS A and B patients probably results in including patients with a too poor
outcome to meet the requirements of proving a potential treatment effect. AIS, American Spinal Injury Association impairment scale; EMSCI,
European Multicenter Study about Spinal Cord Injury; N, number of patients; URP–CTREE, unbiased recursive partitioning conditional
inference tree.
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source with the required data was available. Similar distri-
butions for 6MWTwithin the nodes for study and validation
groups could be observed. For this reason, and the fact that
the EMSCI database has been compared to another large SCI
database (Sygen),34 and considered comparable,17,35 we
conclude that our results may be confidently extrapolated to a
broader population of patients with acute cervical SCI.

Recovery Profiles

Analysing recovery profiles goes beyond single endpoint
stratification. It enables a more detailed understanding of
different aspects of recovery patterns, in particular for co-
horts with similar primary endpoint distributions. This in-
formation is valuable for the interpretation of results from a
prediction model, as the model itself (targeting only one
outcome) may be insufficient for the final evaluation of a
therapeutic effect. Each outcome has its individual strengths
and limitations in identifying improvements in differing
cohorts.33

In the group of non–walkers, nodes 5 and 7 experienced an
increase in LEMS during rehabilitation. Despite the lack of
walking function in these cohorts, the partial recovery in
muscle strength emphasises the potential for further im-
provement, which may be augmented by an appropriate
therapeutic intervention. Although LEMS increased to a
median of 13 and 32 in these nodes, respectively, median
walking function remained at 0 (Figure 4(A)). This points,
intuitively, to a certain threshold of muscle strength which
must be surpassed in order to regain any walking function. In
this context, the analysis revealed a possible interfering
factor. Individuals allocated to node 7 had a mean age of
63 years, possibly explaining the lack of walking function
despite the comparably high values in LEMS. With in-
creasing age, proportionally greater lower extremity muscle
strength may be required to compensate for the age–related
loss in motor and sensory function.36 Other factors related to
ageing, for instance declining cardiovascular fitness, may also
potentially influence walking function.37

Therapeutic walkers showed comparable recovery
profiles with higher baseline values of LEMS in node 11.
This was associated with slightly better functional out-
comes at 6 months after injury. Initially less–impaired
motor function appears to favour later recovery of
walking function despite an otherwise comparable course
of neurological recovery.

Functional walkers greatly improved in terms of their
neurological and functional outcomes 6 months after injury.
Despite this, differences in baseline characteristics and re-
covery progression could still be identified. The earlier re-
covery of functional outcomes in node 13 (compared to node
12) was based on differences in the initial LEMS, that is, time
to recovery was the main distinction between these groups.
This may mean that therapeutic benefit in functional walkers
is manifested by accelerated recovery and a correspondingly

shorter hospitalisation rather than improvement in ultimate
functional outcomes.

Central cord syndrome (CCS) is a clinical subtype of SCI
diagnosed based on a disproportionate UEMS impairment
compared to LEMS (a minimum of ten points motor score
difference in favour of LEMS has been suggested to support
the diagnosis).38 While no stratified subgroup median met
this criterion, patients meeting this definition of CCS occur
more frequently in Nodes 11–13 (Figure 4).

Frequency Analysis

We presented the frequency at which patients eligible for our
prediction model are admitted to the SCI centres of the EMSCI
network overfive consecutive years (a reasonable time span for
a clinical trial). This analysis permits an estimation of the time
needed to recruit a given number of patients into specific
cohorts and thus estimate the likely speed of recruitment for a
hypothetical clinical trial. Increasing subject homogeneity by
narrowing inclusion criteria eventually results in recruitment of
a lower number of study participants and prolongs the trial
duration to the extent that a clinical trial may no longer be
feasible. Applying broader inclusion criteria mitigates this but
brings with it the risk of inhomogeneous cohorts. Our fre-
quency analysis compared hypothetical recruitment using
cohorts defined using the AIS and URP-CTREE and suggests
that, with the latter, homogeneous cohorts can be maintained
while broadening the pool of eligible patients.

Limitations

The classification into study, validation and reference groups,
based on data availability, may have introduced bias as data
completeness varies with injury severity of patients. Al-
though the total number of patients analysed in the different
cohorts is high, the stratification led in some nodes to rather
small numbers, lowering statistical power and validity.
Further, the assessments in EMSCI do not cover all variables
(e.g. weight or secondary complications) which may influ-
ence outcome. The inclusion of more complex assessments
(e.g. neurophysiological examinations or MRI measure-
ments) could potentially provide additional useful informa-
tion for the URP-CTREE model. However, such assessments
are only performed in highly specialized SCI centres as they
are time consuming and complex, factors which must be
considered when weighing the feasibility of mandating such
investigations in clinical trials. This study focused on a time
interval of ≤15 days after injury and therefore applicability of
these findings to patients with very acute SCI, for example,
≤72 hrs after injury cannot be assumed.39

Conclusion

Using URP–CTREE, homogeneous cohorts of patients with
cervical SCI can be identified with respect to ambulation at
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6 months after injury. Subsequent analysis of secondary
outcomes allows for comprehensive clinical characteriza-
tion of the cohorts identified. Based on modelled stratifi-
cations, prediction rules can be defined, thus potentially
optimising the inclusiveness of clinical trials and shortening
study duration. Such inclusive clinical trial designs can
facilitate future translational research in the field of SCI and
beyond.
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