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Palaeoenvironmental drivers 
of vertebrate community composition in the 
Belly River Group (Campanian) of Alberta, 
Canada, with implications for dinosaur 
biogeography
Thomas M. Cullen1,2* and David C. Evans1,2

Abstract 

Background: The Belly River Group of southern Alberta is one of the best-sampled Late Cretaceous terrestrial faunal 
assemblages in the world. This system provides a high-resolution biostratigraphic record of terrestrial vertebrate diver-
sity and faunal turnover, and it has considerable potential to be a model system for testing hypotheses of dinosaur 
palaeoecological dynamics, including important aspects of palaeoecommunity structure, trophic interactions, and 
responses to environmental change. Vertebrate fossil microsites (assemblages of small bones and teeth concentrated 
together over a relatively short time and thought to be representative of community composition) offer an unparal-
leled dataset to better test these hypotheses by ameliorating problems of sample size, geography, and chronostrati-
graphic control that hamper other palaeoecological analyses. Here, we assembled a comprehensive relative abun-
dance dataset of microsites sampled from the entire Belly River Group and performed a series of analyses to test the 
influence of environmental factors on site and taxon clustering, and assess the stability of faunal assemblages both 
temporally and spatially. We also test the long-held idea that populations of large dinosaur taxa were particularly sen-
sitive to small-scale environmental gradients, such as the paralic (coastal) to alluvial (inland) regimes present within 
the time-equivalent depositional basin of the upper Oldman and lower Dinosaur Park Formations.

Results: Palaeoenvironment (i.e. reconstructed environmental conditions, related to relative amount of alluvial, 
fluvial, and coastal influence in associated sedimentary strata) was found to be strongly associated with clustering of 
sites by relative-abundance faunal assemblages, particularly in relation to changes in faunal assemblage composition 
and marine-terrestrial environmental transitions. Palaeogeography/palaeolandscape were moderately associated to 
site relative abundance assemblage clustering, with depositional setting and time (i.e. vertical position within strati-
graphic unit) more weakly associated. Interestingly, while vertebrate relative abundance assemblages as a whole were 
strongly correlated with these marine-terrestrial transitions, the dinosaur fauna does not appear to be particularly 
sensitive to them.

Conclusions: This analysis confirms that depositional setting (i.e. the sediment type/sorting and associated char-
acteristics) has little effect on faunal assemblage composition, in contrast to the effect of changes in the broader 
palaeoenvironment (e.g. upper vs. lower coastal plain, etc.), with marine-terrestrial transitions driving temporal faunal 
dynamics within the Belly River Group. The similarity of the dinosaur faunal assemblages between the time-equivalent 
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Background
Differences in faunal composition in the Late Cretaceous 
of Western North America have been hypothesized to 
reflect adaptation to latitudinal and altitudinal climatic 
gradients [1–7]. Environmental changes caused by trans-
gression-regression cycles of the Western Interior Sea 
have been suggested to drive the high diversity and high 
faunal turnover rates of non-avian dinosaurs [4, 5, 8–11], 
along with changes in the vertebrate community struc-
ture more generally [12–16]. However, global-scale anal-
yses of dinosaurs, as a whole [17] and at the family level 
[18], indicate that large-scale changes in sea level may 
not have had a significant influence on broad patterns of 
diversity, evolution, or migration. This suggests that puta-
tive patterns in dinosaur ecology and evolution related to 
sea level, such as those described from Western North 
America, may be either the result of other factors, such 
as sampling biases, or may be occurring on a scale that is 
too small to be readily detected in such coarse-scale anal-
yses [4]. Previous studies have suggested that the compo-
sition and diversity of taxa recovered from specific fossil 
localities across Western North America varies depend-
ing on their distance from the palaeoshoreline of the 
Western Interior Sea [1–3, 5, 7, 19, 20]. This has led to 
considerable debate regarding the degree of provincial-
ity/endemism in dinosaur populations [1–7, 9, 10, 14, 15, 
19–28], the putatively high diversity and restricted range 
of dinosaur taxa when compared to modern large mam-
mals [2, 5, 7, 19, 20, 22, 29–37], as well as discussions of 
niche-partitioning in dinosaurs across environmental 
gradients in a single depositional basin [2, 5, 10, 19, 20, 
23, 24, 29, 30, 38–45]. These noted variations in palaeo-
communities over sub-million year timeframes and over 
relatively small palaeogeographic areas suggests that 
many taxa, but particularly large-bodied dinosaurs, may 
have been sensitive to palaeoclimatic and palaeoenvi-
ronmental change [1–3, 5, 7, 9, 43, 44, 46]. However, this 
model has been challenged for reliance on data derived 
from disjunct geographic areas that are poorly con-
strained chronostratigraphically [28]. The ability to test 
hypotheses about dinosaur biogeography, endemism, and 
environmental sensitivity has historically been difficult, 
as many species were collected with only limited geologi-
cal data or stratigraphic information, and were known by 

very low sample sizes [24, 43, 47], though ongoing work 
relocating these sites and incorporating them into the 
broader stratigraphy is ameliorating some of these issues 
[23, 24, 43, 44, 48].

The Belly River Group of southern Alberta is one of the 
best-sampled Late Cretaceous vertebrate fossil deposits 
in the world [44], providing a high-resolution biostrati-
graphic record of terrestrial vertebrate diversity and 
faunal turnover, and has considerable potential to be as 
a model system for testing hypotheses of dinosaur pal-
aeoecological dynamics, including important aspects of 
palaeoecommunity structure, trophic interactions, and 
responses to environmental change [48]. The Belly River 
Group is composed of the Foremost, Oldman, and Dino-
saur Park formations, and spans a large portion of the 
Campanian from a period of time from approximately 
79–74  Ma [1, 49, 50]. The full extent of the Belly River 
Group records two major regional sea level changes 
in the Western Interior Seaway (the relatively shallow, 
inland seaway that at its greatest extent stretched from 
The Arctic Ocean to Gulf of Mexico), the first of which 
is a regressive event in the Foremost and lower Oldman 
formations, and the second of which is a major transgres-
sive event recorded in the uppermost Oldman and Dino-
saur Park formations that marks the boundary between 
the Belly River Group and the overlying Bearpaw For-
mation [49, 50]. The Foremost Formation is the strati-
graphically lowest unit within the Belly River Group, and 
gradationally overlies the marine shales of the Pakowki 
Formation. The earliest Foremost sediments show con-
siderable marine influence, and the formation, going 
from lowest to highest outcrops, is generally composed 
of paralic to non-marine sediments, following a coarsen-
ing upwards succession [50, 51]. Conformably overlying 
the Foremost Formation  is the Oldman Formation. The 
Oldman Formation is broadly considered to represent 
more fluvial, inland conditions, and is made up of series 
of upward fining palaeochannel sandstone successions, 
with a variety of channel top, channel margin, and over-
bank facies [12, 14, 50, 52]. The amount of exposure of 
upper Oldman sediments is dependent on sampling 
location, with southern sites showing a thick succession 
of strata, and northern sites truncated above the mid-
dle Oldman by a regional disconformity [14, 50]. To the 

portions of the Dinosaur Park Formation and Oldman Formation suggests that either these palaeoenvironments are 
more similar than characterized in the literature, or that the dinosaurs are less sensitive to variation in palaeoenviron-
ment than has often been suggested. A lack of sensitivity to subtle environmental gradients casts doubt on these 
forces acting as a driver of putative endemism of dinosaur populations in the Late Cretaceous of North America.

Keywords: Palaeoenvironments, Vertebrate microfossil sites, Palaeoecology, Altitudinal sensitivity, Biogeography, 
Dinosaurs, Faunal turnover, Latitudinal climate gradients, Belly River Group
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north, upper Oldman Formation strata are replaced dis-
conformably by those fo the Dinosaur Park Formation as 
a result of clastic-wedge replacement [50]. The Dinosaur 
Park Formation (DPF) is considered to have a greater 
coastal influence than the underlying Oldman Formation 
(OM), and is characterized by sandy to muddy, alluvial, 
estuarine, and paralic facies [12, 49, 50, 52]. The transi-
tion to more marine environment in the upper Dinosaur 
Park Formation is marked by the deposition of the Leth-
bridge Coal Zone (LCZ), which interfingers with and is 
overlain by marine shales of the Bearpaw Formation [13, 
49, 53]. The pre-LCZ section of the Dinosaur Park For-
mation in Dinosaur Provincial Park (DPP) is thought to 
be broadly time-equivalent to the upper Oldman Forma-
tion in the  Milk River/Manyberries (MRM) regions of 
southern Alberta [14, 50]. The muddy strata of the upper 
Oldman Formation in Milk River/Manyberries are typi-
cally thought to be more environmentally similar to that 
of the middle Oldman ‘Comrey sandstone’ (representing 
a more seasonally arid, inland, fully non-marine fluvial 
landscape) than to the time-equivalent pre-LCZ Dino-
saur Park Formation in DPP (representing a wetter, more 
marine-influenced coastal plain) [14, 49, 50]. This view 
has been questioned by other studies suggesting the time-
equivalent Oldman and Dinosaur Park formations share a 
generally wet, coastal environment and that variations in 
recorded wet-dry signal may represent seasonality and/
or spatial variation in local habitat [22, 54]. Interpreting 
these units is complicated by the existence of heteroge-
neity in their geographic extent and palaeoenvironment 
through time, particularly in their relation to the shore 
of the Western Interior Seaway [5, 8, 19, 20, 24]. Mean-
ingful comparison between these units requires detailed 
chronostratigraphic control to mitigate the confound-
ing effects of temporal changes in community structure. 
This is particularly important because the distribution of 
dinosaurs has been hypothesized to be sensitive to even 
small-scale palaeoenvironment differences, such as those 
between the lower and upper coastal plain settings of the 
time-equivalent Oldman and Dinosaur Park formations 
[5, 14, 24, 50, 52].

Vertebrate microfossil sites from the Belly River Group 
have provided a wealth of knowledge on vertebrate pal-
aeoecology [12, 14, 15, 52, 55, 56]. Vertebrate microfos-
sil sites, sensu [57], are useful in overcoming issues of 
low sample size that commonly hinder palaeontological 
investigations, as they are both abundant and each site 
can preserve large numbers of small teeth, bones, and 
scales of numerous taxa thought to represent much of the 
vertebrate community composition of a given area [12–
16, 53, 55, 58]. These sites are concentrated in a number 
of ways, with most representing in-channel deposits, cre-
vasse splays, low energy ponds, or shoreface lag deposits 

[14, 16, 52, 59, 60]. While vertebrate microfossil sites in a 
given area or formation may represent the same broader 
palaeoenvironment (e.g. upland fluvial system, lowland 
coastal plain, etc.), their method of deposition may dif-
fer (e.g. flow rates, depositional energy, sediment size/
sorting, etc.), and this has led to concerns that microsites 
with differing depositional setting may not preserve com-
parable vertebrate material or faunal assemblages [14, 
59]. These concerns regarding the effect of depositional 
setting on the presence/absence and ranked abundances 
of taxa at a given microvertebrate site have been partially 
ameliorated by a new taphonomic model for microsite 
formation suggesting that depositional setting may not 
play a large role when comparing sites of different type, 
as channel deposits may represent the short-term ero-
sion and local re-deposition of lower-energy pond depos-
its [59]. Microsite studies in the Belly River Group of 
Alberta have so far focused on identifying the taxa pre-
sent across the region, and assessing any broad trends or 
associations that may be present through specific strati-
graphic intervals [8, 12–14, 16, 53, 58, 61]. These studies 
have identified aquatic and terrestrial communities, along 
with some evidence of potential endemism. Additionally, 
they have demonstrated that terrestrial-marine environ-
mental transitions drive at least some of the changes in 
vertebrate faunal assemblages, such as an increase in cer-
atopsians dinosaur abundance correlated with increas-
ing marine influence in the Dinosaur Park Formation of 
DPP [8], and an inverse relationship between sharks and 
lissamphibian abundances in the Foremost Formation 
[16]. However, major quantitative studies have focused 
on either the transgressive or regressive sequences, and 
not the entirety of the Belly River Group, resulting in 
our understanding of the environmental drivers behind 
microsite faunal assemblage structure remaining incom-
plete despite the abundance and quality of the available 
data. In addition, new data suggests that dinosaur spe-
cies found in the Dinosaur Park Formation of DPP are 
also found in the time-equivalent sections of the Old-
man Formation in MRM [22, 24]. These units have been 
described as representing different palaeoenvironmental 
regimes [14, 22, 24, 50]. However, the Oldman Formation 
is palaeoenvironmentally dynamic throughout its his-
tory, shifting from lowland coastal plain to more inland 
braided rivers, and back to lowland coastal plain [14, 16, 
22, 50]. As a result, comparisons of vertebrate microfossil 
sites can provide an important test of habitat sensitivity 
in dinosaurs.

Given the ongoing debate regarding the putatively nar-
row associations of dinosaurs with particular environ-
ments, locations, and/or geological formations, this study 
seeks to use the largest Cretaceous vertebrate microsite 
dataset yet assembled to first confirm the previously 
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suggested associations between faunal assemblages and 
differing environments, and then use those as a proxy 
to test for differences in dinosaur assemblages in the 
time-equivalent sections of the Dinosaur Park and Old-
man formations. We hypothesize that altitudinal (inland 
vs. coastal) effects will act as the largest driver of faunal 
assemblage change, following previous results on more 
limited datasets, with other taphonomic or temporal 
effects acting minimally on the preserved ecological sig-
nal. We also hypothesize that dinosaurs, particularly 
those of large body size, will not be sensitive to altitu-
dinal change as recorded in the Belly River Group. This 
hypothesis is based on the resilience to environmental 
variation and broad latitudinal distributions seen in many 
groups of large mammals today [2, 7, 32], though it is at 
odds with much of the literature on dinosaur environ-
mental associations [1–9, 11, 14, 15, 19–24, 26, 27, 42, 43, 
62].

Methods
Dataset integration and taxonomic consistency
A dataset (Table 1) of vertebrate microfossil taxon abun-
dance for Belly River Group sites (N =  48) was created 
through the merger of multiple literature sources [12–
14, 16, 53, 58, 61]. These sites span the duration of the 
Belly River Group (BRG), and were sampled spatially 
from Dinosaur Provincial Park (DPP) and from the area 
around the Milk River south of Manyberries (MRM) 
(Fig.  1). Some revision to the taxonomic categories was 
required in order to successfully merge these datasets, 
with specific changes related to differences in the inclu-
sivity of taxonomic categories in each source dataset (e.g. 
‘mammals’ vs. genus-level assignment of respective taxa, 
due to a lack of genus resolution in included DPP data; 
inclusion of specimens of Allocaudata within Caudata in 
early studies and separation in later studies, Brinkman 
pers. comm. 2016), updating terminology to reflect more 
recent taxonomic revisions (e.g. Atractosteus to Lepisos-
teus for BRG gars, ‘teleost D’ to Coriops), noting areas of 
potential future taxonomic revision (e.g. Myledaphus to 
Myledaphus + Pseudomyledaphus, as the latter may exist 
in multiple sites under the former name), and revisions to 
identifications based on discussions with the collectors of 
the source microsite data (e.g. Pachycephalosaur material 
being now referred to hypsilophodont, Brinkman pers. 
comm. 2016) [14, 16, 63, 64]. 

Dataset standardization and R‑ vs. Q‑mode cluster analysis
The combined data matrix was rarefied in R using func-
tions contained within the ‘vegan’ package [65]. This was 
done to compare sampling intensity between sites, and 
found that few sample issues exist between sites, though 
most sites are likely somewhat undersampled compared 

to their theoretical optimum. Rarefied data were fur-
ther Wisconsin double standardized after conversion 
to relative abundances, again through use of the func-
tions contained in the ‘vegan’ package [65]. The stand-
ardized relative abundance dataset was converted to the 
percentage-difference dissimilarity index (also referred 
to as Bray-Curtis) [66]. R- vs. Q-mode cluster analyses 
were generated for the resultant dissimilarity dataset, 
with UPGMA linkage, using the ‘tabasco’ function of the 
‘vegan’ R package [65]. DPP and Milk River sites were 
identified on the resulting plots, and major site/taxon 
clusters were highlighted.

The R- vs. Q-mode cluster analysis was repeated for 
three sub-sample analyses focused on the time-equiva-
lent upper Oldman and Dinosaur Park formations, one 
including only dinosaur proportions, another including 
only theropod proportions, and a third including pro-
portions of all non-dinosaurs shared between these sites. 
The first two subsamples contained different source data 
(Additional file 1) for Dinosaur Provincial Park sites than 
the comparisons of total vertebrate assemblages, being 
derived from the re-sampled dinosaur material of Brink-
man et  al. [8] instead of Brinkman [12]. The dataset of 
Brinkman et  al. [8] allows for more detailed taxonomic 
comparisons when restricted to dinosaur data (due to the 
inclusion of several additional small theropod genera), 
but is not considered appropriate for the broader verte-
brate faunal comparisons due to the lack of methodologi-
cal consistency (associated with the targeted nature of 
this additional dinosaur sampling) relative to the faunal 
data for other vertebrate material in Dinosaur Provincial 
Park sites. The non-dinosaur subsample used the same 
source data as the primary analysis of all vertebrates, 
the only difference being the removal of dinosaurs from 
the dataset. This last analysis was performed to confirm 
the effect of dinosaurs on overall trends in the data, and 
avoid possible issues of circularity in interpreting the 
dinosaur data in isolation.

Environmental factors and redundancy analysis
Data relating to the palaeoenvironmental setting (marine, 
transitional, terrestrial—paralic/lower coastal plain, ter-
restrial—alluvial/upper coastal plain), palaeogeography 
(Dinosaur Provincial Park localities, Milk River locali-
ties), stratigraphic interval (Foremost Formation, lower 
Oldman Formation, middle Oldman Formation or ‘Com-
rey sandstone’, time-equivalent upper Oldman and pre-
LCZ Dinosaur Park formations, Lethbridge Coal Zone 
of Dinosaur Park Formation), and depositional setting 
(shoreface deposit, crevasse splay deposit, in-channel 
deposit) were taken from the literature [12–14, 16, 52, 
53, 58, 61] and assembled into an environmental data 
matrix (Additional file 2). Though the palaeogeographical 
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separation between the sampling localities is relatively 
small in the context of latitudinal climate gradients 
(~150 km apart, with Dinosaur Provincial Park at ~50.75° 
latitude and Milk River at ~49.15° latitude), it is of a simi-
lar magnitude to previous analyses of vertebrate end-
emism in microsites [8, 14–16, 53, 58] and endemism/
provinciality of large dinosaur macrofossils [1, 5, 19, 20, 
37, 43, 44]. The environmental matrix and the dissimilar-
ity matrix generated for the cluster analyses were then 
ordinated via redundancy analysis (RDA) in order to 
assess the relationship between each environmental vari-
able and the clustering of site faunal assemblages.

Pair‑wise site assemblage similarity
Relative abundance data of site faunal assemblages were 
split into two smaller datasets corresponding to sampling 
location (DPP vs. MRM), and ordered stratigraphically. 
The proportions of each taxonomic group were then 
plotted and compared using the R packages ‘ggplot2’ and 
‘reshape2’ [67, 68]. Additionally, pair-wise Bray-Curtis 
similarity values were computed for sites from each sam-
pling area using the ‘fossil’ package [69], and plotted as 
curves showing relative changes in site similarity through 
stratigraphy. Average faunal proportions for each strati-
graphic interval were also produced and plotted.

This was repeated in three sub-sampling analyses 
focused on the time-equivalent upper Oldman and Dino-
saur Park formations, one including only dinosaur pro-
portions, another including only theropod proportions, 
and one including non-dinosaur proportions. As with the 
R- vs. Q-mode subsamples, the first two sub-sample anal-
yses used the re-sampled dataset of Dinosaur Provincial 
Park sites (from Brinkman et  al. [8]), for the same pur-
pose of more specific dinosaur taxon comparability, while 
the third sub-sample used the primary dataset (with 
dinosaurs removed).

Results
R‑ vs. Q‑mode cluster analysis
Cluster analyses of sites (Q-mode) and taxa (R-mode) 
were performed and compared to identify major cluster-
ing trends among Belly River Group microsites (Fig.  2). 
Two primary site clusters were identified, with an addi-
tional grade of sites between them. The largest site clus-
ter (yellow highlighted component in Fig. 2) contains all 
Oldman Formation sites (N = 23), along with a majority 
of the pre-LCZ Dinosaur Park Formation sites (N = 14, 
out of a possible 18), and one Foremost Formation site 
(‘SPS’). This cluster contains two large sub-clusters, 
which broadly group sites based on their sampling region 
(either DPP or MRM). The second primary site clus-
ter (blue highlighted component in Fig.  2) contains the 
three stratigraphically lowest Foremost Formation sites 

(‘PHR-1’, ‘PHR-2’, ‘PHRN’) and both Lethbridge Coal 
Zone sites (‘BB96’, ‘L2377’). The grade of sites (green 
highlighted component) situated between the two pri-
mary clusters contains one Foremost Formation site 
(‘PK’) and four of the stratigraphically highest pre-LCZ 
Dinosaur Park Formation sites (‘BB102’, ‘BB119’, ‘BB108’, 
‘BB115’). These stratigraphically high pre-LCZ Dinosaur 
Park Formation sites (along with ‘BB94’, ‘BB75’, ‘BB54’, and 
‘BB120’, situated in the yellow highlighted component of 
Fig. 2) are positioned near the locally-variable conform-
able boundary between the informal lower ‘sandy’ and 
upper ‘muddy’ units within the pre-LCZ Dinosaur Park 
Formation, a transition thought to indicate the accelera-
tion of the transgressive sequence leading into the LCZ 
and Bearpaw Formation [12, 50, 52]. The two primary site 
clusters correspond broadly to the clustering of taxa in 
the R-mode analysis, with the larger site cluster associ-
ated (yellow in Fig. 2) most strongly with lissamphibians 
(e.g. Caudata  +  Allocaudata), dinosaurs (e.g. Hadro-
sauridae, Ceratopsidae, Troodon, Dromaeosauridae, cf. 
Aves), and actinopterygians (e.g. ‘Holostean A’, Coriops, 
Teleostei, Esocidae), and the smaller primary site cluster 
(blue in Fig. 2) most strongly associated with batoids (e.g. 
Myledaphus + Pseudomyledaphus, Ischyrhiza, Protoplat-
yrhina, Rhinobatos), sharks (e.g. Hybodus, Archaeolamna, 
Odontaspidae), and actinopterygians (e.g. Belonostomus, 
Enchodus, Phyllodontidae). The sub-clusters within the 
larger (yellow in Fig.  2) of the two primary clusters are 
broadly similar in taxonomic composition, with the only 
major difference being the lack of several taxa (e.g. Paro-
nychodon, Richardoestesia, cf. Aves) in Dinosaur Pro-
vincial Park sites. The grade of sites (green in Fig. 2) not 
included in the two primary clusters is associated with 
aquatic taxa present to varying degrees in both other 
clusters (e.g. Myledaphus + Pseudomyledaphus, Lepisos-
teus, Eusuchia, Baenidae, Champsosaurus).

Redundancy analysis
Redundancy analysis (RDA) was carried out on the 
percent difference dissimilarity matrix computed 
from the Belly River Group microsite relative abun-
dance dataset, with stratigraphic interval (a proxy for 
temporal change), depositional setting (site-specific 
sedimentological characteristics), palaeogeographic 
sampling location (DPP or MRM), and palaeoenvi-
ronment (as reconstructed for the broader area or 
interval within the geological formation) as explana-
tory factors (Fig. 3). Broad overlap exists in sites pre-
served as crevasse splays or in-channel deposits, with 
these two representing the depositional setting of the 
vast majority of sites (Fig. 3a, red and green polygons), 
though sites preserved as shoreface deposits did clus-
ter separately from other sites (Fig. 3a, blue polygon). 
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Palaeogeographic sampling location was effective at 
separating site clusters in certain situations, such as 
for sites in the time-equivalent portion of the upper 

Oldman and pre-LCZ Dinosaur Park formations 
(Fig. 3b, dark red and blue polygons). When expanded 
to all sites, sampling location did not produce distinct 
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clusters, and broad overlap was found relating to the 
position of lower Belly River Group sites from Milk 
River and upper Belly River Group sites from DPP 
(Fig. 3b, light red and blue polygons). When the strati-
graphic interval of each site was analyzed as a cluster-
ing variable, considerable overlap was found and no 
directional organization could be found that would 
be consistent with a linear relationship through time 
(Fig.  3c). Sites from the lower and middle (Comrey 
sandstone) Oldman Formation (Fig.  3c, purple and 
yellow polygons) plotted adjacent to one another, 
with a broad overlapping distribution of sites from 
the upper Oldman and pre-LCZ Dinosaur Park for-
mations (Fig.  3c, green polygon). Most Foremost For-
mation sites (Fig.  3c, blue polygon) plotted between 
pre-LCZ Dinosaur Park Formation sites from high in 
stratigraphic section (Fig.  3c, sites of green polygon 
with more negative positions on first RDA axis), near 
the boundary with the LCZ, and sites from within the 
Lethbridge Coal Zone itself (Fig.  3c, light blue poly-
gon). The exception to this was the ‘SPS’ site, which 
plotted most closely to lower Oldman Formation sites. 
When using palaeoenvironment as a factor, sites were 
assigned to one of four settings, based on their lithol-
ogy and predominant fauna: (1) marine, (2) transi-
tional, (3) terrestrial (paralic; lower coastal plain), 
and (4) terrestrial (alluvial; upper coastal plain). The 
two terrestrial groupings correspond to the palaeoen-
vironmental conditions from which the vast majority 
of dinosaur fossils are known, and represent the two 
primary environmental regimes discussed in previ-
ous studies of dinosaur environmental sensitivity and/
or provinciality/endemism [1–7, 9, 19, 20, 22–25, 36, 
37, 42–45, 49, 70]. Three non-overlapping grouping 
were obtained: one for sites with palaeoenvironments 
reconstructed as marine (Fig.  3d, blue polygon), one 
for sites reconstructed as transitional and preserving a 
mix of marine and terrestrial sedimentological features 
and taxa (Fig.  3d, purple polygon), and a final group-
ing for sites reconstructed as being terrestrial (Fig. 3d, 
green and yellow polygons). Sites with terrestrial 
palaeoenvironments were further subdivided based 
on their prior associations with more paralic, lower 
coastal plains (Fig. 3d, green polygon) or more alluvial, 
upper coastal plains (Fig.  3d, yellow polygon). These 
further subdivisions followed a clustering pattern con-
sistent with other sites, with more inland terrestrial 
sites plotting further from marine and transitional 
sites than more coastal plain terrestrial sites. Despite 
this trend, considerable overlap exists between more 
coastally influenced terrestrial sites and more alluvial 
terrestrial sites, indicating that the two cannot be con-
sidered truly distinct for the purpose of site clustering.

Pair‑wise site assemblage similarity
Pair-wise Bray-Curtis (percentage-difference)  similarity 
was computed for each consecutive pair of stratigraph-
ically-ordered neighbouring sites from each sampling 
region (DPP and MRM), along with a visual representa-
tion of relative taxonomic group abundance at each site 
(Fig. 4). The Milk River/Manyberries sites (Fig. 4, red box 
at right) range stratigraphically from the Foremost For-
mation to the upper unit of the Oldman Formation (time-
equivalent to the pre-LCZ Dinosaur Park Formation in 
DPP), and the Dinosaur Provincial Park sites (Fig. 4, blue 
box at left) stratigraphically range from the middle Old-
man Formation (‘Comrey sandstone’) to the Lethbridge 
Coal Zone. Pair-wise similarity curves are relatively sta-
ble for much of the sampled intervals in both DPP (Fig. 4, 
blue curve) and MRM (Fig.  4, red curve), ranging from 
approximately 50–80% similarity. Two exceptions to this 
stability exist, one during the regressive phase recorded 
near the end of the Foremost Formation in MRM sites 
(Fig. 4, near base of red curve) and the other during the 
transgressive phase in the Lethbridge Coal Zone near the 
boundary between the Belly River Group and the overly-
ing Bearpaw Formation in DPP sites (Fig. 4, near top of 
blue curve). In both of these cases, site similarity dropped 
to approximately 10–20%. Trends recorded across rela-
tive abundances of taxa in individual sites (Fig.  4, DPP 
sites in blue box at left and MRM sites in red box at right) 
and in formational average taxon abundance (Fig. 4, top 
right) both show that the site similarity drop in the Fore-
most Formation was associated with large reductions 
in relative abundances of chondrichthyans and large 
increases in relative abundances of lissamphibians, with 
the inverse seen in the similarity drop in the Lethbridge 
Coal Zone.

Sub‑sample analyses of time‑equivalent sites
Using three subsets of the broader relative abundance 
dataset, with re-sampled values of dinosaurs from Brink-
man et al. [8] in place of Brinkman [12] for the first two, 
R- vs. Q-mode cluster analyses and pair-wise assem-
blage similarity analyses were performed for dinosaur-
only (Fig.  5), theropod-only (Fig.  6), and non-dinosaur 
(Fig.  7) components of the assemblage. These subset 
comparisons were made only for sites in the overlapping 
stratigraphic intervals of each sampling area, namely the 
middle (‘Comrey sandstone’) Oldman Formation, and the 
upper Oldman Formation and pre-LCZ Dinosaur Park 
Formation.

In the dinosaur sub-sample (Fig.  5), hadrosaurs consti-
tuted the vast majority of assemblage relative abundance 
in almost all sites from both Dinosaur Provincial Park and 
Milk River. The only exception to this was the DPP ‘BB54’ 
site, which clustered away from all other sites (Fig.  5A). 
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With the exception of hadrosaurs, no single dinosaur taxon 
was found to be driving large-scale site clustering, though 
increased Troodon relative abundance seems to drive the 
finer-scale clustering of two MRM sites (‘RDS’ and ‘CBC’) 
and a DPP site (‘BB71’), and relative abundance of anky-
losaurs drives the clustering of two DPP sites (‘BB86’ and 
‘BB100’) and one MRM site (‘PLS’). Unlike in the cluster 
analyses of the broader vertebrate assemblages, there is 
less distinct clustering of sites by sampling region (Fig. 5a, 
MRM sites indicated by red circles and DPP sites indicated 
by blue triangles). Pair-wise site similarity for dinosaur 
assemblages in the sub-sampled interval is relatively stable 
for both DPP and MRM, ranging approximately 40–80% 
similarity (Fig. 5b, DPP sites in blue box and represented 
by blue similarity curve and MRM sites in red box and 

represented by red similarity curve). The only deviation 
from this trend is a drop to approximately 20% similarity 
for sites neighbouring ‘BB54’, which as noted above rep-
resents an apparent outlier due to a lower relative abun-
dance of hadrosaurs, and much higher relative abundances 
of ceratopsians and Richardoestesia (Fig. 5b). Formational 
average abundances of dinosaurs (Fig. 5c) do not show any 
major shifts in assemblage between the middle Oldman 
Formation sites and the sites of the time-equivalent upper 
Oldman and pre-LCZ Dinosaur Park formations, nor is 
there considerable difference in assemblages between 
the DPP and Milk River localities. The only exceptions 
to this are a moderate increase in ceratopsians in DPP 
between the middle Oldman Formation (~1% relative 
abundance) and time-equivalent pre-LCZ Dinosaur Park 
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Formation (~7% relative abundance), a shift also found in 
the equivalent intervals of the Milk River sites (~4 to ~7% 
relative abundance, respectively). In the middle Oldman 
Formation and time-equivalent upper Oldman Formation 
of Milk River, there were also changes in small theropod 
relative abundances, with saurornitholestines increas-
ing slightly (~1 to  ~5%), and Troodon going from absent 
to present (with relative abundance in the upper Oldman 
Formation of ~1%).

The theropod-only sub-sample analyses (Fig.  6) pro-
duced similar results to the sub-sample of dinosaurs. 
Most sites did not show any strong signal from a par-
ticular taxon driving clustering patterns (Fig. 6a), though 
a few clustered together due to their greater associa-
tion with tyrannosaurids and Richardoestesia (‘BB120’, 
‘BB115’, ‘BB75’, BB119) or with cf. Aves (‘BB61’, ‘CN-2’, 
‘ORS’, ‘HS’). As with dinosaurs, the site similarity curves 
of the theropod sub-samples from DPP and MRM are 
very similar (Fig. 6b), both staying within a range of ~30 
to  ~80% similarity. The lower bound of that similarity 
range related to sites neighbouring those with very lit-
tle theropod material (e.g. ‘BB120’, ‘BB75’, ‘BB115’, and 
‘BB119’). The formational average theropod relative 
abundances (Fig. 6c) in DPP show no appreciable differ-
ences, with slight increases in proportions of tyrannosau-
rids and Richardoestesia, and slight decrease in Troodon. 
In MRM, there are more considerable differences in for-
mational average relative theropod abundances, with sau-
rornitholestine proportions greatly increasing, Troodon 
appearing in the upper Oldman Formation while not 
being found in the middle Oldman Formation, and all 
other taxa proportionally decreasing slightly.

The non-dinosaur sub-sample analysis (Fig.  7) pro-
duced similar results to the non-marine components of 
the R- vs. Q-mode analysis of all microsite data (Fig.  2, 
yellow square). Clustering of sites based on their prove-
nience was apparent, though sites did not cluster exclu-
sively based on being from DPP or MRM (Fig. 7a). Sites 
from MRM clustered more closely to the majority of DPP 
sites than a number of DPP sites (e.g. ‘BB106’, ‘BB117’, 
‘BB121’, ‘BB94’, ‘BB75’, ‘BB119’, ‘BB102’), with those latter 
sites forming a cluster more similar to each other than 
to any other site. This cluster was associated the propor-
tion of particular actinopterygians (e.g. Lepisosteus, Par-
atarpon, Acipenseriformes, Belonostomus), and turtles 

(e.g. Basilemys, Baenidae, Trionychidae). Two sites, both 
stratigraphically high in the DPF and close to the LCZ, 
were associated with batoids (e.g. Myledaphus + Pseudo-
myledaphus), Basilemys, and in one case sharks (Hybo-
dus, in ‘BB115’). As in other analyses, ‘BB54’ grouped as 
something of an outlier, and was here associated strongly 
with ‘Holostean A’ and ‘Holostean B’. Other DPP sites 
were broadly associated with many taxa, though in par-
ticular with actinopterygians (e.g. Coriops, ‘Holostean A’), 
baenid turtles, and lissamphibians (e.g. Caudata + Allo-
caudata). Sites sampled from MRM as a whole were dis-
tinguished from DPP mainly due to an even stronger 
association with lissamphibians (e.g. Caudata + Allocau-
data) and certain actinopterygians (e.g. esocids, teleosts), 
though particular MRM sites were also distinguished 
based on their association with taxa that were either 
absent or in low abundance at other sites, particularly 
those from DPP. For example, Adocus and Chiloscyllium 
are strongly associated with the ‘CS’ site, though absent 
or in very low abundance in most sites. One MRM site 
(‘BMC’) clustered as an outlier, and was distinguished 
through a suite of taxa (e.g. chelydrid turtles, mammals, 
anurans, squamates). Both of these outlier sites (‘BB54’ 
and ‘BMC’) have been noted in previous research to be 
sedimentologically distinct from other sites, possibly 
representing an exception to the general trend of depo-
sitional setting having a relatively small effect on micro-
site assemblage structure [14, 52]. Site similarity curves 
for DPP and MRM (Fig. 7b) were very similar, and very 
stable, both fluctuating around 60% similarity for much 
of the sampled interval. The only prominent exception 
to this came at the top of the time-equivalent interval in 
DPP, where similarity began to steadily drop, reaching 
approximately 40% similarity by the top of the sampled 
interval. Overall proportions of major taxonomic groups 
in DPP and MRM during this interval (Fig. 7c) were simi-
lar, with the notable exception being the higher propor-
tion of batoids in DPP (<20%) when compared to MRM 
(<5%).

Discussion
Drivers of faunal assemblage clustering in the Belly River 
Group
Our results broadly support the conclusions of previ-
ous studies such as Brinkman et al. [14], expand on their 

See figure on next page. 
Fig. 5 a R-mode vs. Q-mode cluster analysis of dinosaur component of Belly River Group microsites from the time-equivalent interval of the Old-
man and Dinosaur Park formations of Dinosaur Provincial Park and Milk River/Manyberries. Dinosaur Provincial Park sites indicated with blue text and 
triangles. Milk River/Manyberries sites indicated with red text and circles. b Pair-wise Bray-Curtis similarity of Dinosaur Provincial Park (blue square) and 
Milk River/Manyberries (red square) microsite dinosaur relative abundance assemblages through lithostratigraphic record of time-equivalent Oldman 
and Dinosaur Park formations. c Formational average proportions of each dinosaur group in sampled regions. Taxonomic groups, site identifications, 
and other relevant information noted in legend
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work to include sites from both MRM and DPP in a 
series of analyses, and more thoroughly test the role that 
various abiotic factors play in structuring the preserved 
faunal assemblages. The results of the R- vs. Q-mode 
cluster analyses (Fig. 2), RDA analyses (Fig. 3), and pair-
wise site similarity comparisons (Fig. 4) for the full sam-
ple of microsite faunal assemblages of MRM and DPP 
indicate that palaeoenvironmental changes, particularly 
marine-terrestrial transitions, are responsible for the 
most significant changes in faunal assemblage structure, 
and that other factors like site depositional setting, rela-
tive stratigraphic position within the Belly River Group, 
and palaeogeographic sampling location played a lesser 
to negligible role. While depositional setting (Fig.  3a) 
appears superficially to explain site clustering, it should 
be noted that the only depositional setting that did not 
display considerable overlap with others were shore-
face deposits, and each site characterized as a shoreface 
deposit was also characterized as preserving a primarily 
marine palaeoenvironment. Of the three depositional 
settings analyzed there was broad overlap in sites charac-
terized as crevasse splays or in-channel deposits (Fig. 3a), 
which is consistent with palaeoenvironment (Fig.  3d) 
driving site clustering, as there is also considerable over-
lap in terrestrial sites, all of which in this sample are pre-
served as either in-channel or crevasse splay deposits. 
The differing depositional characteristics of these ter-
restrial sites are therefore not having a strong effect on 
the preserved faunal assemblage. Palaeogeographic sam-
pling location appears to also have some effect on faunal 
assemblage structure, at least within sites from the time-
equivalent interval of the Oldman and pre-LCZ Dinosaur 
Park formations of Dinosaur Provincial Park and Milk 
River (Fig. 3b). In that context, the DPP and MRM sites 
formed distinct clusters, though this separation did not 
hold when expanded to the complete sample of Belly 
River Group microsites. The separate time-equivalent 
DPP and MRM clusters provide further support to the 
hypothesis that at least some of the differences in micro-
site faunal assemblage structure is the result of endemism 
related to environmental variation across the palaeolan-
dscape [12, 14]. However, the distinct clustering of these 
sites may also be partially related to the absence of sev-
eral taxa (e.g. Paronychodon, cf. Aves, Richardoestesia) 
in the DPP microsite data that are moderately abundant 

in MRM sites, despite these taxa being reported in the 
Dinosaur Park Formation [71]. This effect is similarly 
seen in the PHRN site (Fig.  2) being associated with 
‘Theropoda indet’ material (alongside the numerous 
marine chondrichthyan taxa that primarily characterize 
the site) due to this taxonomic category only existing for 
this site (based on the source data).

Overall, the results of these analyses for the entire Belly 
River Group microsite database build on prior research 
conducted on this subject [8, 12–14, 16, 53, 58, 61], and 
serve to more thoroughly and quantitatively establish 
the patterns that have been observed in this system. It 
is not particularly surprising that changes in sea level in 
the Belly River Group acted as a strong driver of environ-
mental and faunal assemblage change, as the most signifi-
cant change in faunal assemblage during these intervals is 
the inverse proportional change in chondrichthyans and 
lissamphibians, which is almost certainly related to the 
degree of marine preference (or lack-thereof in the lat-
ter case) in these taxa [16, 72, 73]. However, it is impor-
tant to quantify and understand the exact nature of these 
trends, as these data form the baseline for future com-
parisons and facilitate the testing of more hotly-debated 
questions, such as the environmental sensitivity of dino-
saurs and the effects that more subtle environmental var-
iation have on local palaeocommunity structure.

Altitudinal and latitudinal sensitivity of dinosaur 
assemblages
The sensitivity of dinosaur populations to changes in alti-
tudinal (distance from palaeoshoreline) and latitudinal 
environmental gradients has been the subject of consid-
erable debate for over 30  years [1–9, 11, 15, 23, 26, 27, 
42–46, 55, 62, 70], and though it has been questioned [17, 
18, 22, 28, 74], it remains one of the primary explanations 
for patterns observed in the evolution and distribution 
of dinosaurs throughout the Late Cretaceous of western 
North America. A focused sub-sampling of the time-
equivalent interval of the Oldman and Dinosaur Park 
formations within the larger Belly River Group micro-
site abundance dataset facilitates a controlled and direct 
test of dinosaur assemblage changes across differing pal-
aeoenvironments (Figs.  5, 6), while also allowing com-
parisons to the non-dinosaur component of the broader 
vertebrate assemblage (Fig. 7).

(See figure on next page) 
Fig. 6 a R-mode vs. Q-mode cluster analysis of theropod component of Belly River Group microsites from the time-equivalent interval of the Old-
man and Dinosaur Park formations of Dinosaur Provincial Park and Milk River/Manyberries. Dinosaur Provincial Park sites indicated with blue text and 
triangles. Milk River/Manyberries sites indicated with red text and circles. b Pair-wise Bray-Curtis similarity of Dinosaur Provincial Park (blue square) and 
Milk River/Manyberries (red square) microsite theropod relative abundance assemblages through lithostratigraphic record of time-equivalent Oldman 
and Dinosaur Park formations. c Formational average proportions of each theropod group in sampled regions. Taxonomic groups, site identifications, 
and other relevant information noted in legend
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Within dinosaurs (Fig. 5) there is broad assemblage sta-
bility, despite the sampled regions representing differing 
terrestrial environments (lower coastal plain vs. upper 
coastal plain/inland alluvial fan). In both DPP and MRM, 
hadrosaurs dominate the preserved dinosaur assem-
blages, often representing over 80% of relative abundance. 
A moderate increase in ceratopsians is noted through 
time in DPP, though across time-equivalent intervals the 
proportional difference between ceratopsians in DPP 
and MRM is negligible. This stability between sampling 
areas is also generally seen in the theropods (Fig. 6), with 
Troodon representing the main exception, as it is not pre-
sent in the earliest MRM site, appearing there later than 
in DPP. This was also noted by Brinkman et al. [14], and 
was attributed to migration/range-expansion. The later 
appearance of Troodon in MRM, along with an increase 
in saurornitholestine material from the middle to upper 
Oldman Formation in MRM, may be a genuine change in 
theropod assemblage that is not seen in DPP, or it may 
be a result of sampling issues, as the middle Oldman For-
mation of the MRM area is only represented by a single 
site (‘ORS’). The non-dinosaur component of the verte-
brate faunal assemblage was relatively stable across much 
of the sampled interval, although there were considerable 
differences in the relative abundances of taxa between 
DPP and MRM (Fig.  7), with batoids forming a much 
larger component of the overall fauna in DPP. Unlike 
the pattern shown in the broader vertebrate assemblages 
(Fig.  7), there does not appear to be strong cluster-
ing according to sampling region in dinosaurs (Figs.  5a, 
6a), suggesting that the palaeogeographic signal in the 
broader analysis is due to abundance differences (e.g. 
batoids) or rare/endemic taxa of non-dinosaurian affili-
ation (e.g. lissamphibians, turtles, etc.). The similarity 
of faunal assemblages, and particularly dinosaur assem-
blages, within the two terrestrial palaeoenvironmental 
settings (coastal plain vs. alluvial/inland) indicates that 
these subtle variations in terrestrial palaeoenvironment 
may have less effect on faunal assemblage structure than 
previously suggested [1, 12, 14], a position supported by 
recent research on ceratopsids in the Oldman Formation 
of the Milk River/Manyberries region [22]. It is also pos-
sible that the palaeoenvironmental interpretation of these 

formations and sampling areas is more complex than 
originally described [50], though, pending future geologi-
cal revisions, there is currently no reason to think this 
is the case. The relative similarity of the dinosaur faunal 
assemblages of DPP and MRM, and how those contrast 
to the differences seen in the rest of the vertebrate fau-
nal assemblage between these areas and throughout the 
extent of the Belly River Group, runs counter to the long-
standing idea that dinosaurs, including large bodied taxa 
like hadrosaurs and ceratopsians, are sensitive to rela-
tively small environmental changes across the palaeolan-
dscape, and that this sensitivity is the cause of the large 
diversity of geographically or formationally restricted 
taxa known from the Late Cretaceous of western North 
America [1–8, 11, 19–24, 27, 39, 43, 70].

Conclusions
The results of this study demonstrate that palaeoenvi-
ronmental setting is the primary driver of differences in 
vertebrate faunal assemblages throughout the Belly River 
Group, with palaeogeography/palaeolandscape acting as 
another factor in structuring these assemblages. Depo-
sitional setting and stratigraphic interval do not have 
particularly strong effects on the preserved faunal assem-
blage, confirming the results of other recent studies [14, 
59].

The sub-sample analyses of dinosaur and theropod 
assemblages, and their comparisons to the broader ver-
tebrate assemblages, suggest one of two possible con-
clusions: either (a) dinosaurs are not sensitive to subtle 
changes in altitudinal and latitudinal palaeoenvironmen-
tal gradients, and/or (b) the differences in environment 
between the pre-LCZ Dinosaur Park Formation of DPP 
and the upper Oldman Formation of MRM have been 
overstated. The higher proportion of batoids in DPP than 
MRM across this same interval suggests that the more 
coastally-influenced terrestrial environment of DPP is 
genuine, providing evidence against the long-held idea 
that dinosaur communities were particularly sensitive 
to small-scale environmental gradients, such as paralic 
(coastal) to alluvial (inland) regimes within a single depo-
sitional basin. Further research is required to fully answer 
this question, though it is possible that consistently high 

(See figure on next page.) 
Fig. 7 a R-mode vs. Q-mode cluster analysis of non-dinosaur component of Belly River Group microsites from the time-equivalent interval of the 
Oldman and Dinosaur Park formations of Dinosaur Provincial Park and Milk River/Manyberries. Dinosaur Provincial Park sites indicated with blue text 
and triangles. Milk River/Manyberries sites indicated with red text and circles. b Pair-wise Bray-Curtis similarity of Dinosaur Provincial Park (blue square) 
and Milk River/Manyberries (red square) microsite non-dinosaurian vertebrate relative abundance assemblages through lithostratigraphic record of 
time-equivalent Oldman and Dinosaur Park formations. c Formational average proportions of each non-dinosaurian vertebrate group in sampled 
regions. Taxonomic groups, site identifications, and other relevant information noted in legend
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rates of evolution and niche partitioning among species 
within each of the sampled dinosaur families were more 
responsible for the high diversity and frequent turno-
vers in dinosaur taxa throughout the Late Cretaceous of 
North America than any particular sensitivity to subtle 
environmental change.
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BRG: Belly River Group; DPF: Dinosaur Park Formation; DPP: Dinosaur Provincial 
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