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Abstract
So far many optimization models based on Nash Bargaining Theory associated with reser-

voir operation have been developed. Most of them have aimed to provide practical and effi-

cient solutions for water allocation in order to alleviate conflicts among water users. These

models can be discussed from two viewpoints: (i) having a discrete nature; and (ii) working

on an annual basis. Although discrete dynamic game models provide appropriate reservoir

operator policies, their discretization of variables increases the run time and causes

dimensionality problems. In this study, two monthly based non-discrete optimization models

based on the Nash Bargaining Solution are developed for a reservoir system. In the first

model, based on constrained state formulation, the first and second moments (mean and

variance) of the state variable (water level in the reservoir) is calculated. Using moment

equations as the constraint, the long-term utility of the reservoir manager and water users

are optimized. The second model is a dynamic approach structured based on continuous

state Markov decision models. The corresponding solution based on the collocation method

is structured for a reservoir system. In this model, the reward function is defined based on

the Nash Bargaining Solution. Indeed, it is used to yield equilibrium in every proper sub-

game, thereby satisfying the Markov perfect equilibrium. Both approaches are applicable

for water allocation in arid and semi-arid regions. A case study was carried out at the Zayan-

deh-Rud river basin located in central Iran to identify the effectiveness of the presented

methods. The results are compared with the results of an annual form of dynamic game, a

classical stochastic dynamic programming model (e.g. Bayesian Stochastic Dynamic Pro-

gramming model, BSDP), and a discrete stochastic dynamic game model (PSDNG). By

comparing the results of alternative methods, it is shown that both models are capable of

tackling conflict issues in water allocation in situations of water scarcity properly. Also, com-

paring the annual dynamic game models, the presented models result in superior results in

practice. Furthermore, unlike discrete dynamic game models, the presented models can

significantly reduce the runtime thereby avoiding dimensionality problems.
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Introduction
Inefficiency of classical conflict resolution techniques [1–6] in dealing with conflicting issues in
water allocation among different users have drawn attention to utilizing innovative alternatives
for resolving conflict. A number of approaches such as Nonlinear Programing [7, 8], Compro-
mise Programming [9–11], Analytic Hierarchy Process [12, 13] and Fuzzy Set Analysis [14–
16] have been utilized to deal with conflict situations.

Game theory as another approach for conflict resolution has been broadly applied in water
resource management [17–25]. The applicability of Game Theory to water resources manage-
ment and conflict resolution was reviewed by Carraro et al. [26] and Madani [27] through a
series of non-cooperative water resource games. Similar studies have been conducted by Parra-
chino et al. [28] and Zara et al. [29], evaluating the application of cooperative game theory to
water resources and environmental issues. In another study by Madani and Dinar [30], a num-
ber of cooperative game theoretic solutions (i.e. the core, Nash-Harsanyi, Shapley, and nucleo-
lus) are formulated and applied through a numerical groundwater example. Considering
applied cooperative solutions, they evaluate how common pool resources users share the gains
obtained from cooperation efficiently and fairly.

In the context of game theory, Nash bargaining is a typical game introduced by Nash [31]
applicable to model conflict situations. Subsequently, a Nash Bargaining Solution (NBS) is a
solution (i.e. Pareto efficient solution) to this game. Harsanyi [32] developed an equilibrium
solution for an n-person bargaining problem based on an initial Nash equilibrium solution for
the two-player case. According to Thomson [33], Nash’s solution is generally accepted as the
typical framework for bargaining problems. So far, many researchers have utilized NBS to deal
with conflict situations in different water-related problems. In the area of water quality NBS
has been utilized in a number of studies [34–36]. Regarding optimal reservoir management
also NBS has been used for conflict resolution [37–40]. Karamouz et al. [3] used Nash product
for formulation of the objective function of a reservoir water allocation model and used resil-
iency and vulnerability indices to evaluate the performance of optimization algorithms. Results
showed the significance of the application of conflict resolution models, such as the Nash the-
ory in the regional scale especially in complicated water supply systems.

A number of discrete dynamic models based on Nash Bargaining Theory have been
extended to provide an original way to overcome problems by taking into account the interac-
tion between different objectives, behaviors and preferences of water users. Kerachian and Kar-
amouz [35] created a stochastic dynamic model for conflict resolution in reservoirs and river
basins. The objective function was defined based on the expected value of the Nash product.
Another attempt based on the same approach was conducted by Ganji et al. [17, 18, 41] to
develop a discrete stochastic dynamic model to simulate the competition between water users
downstream of a reservoir. All these models are powerful in dealing with a dynamic game
problem but suffer the setback of high computational effort in getting appropriate solutions
[42]. Additionally, in the same context, most of the recent continuous approaches are known
as powerful tools for generating operating policies. However, many of the developed models
have been structured annually. Compared to the models which work on a monthly basis, this
can lead to inefficiencies in reservoir operation.

In this study two continuous dynamic optimization models are developed using Nash bar-
gaining theory. The principal aim is to introduce monthly continuous dynamic approaches
applicable to single reservoir systems in order to maximize long-term utility associated with
reservoir management and water users. Due to the continuous form of the state variable, these
approaches will not suffer from the curse of dimensionality. Also they result in practical operat-
ing policies compared to annual dynamic structures. The first model employing constrained
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state formulation introduced previously by Fletcher and Ponnambalam, [43], provides an opti-
mization approach for water allocation in arid and semi-arid regions. The objective function is
structured based on NBS and optimized subject to the statistical moments (The first and sec-
ond moments) of the storage state variable of a reservoir system. The second model is a
dynamic approach structured based on continuous state Markov decision models. We employ
the collocation method to solve this model. The presented model was developed based on a
previous study by Homayounfar et al. [44]. The presented model results in monthly operating
policies distributing limited available water among different users using NBS. The Zayandeh-
Rud reservoir system in central Iran is selected to demonstrate the capabilities of the presented
models in comparison with the results of the annual form of the dynamic game model, (i.e. sec-
ond presented model) [42], a discrete stochastic dynamic game [18], and a Bayesian Stochastic
Dynamic Programming (BSDP) [45] model of reservoir operation.

As an outline of the present research, first, the theory of Constricted state formulation is
presented and the objective function and corresponding constraints of the dynamic model
(first model) created based on this theory are introduced. Afterwards, the Markov decision
Process is briefly presented as a dynamic solution to deal with conflict in water allocation in
reservoir system. Then, the theoretical framework of the second model and corresponding
solution (collocation method) is presented. The model adjustment for monthly use and the
model structure associated with the second model will be explained as the final part of the
methodology section.

Methodology

Optimization model for the dynamic of single reservoir
Theory of Constricted state formulation. Fletcher and Ponnambalam, [43] introduced a

stochastic optimization model to provide an efficient management in reservoir system opera-
tion with an acceptable level of reliability. The structure of the aforementioned method was
similar to Stochastic Dynamic Programming. However, the state variables (reservoir storage)
were non-discrete, thereby a continuous dynamic optimization method was formed. Statistical
parameters, the first and second moment of the storage variable (mean and variance of the res-
ervoir storage) play important roles in characterizing the probability distribution of the storage
variable. Using these parameters as exerted constraints in the model not only provides an
explicit consideration to the bounded storage variable in the reservoir system but also the
model would not involve any discretization of the system variables.

Regarding the preceding study conducted by Fletcher and Ponnambalam, [43], the first and
second moments of the storage stage are calculated and taken into account as constraints for
an optimization problem. Considering the continuity equation for the reservoir system, Eq 1,
and the indicator function, Eq 2, the first and second moments of the storage state variable, Eq
3 and Eq 4 respectively, are derived.

st ¼ st�1 þ ðIt þ ZtIÞ � Rt ð1Þ

1½sminðtÞ;smaxðtÞ�ðst
^ Þ ¼ 1 for sminðtÞ � st

^ � smaxðtÞ

0 otherwise
ð2Þ

(

Where st and st-1 represent the water storage level in reservoir at time t and t-1 respectively.
Rt is the water release decision, It is the long term average of monthly inflow into reservoir, smin

(t) and smax(t) are, respectively, minimum and maximum amount of water storage in reservoir
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and ƞIt is the random component associated with the inflow at time t.

EðstÞ ¼ Eðst�1Þ þ

1

2
ð�erf ð� ðsmaxðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
Þ

�erf ð� ðsminðtÞ � ðIt � RtÞ � Eðst�1ÞÞ
2ðVarðZtIÞÞ1=2

ÞÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

½It � Rt �

þ 1

2
ð1þ erf ð� ðsmaxðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
ÞÞ

( )
½smaxðtÞ � Eðst�1Þ�

þ 1

2
ð1� erf ð� ðsminðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
ÞÞ

( )
½sminðtÞ � Eðst�1Þ� ð3Þ

EðstÞ2 ¼ Eðst�1Þ2 þ

1

2
ð�erf ð� ðsmaxðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
Þ

�erf ð� ðsminðtÞ � ðIt � RtÞ � Eðst�1ÞÞ
2ðVarðZtIÞÞ1=2

ÞÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� ½ðIt � RtÞ2 þ VarðZt
IÞ þ 2Eðst�1Þ � ðIt � RtÞ�

1

2
ð1þ erf ð� ðsmaxðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
ÞÞ

( )
½smaxðtÞ � Eðst�1Þ�

þ 1

2
ð1� erf ð� ðsminðtÞ � ðIt � RtÞ � Eðst�1ÞÞ

2ðVarðZtIÞÞ1=2
ÞÞ

( )
½sminðtÞ � Eðst�1Þ� ð4Þ

The symbols erf() and Var() are, respectively, the error function and variance and illustrated
as follows:

erf ðxÞ ¼ 2ffiffiffi
p

p
Zx

0

e�t2dt ð5Þ

VarðxÞ ¼

Xn

i¼1

ðxi � �xÞ2

n
ð6Þ

In the Eq 3 and Eq 4, E(st) and E(st)
2 are the first moment (Mean) and second moment (Var-

iance) of the storage variable. Further detailed explanation regarding the extension of the first
and second moment equations and constrained state formulation is available in studies done
by Fletcher and Ponnambalam [43].

Objective Function of the continuous optimization model. In this method, the long-
term variation of the state variable are imposed on the optimization model through constraints
stated by Eq 3 and Eq 4. Therefore, the optimal value of long-term utilities corresponding to
water users and reservoir management are achieved from the optimization. Since the objective
function should have a conflict resolution structure, we defined the function based on the Nash
product. In order to maximize the long-term average of the Nash product function, the first
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moment of Nash function is calculated. (Eq 7).

Objective function ¼ EðLnðUðstÞÞ þ
Xn

i¼1

LnðUðxiÞÞ ð7Þ

where, E() is the expectation of the function and Ln() is the natural logarithm. Also xi and U
(xi) are respectively allocated water to the water user i and the corresponding utility functions.
St and U(st) are the reservoir storage in state t and the corresponding utility function. In order
to estimate Eq 5 the ninth order Taylor series approximation is used.

Constraints on the continuous dynamic model. Constraint of the minimum and maxi-
mum allocated water to each sector (Eq 8)

0 � xi � xi;max ð8Þ

where xi and xi,max are respectively allocated water and maximum allocated water to each
sector.

a. Constraint of the maximum and minimum total released water.

Rmin � R � Rmax ð9Þ
where Rmin and Rmax are, respectively, minimum and maximum allowed release water and

R is the total monthly release water.

b. Constraint of total available water

Xn

i¼1

xi � R ð10Þ

c. Constraints of the first and second moments related to the first and last months of the year.
These constraints guarantee that reservoir condition at the beginning of each year is similar
to the end of the previous year.

Eðs1Þ ¼ Eðs13Þ ð11Þ

Eðs1Þ2 ¼ Eðs13Þ2 ð12Þ

where in Eq 11 and Eq 12, s1 and s13 are, respectively, reservoir storages in the last month
and first month of every two consecutive year.

d. The Eq 3 and Eq 4 are also contributed into constraints as well.

Continuous Dynamic Optimization model and corresponding collocation
solution

Dynamic view of conflict in water allocation in reservoir system. Problems dealing with
conflict in water consumption among different users based on experts’ views can be defined as
both static and dynamic cases. Even though applying a static frame for a problem makes it eas-
ier to solve, the dynamic nature of the problem will be ignored. In this content and regarding
conflict in reservoir operation and water allocation, the sequential nature of the reservoir man-
agement decisions, together with the inherent randomness of natural water inflows explain the
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frequent modeling of reservoir management problems as Markov decision processes and their
optimization by stochastic dynamic programing.

When an allocation problem along an infinite time horizon is under discussion, the life time
utility function can be presented by Eq 13. The main goal is to maximize the overall water
users’ utilities (Us). In this equation, vectors x = {xi, i = 1. . ., n} and U(xi) denote allocated
water to different water users and the utilities produced by using the allocated water, respec-
tively.

VtðSt; εtÞ ¼ Maxx1t ;...;xnt ; fUsðx1t ; . . . ; xnt ;Rt; tÞ þ gE½Vtþ1ðgðSt; It; εtÞÞ�g ð13Þ

where: t shows the time step of the system, St and Rt are the reservoir storage and water release
at time t and It is the inflow. Moreover, γ is the discount factor and Vt(St) states the indirect
utility function (Value Function) at time t. On the right side, g(St, It, εt) states the transition
equation (Eq 14) and εt is the factor by which the randomness associated with inflow discharge
is imposed and is called exogenous random shock (this parameter is the same as ƞIt being
already defined in section (2.2.1)). Also E() denotes the expectation of the value function.

gðSt; It; εtÞ � Stþ1 ¼ St þ ðIt þ εtÞ � Rt ð14Þ

Eq 13 is known as the Bellman equation. The first component in this equation represents
the utility derived from immediate consumption at any given time whereas the second compo-
nent represents the value of optimal lifetime consumption starting one period from state t.

In this context, the multiplicative form of utility functions of water users (Ux(xt
i)) and reser-

voir operator (Us(St)), which is known as the NBS, is considered as the intermediate objective
function (Eq 15).

Intermediate Objective Function ¼ Qn

x¼1ðUx;t � dxÞ � ðUs;t � dsÞ ð15Þ

In this equation, dx and ds represent minimum allocated water to water users and minimum
water level in the reservoir, respectively. The main aim is to maximize this product in every
proper sub-game over the planning horizon.

Collocation method for continuous dynamic model. The value function can be written
as a linear combination of a set ofm linearly independent basis functions (φ1, φ2, φ3,. . ., φj)
associated with St (storage as the state variable) and unknown basis coefficients (c1, c2,. . ., cj):

VtðSt; εtÞ �
Pm

j¼1cjφjðStÞ ð16Þ

Considering the collocation method, many interpolation schemes can be employed to
approximate the functional equation. Here, one general and practical scheme, namely Cheby-
chey Polynomial and approximation is applied to approximate the functional equation [46].

Chebychev approximation function. Chebychev polynomials are associated with a family
of orthogonal polynomials described by Judd [47]. Eq 17 is to normalize the domain to the
interval [–1, 1], with the Chebychev polynomials defined as in Eq 18:

z ¼ 2 � ðSt � SminÞ=ðSmax � SminÞ � 1 ð17Þ

φjðStÞ ¼ Tj�1ðzÞ
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where,

T0ðzÞ ¼ 1

T1ðzÞ ¼ z

T2ðzÞ ¼ 2z2 � 1

T3ðzÞ ¼ 4z3 � 3z

..

.

TjðzÞ ¼ 2zTj�1ðzÞ � Tj�2ðzÞ

ð18Þ

The linear combination ofm nonlinear equations andm unknowns (Eq 15) can be substi-
tuted for the value function in Eq 13. This replacement results in Eq 19:

Pm
j¼1cjφjðStÞ ¼ Maxx1t ;...;xnt ; fUsðx1t ; . . . ; xnt ;Rt; tÞ þ gE½Pm

j¼1cjφjðgðSt; It; εtÞÞ�g ð19Þ

To compute this optimization problem the Envelope Theorem can be applied [48, 49].
Miranda and Fackler [46] stated that the policy function is associated with the mean of the

random variable in the polynomial optimal control model. Accordingly, in order to compute
the expectation term practically in Eq 10, the mean of the random variable (εt) is taken into
account in the state transition function. As a result, the transition equation associated with the
stochastic problem turns into the form used in the deterministic model and consequently can
be solved similarly.

There are a number of numerical solution methods to cope with nonlinear equation prob-
lems such as Newton and quasi-Newton methods [50–52]. In this study, we have used the
Newton method to solve this problem.

Model adjustment: way to introduce a monthly structure. Using the collocation method
to solve Eq 19 results in annual operating policies for a reservoir system and does not evaluate
changes in water level in reservoir during the year. In continuous frameworks, the reward func-
tions, Us(xt

1, . . .,xt
n, Rt; t), associated with different months change over the course of the year.

Therefore, the second part of the right-hand side, g
Pl

k¼1

Pm
j¼1 wkcjφjðgðSt; It; εtÞÞ

h i
, cannot be

used as an approximation for the rest of the year in its current form. To overcome this issue,
the second part of the Eq 19 is modified and divided into two parts, as shown in Eq 19

X12

Mi¼M

Xl

k¼1

Xm

j¼1
wkcjφjðgðSt; It; εtÞÞ

h i
Mi

" #

¼
Xl

k¼1

Xm

j¼1
wkcjφjðgðSt; It; εtÞÞ

h i
Mi¼M

þ
X12

Mi¼Mþ1

Xl

k¼1

Xm

j¼1
wkcjφjðgðSt; It; εtÞÞ

h i" #
ð20Þ

In Eq 20, the left-hand side shows the optimal approximation of value functions for the
time interval starting from state t+1 (M) up to the end of the year. On the right-hand side, the
first part is the value function approximation related to state t+1 while the second part repre-
sents the value function approximation from state t+2 to the end of the year. Combining Eq 20
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and Eq 19 results in Eq 21:

Xm

j¼1
cjφjðStÞ ¼ Maxx1t ;...;xnt

(
Usðx1t ; . . . ; xnt ;Rt; tÞ þ

Xl

k¼1

Xm

j¼1
wkcjφjðgðSt; It; εtÞÞ

h i

þ
X12

Mi¼Mþ1

Xl

k¼1

Xm

j¼1
wkcjφjðgðSt; It; εtÞÞ

h i" #)
ð21Þ

Model Structure. In order to describe structure of the model, considering Fig 1, we first
illustrate the steps to solve Eq 19 annually. Then, the algorithm with which different months
will be connected together will be explained by Fig 2.

Fig 1 provides an illustration on the sequential steps to determine the aforementioned values
(i.e. optimal value function and optimal operating policy) annually. The model is comprised of
three interconnected cycles to determine the share of different water users, optimal water
releases (x’s) and unknown coefficients (c’s) respectively. For this purpose, taking initial
unknown coefficients into account, the optimal water releases are calculated and used in a
recursive algorithm to update unknown coefficients (cycles 1 and 2, Fig 1). Meanwhile, to
determine the optimal water releases by means of the Envelope Theorem, we need to know
water shares associated with every user. Therefore, employing NBS the corresponding values
(i.e. allocated water share to every user) are determined (cycle 3, Fig 1) and used to update x’s
and determining optimal water releases in every trial.

Fig 2 shows the algorithm with which different months will be connected. As the first step,
Eq 21 is solved for the last month of the year (December) thereby determining the optimal
value function, Vt(St), and corresponding operating policy, xt

i� associated with December.
Then, moving backward, the same parameters are calculated for other months of the year (Step
4, Fig 2) taking into account of value function approximations associated with later months
and determined in previous steps. This procedure is continued up to the point when optimal
water allocation policies associated with each month remain constant for two subsequent itera-
tions. For example, allocation policies associated with the third month of year (March) calcu-
lated through sequential steps 22 and step 10. For this purpose, a predefined small value of
tolerance is considered (see Tol in Fig 2).

Applying this approach makes it possible to use Eq 19 in reservoir system operation on a
monthly basis and determine the optimal value function, Vt(St), and corresponding optimal
operating policy, xt

i�, for each month of the year.

Fig 1. Sequential steps to solve Eq 19.

doi:10.1371/journal.pone.0143198.g001
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Results and Discussion

Case Study
In this study, the Zayandeh-Rud river basin (Fig 3), which is one of the major river basins in
Iran with a catchment area of 4,200 square kilometers, is used as a case study to examine the
proposed conflict resolution method. The Zayandeh-Rud reservoir with an effective capacity of
1,250 million cubic meters located at the upstream of the river basin provides water for approx-
imately three million people who live in the city of Isfahan and surrounding suburb areas. In
addition, the reservoir supplies water for the domestic, industrial and agricultural sectors as
well. Apart from that, the reservoir is important in providing water for hydropower, recrea-
tional use, and in stream flow. The great demand from various sectors exerts pressure on the
river basin especially during summer when the river basin fails to meet the demand. In addi-
tion, the effects of climate change have made this problem even worse in the recent decade.

A great deal of research has been conducted on the Zayandeh-Rud basin. Zahraie and Hos-
seini [53], developed an optimization model based on a genetic algorithm (GA) considering
variations in water demands. The efficiency of their proposed model was assessed by perform-
ing a long-term simulation of the Zayandeh-Rud reservoir. Madani and Marino [54], applied a
system dynamic framework to develop the Zayandeh-Rud Watershed Management and Sus-
tainability Model (ZRW-MSM). Homayounfar et al. [44], developed an annual non-discrete
stochastic dynamic game model for reservoir operation and its corresponding solution was
based on the collocation method. In this study, the logarithms of the 30-year monthly inflows
to the reservoir were modeled with the Thomas-Fiering model. The model reproduces the
mean and variance of flows in each of the months and the month to month correlation of the
flows. Using these statistical parameters, stream flows are reproduced for every month along
the year and utilized for reservoir optimization. The model was structured based on two water
user groups (the agriculture and the miscellaneous group which consists of industrial, domestic
and environmental sectors), plus the reservoir operator.

Fig 2. Illustration of solving Eq 21 for eachmonth along the year moving backward.

doi:10.1371/journal.pone.0143198.g002
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Utility function development
The utility data of water users and the resource manager (reservoir operator) was obtained via
previous research conducted by Ganji et al. [17, 18].

The water allocated to different water users is shown by xt = {xt
i, I = 1, 2} Subsequently,

Ux(xt
i) and Us(St) denote the utilities associated with various users and the reservoir operator,

respectively. Utility functions are structured based on quadratic equations. Table 1 presents the
coefficients of the quadratic equations of utility values (a�, b� and c�) applied in Eq 22 for both
users (agriculture sector and other sectors). Eq 23 also shows the quadratic statement applied
for the reservoir operator. The value of a utility function reaches the maximum 1 (100%) when
the volume of allocated water (xt

i) comes to the maximum water requirement. Conversely, the
value of utility hit the lowest level (0.0%) when the vector (xt

i, i = 1, 2) reaches the boundaries
as presented in Table 2. Moreover, the value given to the outside of the boundaries is zero.

UxðxitÞ ¼ a�xit2þ b�xit þ c� xiMax � xit � xiMin

0 Otherwise
ð22Þ

(

UsðStÞ ¼ 3:25ðStÞ2 þ 3:41ðStÞ þ 0:005 1400 � St � 150;

0 Otherwise
ð23Þ

8>>>>><
>>>>>:

Reliability Indices
In this study, reliability is the key deciding point to evaluate the performance of the model
based on the decisions by the reservoir operator and water users. The volumetric reliabilities of
the reservoir system is utilized to evaluate the capability and efficiency of the proposed model.

Fig 3. Zayandeh-Rud river basin and reservoir location.

doi:10.1371/journal.pone.0143198.g003
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For water allocation, the volumetric reliability of the reservoir system, called total reliability, is:

RT
v�all ¼

100

nyear

Pnyear
i¼1

Yearly supplied water
Yearly demand

� �
ð24Þ

where, nyear shows the length of the planning horizon. Evaluation of the shortfall and the over-
flow in the reservoir can be carried out by calculating the reservoir volumetric reliability index
(Eq 25):

Rv�st ¼ 1� Total storage shortfall or overflow
Total available water into the reservoir system during the planning horizon

� �
ð25Þ

Solving the optimization model based on constrained state formulation
In this part, as explained previously in the methodology section, applying the Constrained
State formulation (introduced by [43]) and based on Nash Bargaining Theory an optimization
model for conflict resolution in a limited water situation is presented.

Comparing the discrete dynamic optimization models, the principal feature of this model is
to consider the state variable (water level in the reservoir) as a continuous variable thereby
avoiding dimensionality problems and long runtime. In this model, the first and second
moments of the storage variable, important to characterizing the probability distribution func-
tion of the storage variable, are determined and taken into account as constraints for an optimi-
zation problem.

The model run for two water users comprised of agriculture sector and other sectors con-
sisting of industrial sector, domestic sector and environmental sector. Solving the model results
in determining the first moment of the state variable (monthly long-term average of water stor-
age in the reservoir), the second moment of the state variable (the variance of the changes in
the water storage in the reservoir), and the monthly release of water from the reservoir and the
water share for each water user (Table 3). The objective function is represented using Eq 7. The
model converged after 389 iterations by trial and error.

Table 1. The coefficients of the quadratic equations of utility values for different water users.

Month Other users** Agriculture user

a* b* c* a* b* c*

January -0.00834 0.470401 -5.63305 -0.11097 0.485445 0.460016

February -0.00963 0.564644 -7.27352 -0.11099 0.485437 0.460192

March -0.01121 0.674174 -9.13224 -0.11095 0.48545 0.46001

April -0.01098 0.657874 -8.85444 -0.00059 0.08375 -1.98355

May -0.01427 0.893245 -12.9731 -6E-05 0.02685 -1.98405

June -0.02023 1.323503 -20.7112 -6.6E-06 0.007606 -1.17447

July -0.02353 1.574739 -25.4847 -1.7E-05 0.014329 -1.98011

August -0.02023 1.323503 -20.7112 -2.4E-05 0.016998 -1.98823

September -0.02023 1.323503 -20.7112 -7.8E-05 0.03055 -1.98349

October -0.01522 0.94553 -13.6817 -0.00027 0.056998 -1.98352

November -0.01213 0.729813 -9.97622 -0.00739 0.297055 -1.98606

December -0.00961 0.556742 -7.05902 -0.11098 1.151331 -1.98514

(a*, b* and c*): the coefficients of the quadratic equations of utility values for different water users.

** Including: Domestic, Industrial and Environmental users

doi:10.1371/journal.pone.0143198.t001
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In order to evaluate the applicability of the optimal policy associated with water release
(fourth row in the Table 3) a 30-year simulation model is run and the reliability indices for the
reservoir manager and water users are calculated subsequently (Table 4).

As can be seen in Table 4, the reliability values reduced by approximately forty percent over
the first four months of the year for the agriculture sector. This was due to the considerable
increase in water demand over this period. Although there is an average water demand of
nearly 250 MCM in July, a considerable portion of the required water has been met.

Solving the continuous dynamic model using collocation method
Regarding the curvature of the value function, the appropriate number of collocation nodes
(dimensions of the problem) and the basis-node scheme were chosen. In this study, various
dimensions and basis-node schemes were evaluated to render it computationally efficient. Ulti-
mately, the Chebychev approximation function was employed to serve as the basic function
while the appropriate dimension of the problem was considered to be 10 terms of correspond-
ing basic functions. As the next step, the collocation equations were solved by applying New-
ton's solution method. Applying the Chebychev approximation function, the program
converged in 372 iterations. Once the collocation method is used to cope with dynamic prob-
lems, the residual function is employed to evaluate the quality of the approximation. The

Table 2. The given allocated water which results in the maximum andminimum values of the utility function for different users (MCM).

Month Agriculture user Other users*

xjMin xjMax xjMin xj
Max

January 0 2. 1 17.26 27.9

February 0 2.05 19.116 29

March 0 2.1 20.62 30.15

April 30.01 71.4 20.416 30

May 93.61 224.5 22.916 31.5

June 184.01 555 25.916 32.5

July 175.01 420 27.416 33.5

August 148.21 350 25.916 32.5

September 82.241 195 25.916 32.5

October 44.08 105 22.95 31

November 8.47 20 21 30.2

December 2.185 5.1 18.76 28.5

* Including: Domestic, Industrial and Environmental users

doi:10.1371/journal.pone.0143198.t002

Table 3. The optimized variables resulted from the continuous optimizationmodel based on constrained state formulation.

Optimized variables Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

First moment of the state variable (MCM) 789 842 949 1208 1401 1400 1033 815 731 687 706 747

Second moment of the state variable (*100) 7512 7512 7512 7512 7511 7511 7512 7512 7512 7512 7512 7512

Water release from reservoir (MCM) 22 23 24 58 141 237 233 204 127 77 33 24

Allocated water to the Agriculture sector (MCM) 0 0 0 34 115 208 201 172 98 47 9 4.3

Allocated water to the other sectors* (MCM) 21.6 22.71 23.86 24.41 25.95 28.95 30.97 31.32 28.95 29.86 24.22 20

Average required demand for utility satisfaction equal
one (MCM)

23 24 26 62 148 260 245 215 132 82 35 25

doi:10.1371/journal.pone.0143198.t003
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residual function represents the difference between the left and right sides of this equation at
arbitrary states St. Fig 4 shows the changes in residual function over the range of the state vari-
able for the considered approximation function. It appears that the applied approximation
function enjoys an acceptable level of accuracy. There are some disturbances over the interval
which can be due to the discontinuities of the derivatives of utility functions at those points.

Fig 5 represents the value functions of the solution provided for the applied scheme. Fig 6
illustrates the corresponding reservoir storages through which the maximum long-term utility
of the water users and reservoir operator for each month is obtained. According to Fig 6, it is
clear that over the summer season (from June to August) higher storage is required in the res-
ervoir to obtain higher level of utility. Considering the high level of agricultural activity during
this time of year, it is rendered appropriately.

Fig 7 illustrates the resulting policy function. It is obvious that, as long as the weather is
moving toward the warm and dry season (July to September), the provided operating policy
diagrams would go on a steeper gradient and consequently, it is logical that a higher level of
release is obtained.

Considering the optimal reservoir operation rule, a simulation model based on a time period
of 30 years is created to evaluate the optimal operating rule as well as the variation in water
users' utilities. Subsequently, the reliability indices for reservoir manager and water users are
calculated and presented in Table 5. Additional information associated with the simulation

Table 4. Volumetric reliabilities of the reservoir system resulting from the simulation based on the presentedmethod.

Reliability RT
v�all ðRT

v�stÞ* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total reservoir system
allocation indices

95.3 95.1 94.7 65.0 63.5 51.2 56.3 68.9 53.7 55.4 91.2 94.6

Reservoir operator total
reservoir storage index)

ðRT
v�stÞ*

0.0 0.0 0.0 0.005 0.024 0.047 0.016 0.018 0.045 0.019 0.011 0.002

Water users Agriculture 100 100 100 62.3 61.58 46.48 70 66.95 45.37 48.5 93.4 97.5

Other Users** 85.0 87.3 86.5 79.1 82.2 84.8 94.9 90.6 80.9 77.4 75.3 72.3

* ðRT
v�stÞ: Total storage shortfall/ total available water during the planning horizon.

** Including: Domestic, Industrial and Environmental sectors are considered as one independent sector.

doi:10.1371/journal.pone.0143198.t004

Fig 4. The residuals variation over the entire interpolation interval of the state variable for the
Chebychev approximation function.

doi:10.1371/journal.pone.0143198.g004
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model and the optimization model including source code are available from authors upon the
request.

Drawing a comparison between presented models and other dynamic
alternatives
According to the results, it seems the presented models successfully take the dynamics of the
reservoir system into account and maximized long term utility of the system. They resulted in
optimal reservoir operating policies and optimal water allocation in the reservoir system.

Fig 5. Value functions resulting from collocation solution. (a), the first three months, (b), the second
three months, (c), the third three months and, (d), the fourth three months.

doi:10.1371/journal.pone.0143198.g005

Fig 6. Optimal level of storage that results in the maximum long-term utility of the water users and
reservoir operator in every month of the year.

doi:10.1371/journal.pone.0143198.g006
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Moreover, the state variable (water level in the reservoir) is considered as a continuous variable
in the models thereby avoiding the dimensionality problem. There are, however, differences
between them in term of the model structure. In the optimization model based on constrained
state formulation (first model), the long-term variation of the state variable is imposed in the
optimization model through constraints of the model. Therefore, the optimal value of long-
term utilities corresponding to water users and reservoir management are achieved from the
optimization. While, in the second model in order to maximize long-term utility value of the
system, a form of the Bellman Equation is employed.

Considering the values of reliability that resulted from the 30-year simulation, it seems that
both models can successfully deal with water conflict issues which may occur in reservoir man-
agement. In comparison with the reliabilities of the water users from the first model, the

Fig 7. The operating policy resulting from the collocation solution, applying Chebychev
approximation function.

doi:10.1371/journal.pone.0143198.g007

Table 5. The results of simulation based on the outcomes of collocationmethod working on an annual basis done by Homayoun-far et al. [42].

Reliability RT
v�allðRT

v�stÞ* A.R.D (MCM) A.S.D (MCM) V.S.D (MCM)

Total reservoir system allocation indices 96.30 1277 1238.2 332

Reservoir operator (total reservoir
storage index)

0.049 - - -

Water users Agriculture 98.19 959.76 942.35 413

Other Users** 94.95 316.92 315.93 67

* ðRT
v�stÞ: Total storage shortfall/ total available water during the planning horizon.

**Other users: Domestic, Industrial and Environmental sectors are considered as one independent sector.

A.R.D. (U = 1): average required demand which sets utility satisfaction (US) equal to one.

A.S.D.: average supplied demand.

V.S.D.: variance of supplied demand.

doi:10.1371/journal.pone.0143198.t005
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reliability values in the second model suggest higher performance in the management of water
allocation. Considering the total reservoir storage index ðRT

v�stÞ also the second model produced
more reliable values compared to the model based on the constrained state formulation. The
higher performance of the second model in producing better reliability indices can be rooted in
utilizing the structure of the Bellman Equation. Using this dynamic structure makes the model-
ing situation closer to the reality.

In comparison with the game model which works on an annual basis (Table 5), the second
model results in better values (less values) of the total reservoir storage reliabilities (second row
of Table 6). Regarding the water users, the reliabilities that resulted from the second model
(fourth row of Table 6) precede the annual value. It should be noted that from the practical
viewpoint, the results of models which work on a monthly basis, although providing lower reli-
abilities in a few cases, are more realistic when compared to annual methods.

In addition, the efficiency of the presented models can be further compared, using the infor-
mation on the system reliability index of the BSDP model [45], PSDNGmodel [18], and an
annual form of dynamic game [42] in Table 7. According to the results, in comparison with the
BSDP and PSDNG, the presented models result in lower reliability values (Fig 8). Also, com-
pared to the discrete dynamic games (i.e. PSDNG), runtime is considerably reduced. The dis-
crete nature of the PSDNGmodel may be the main reason for the better results and longer
runtime. The PSDNG is a stochastic conflict resolution model, which makes possible achieve-
ment of higher precision in optimization, using a fine discretization of state variables. Further-
more, the PSDNGmodel uses the Simulated Annealing (SA) procedure to search for the static

Table 6. Volumetric reliabilities of the reservoir system resulting from the simulation based on the presentedmethod.

Reliability RT
v�all ðRT

v�stÞ* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total reservoir system
allocation indices

100.00 99.89 98.99 96.16 81.43 58.39 61.14 61.43 65.72 79.60 96.54 99.93

Reservoir operator (total
reservoir storage index)

ðRT
v�stÞ*

0.0000 0.0003 0.0004 0.0000 0.0000 0.0000 0.0000 0.0160 0.0529 0.1090 0.0337 0.0002

Water users Agriculture 100.00 100.00 100.00 94.55 78.83 55.98 58.06 57.85 60.28 72.02 96.21 100.00

Other Users** 100.00 99.89 98.92 100.00 100.00 99.62 99.76 100.00 98.36 97.82 96.70 99.92

* ðRT
v�stÞ: Total storage shortfall/ total available water during the planning horizon

**Other users: Domestic, Industrial and Environmental sectors are considered as one independent sector

doi:10.1371/journal.pone.0143198.t006

Table 7. The comparison of system reliability indices among presentedmodels, annual form of dynamic game, PSDNG and BSDPmodel.

Reliability
Index

Continuous dynamic optimization models Discrete
dynamic

optimization
models

Based on constrained state formulation
(First presented model)

Based on continuous state Markov
decision (Second presented model)

Annual dynamic
game model*

PSDNG BSDP

RT
v�all

73.74 83.27 96.30 97.21 89.34

RT

v�st
0.016 0.018 0.049 0.0 -

A.R.D (MCM) 1277 1277 1277 1277 1277

A.S.D (MCM) 1203 1234 1238.2 1228.8 1228.8

* Annual dynamic game model: presented by Homayounfar [42]

doi:10.1371/journal.pone.0143198.t007
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equilibrium point in each state of n stages of the model. A fine discretization and using the SA
procedure increases the runtime and causes dimensionality problems [18]. In addition, accord-
ing to the results, when compared with the annual dynamic game models, the presented mod-
els provide superior results. Indeed, the operating policies resulting from the second model are
more practical than those of the annual models [42, 44].

Conclusion
In this study two monthly continuous dynamic models based on NBS were developed to tackle
water allocation conflicts in a reservoir system. The first model, utilizing constrained state for-
mulation, computed the first and second moments of the state variable and used them as con-
straints in maximizing long-term utility of the reservoir operators and water users. The second
model was a monthly continuous dynamic game model which was solved by the collocation
method. Applying this model, operating policies were generated for every month. Considering
the optimal reservoir operation rule, a 30-year simulation model is developed and correspond-
ing reliability indices for reservoir manager and water users were calculated. According to the
results, it seems the continuous dynamic model solved by the collocation method (second
model) provided superior results compared to the model based on the constrained state formu-
lation. The volumetric reliabilities resulted from the second model are greater than the corre-
sponding values associated with the first one along the year. This can be due to incorporating
the Bellman Equation into model structure. Using this dynamic structure make the modeling
situation closer to the reality.

Regarding the solution method of the second model, the collocation method was used to
find a polynomial approximation to an unknown function and generate operating policies in
the reservoir system. Meanwhile, the Chebychev basis-node scheme was employed as the basis
function in the collocation method. The results showed that the collocation method and
applied basis function are quite appropriate and accurate in approximating the functional
equations and their derivatives.

Fig 8. The volumetric reliability of the reservoir system associated with different models for
Zayandeh-Rud river system.

doi:10.1371/journal.pone.0143198.g008
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In order to evaluate the efficiency of the presented models, the reliability values were com-
pared with the information on the system reliability index of the BSDP model, the PSDNG
model and an annual form of dynamic game. In this regard, the PSDNG and BSDP models
resulted in higher level of volumetric reliability index in comparison with the corresponding
values resulted from the presented models. This can be due to the discrete nature of the BSDP
and PSDNG. In addition, the PSDNGmodel employs the Simulated Annealing (SA) procedure
to achieve the static equilibrium point in each state. Although a fine discretization of state and
decision variable and the SA can result in higher precision in the optimization process, it often
increases runtime and causes dimensionality problems.

Regarding the results, the proposed models increased the overall storage reliabilities of the
reservoir system compared to the annual alternative. In addition, volumetric reliabilities
improved over the year. Also, in comparison with annual alternatives, the operating rules
resulted from the presented models are more useful in practice. In term of applicability of the
presented approaches, it shows that conflict on water consumption in a river basin under a res-
ervoir system can be stated based on the monthly continuous dynamic approaches. Due to the
continuous form of the variable, these approaches will not suffer from the dimensionality prob-
lems. It also makes possible consideration of uncertainty in input values (inflows) in reservoir
operation. Incorporating the inflow uncertainty may not represent reality, but it is getting
closer to real world conditions.
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