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Abstract: The aim of this study was to estimate the influence of different cultivars of Actinidia arguta
(kiwiberry) on the bioavailability of mineral elements and to examine the mineral profile of rats fed
atherogenic diets enriched with kiwiberries. The following cultivars of Actinidia arguta were used:
Bingo, M1, Anna, Weiki, Jumbo, and Geneva. Kiwiberry has recently become popular in the market.
It is a precious source of biologically active components, vitamins, and minerals. The livers, spleens,
and kidneys were examined for mineral contents using the flame atomic absorption spectroscopy
method. The bioavailability of Ca, Mg, Fe, Mn, Zn, and Cu was evaluated. The addition of kiwiberries
in atherogenic diets increased the contents of Fe in the rat liver. The bioavailability of Mn, Zn, and
Cu, calculated on the basis of the contents in the livers, was significantly decreased in rats fed diets
with 5% additional kiwiberries. We supposed that the effect of kiwiberry on the bioavailability of
the studied minerals may be related to the diet components of bioactive substances present in fruits
(polyphenols, vitamins, dietary fiber, and tannins).

Keywords: kiwiberry; Actinidia arguta; macroelements; trace elements; bioavailability

1. Introduction

The Actinidia arguta (Siebold et Zucc.) Planch. ex Miq. fruit, also called hardy kiwifruit,
kiwiberry, or mini kiwifruit, is a new product on the market [1,2]. It belongs to Actinidia
genus and is not as popular as its bigger cousin, the kiwifruit (Actinidia deliciosa). Kiwiberry
(Actinidia arguta) are ample with nutrients, such as dietary fiber, vitamins, mineral elements,
organic acids, and many biologically active components [3]. Using spectral analysis, these
authors identified ten succinic acid derivatives, six citric acid derivatives, and phenolic
acids (eleven quinic acid derivatives, two shikimic acid derivatives) and isolated nine
new bioactive compounds, argutinosides A-I. Unlike the common kiwifruit, the kiwiberry
has high-frost hardness (down to −30 ◦C) and a relatively short vegetation period, which
potentially allows it to be planted in colder climates [2]. Actinidia arguta has fruits of grape
size with thin, edible skin containing polyphenols and other secondary metabolites [4,5].
The kiwiberry can be consumed whole, which increases its nutritional value. Actinidia
arguta cultivars are highly nutritious, low-calorie fruits with the potential to deliver a range
of health benefits [1,6–11]. They are good source of vitamins, especially vitamin C, and
polyphenols, are better than apples and oranges [6,7], and show high activity of cysteine
protease and actinidin, which promote digestion and laxation in the human body [12].
On the other hand, actinidin is an allergenic protein in which acidic and basic isoforms
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were identified in A. deliciosa ‘Hayward’ and A. arguta ‘Hortgem Tahi’ [13]. Depending
on the cultivar, hardy kiwifruits are approximately 3–5 cm long, elliptical, and slightly
flattened. Fruit weight ranges from 5 to 20 g and can vary in color from green to blush
red or Bordeaux red [14]. There are many cultivars among Actinidia, for example Issai,
Weiki, Ken’s Red, Miss Green, Jumbo, Takaka Green, Marju Red, and Ananasnaja. Some
of them are already commercially cultivated and popular among consumers because of
their taste and their appearance [15,16]. Weiki and Ananasnaja are very similar to each
other with green flesh and with elongated and slightly flattened shapes. The skin color
is green with red blush [7]. The M1 fruit is round with green skin and flesh and contains
on average 185.5 seeds. It has a higher content of vitamin C (78.8 mg·100 g−1 FW) than
Ananasnaja (67.4 mg·100 g−1 FW) [15]. Ananasnaja, also called Anna, is very similar to
the Weiki and Miss Green cultivars with an elongated and slightly flattened shape [7,15].
It has a size similar to the Bingo cultivar but is less flattened, and its base color is dark
green, and the blush is cherry-red [10]. Geneva is ball-shaped and slightly flattened.
The skin color is green with a light red blush [7]. Jumbo is longer than Bingo, strongly
flattened, and completely green with no blush [10]. Latocha [7] compared seven cultivars
of A. arguta and concluded that the biggest fruit is the cultivar Jumbo with an average
weight 10.74 g but has the lowest level of vitamin C (7.0 mg·100 g−1 FW). Bingo is an F1
hybrid between A. arguta var. purpurea ‘Purpurna Sadova’ and A. arguta but has dominant
characteristics of A. arguta, which is why nowadays it is classified as A. arguta. The average
weight of the fruit is 8.1 g to about 14 g and contains about 175 yellow-brown seeds. It
is elliptical and clearly flattened. The ripe fruit is not astringent, has a smooth, yellow-
green skin with an intense reddish-pink blush [10]. Latocha et al. (2010) [17] showed that
hardy kiwifruits contain higher amounts of phenolic compounds than fruits of A. deliciosa
‘Hayward’. Nishiyama [8], Latocha [7], Latocha and Krupa [15], and Bieniek [9] have
indicated that the levels of vitamin C in A. arguta fruits are not constant and depends on
many factors, such as the growing conditions, sun exposure, and their genotype. The
nutritional value of the hardy cultivars depends on mineral composition, polyphenols,
vitamins, the total quantity of dietary fiber, the ratio of insoluble to soluble fraction, and
actinidin content [5]. Some authors indicate that the mineral composition of Actinida fruits
may also differ between cultivars and depend on soil and climatic conditions, fertilization
and irrigation, and harvest dates [6,11,15,18]. The mentioned bioactive compounds may
interact with other nutrients and change their bioavailability.

There are 2.3% to 6.4% of mineral elements in the bodies of mammals. They can be
divided according to their contents in the body into at least two groups: macroelements
and microelements (trace elements). Kations, such as calcium, sodium, potassium, and
magnesium, belong to macroelements; the other kations belong to microelements: iron,
manganese, zinc, and cooper. All of them are considered essential components because
they play important roles in body metabolism. Macroelements found in extracellular fluids,
intracellular structures, and cell membranes play an essential role in such vital functions
as nerve conduction, muscle contraction, and membrane permeability. Trace elements are
constituents of proteins (e.g., haemoglobin), and hundreds of enzymes are involved in
most major metabolic pathways. They should be consumed in the adequate amounts [19]
but not higher than tolerable intake levels [20]. Mineral elements can interact not only
among themselves but also with other food components on the principle of synergism
or antagonism. Some studies have reported that the kiwifruit could be used as a dietary
supplement, especially for individuals with hypercholesterolemia and cardiovascular
disorders [2,21]. Mortality statistics shown that cardiovascular diseases (45% of all deaths)
remain the most common cause of death in Europe [22]. It is well known that dietary fiber
lowers blood cholesterol by binding bile acids and then excreting them. The dietary fiber
content in the Actinidia arguta fruit is higher than in the most popular cultivar, Hayward of
A. delicosa [23]. Moreover, kiwifruit is rich in potassium [24], an important macroelement
in managing high blood pressure. Potassium lessens the effects of sodium, and the more
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sodium is lost through urine. Hypertension affects the heart and accelerates the rate of
formation of the atherosclerotic plaques.

Antioxidative, antimicrobal, anti-inflammatory, neuroprotective, and antiallergic ac-
tivities of Actinidia arguta in vitro and in vivo were shown [4,5,25]. Until now, however,
there are no studies on the mineral profiles in animal models, taking into account the
bioavailability and the circulation of mineral elements in the trophic chain. The aim of
this study is to presents the influence of consumption of fruits of six A. arguta cultivars on
the mineral profile and bioavailability of macro- and microelements in rats with induced
hypercholesterolemia. We suppose that kiwiberry, which are consumed with the peel
(mainly insoluble dietary fiber), together with exogenous cholesterol could change the
bioavailability of the essential elements, Ca, Mg, Fe, Mn, Zn, and Cu, in rats as an animal
model. Knowledge of macro- and microelement bioavailability is needed to translate
physiological requirements into actual dietary requirements when elevated TG, TC, and
LDL-C in the human population become common.

2. Materials and Methods
2.1. Animal Housing and Experimental Diets

The trial was performed at the research facilities of the Department of Physiological
Sciences Warsaw University of Life Sciences (SGGW). Male Wistar rats (114 ± 10 g) were
randomly classified into eight groups (each of seven rats) and fed semipurified diets. All
animals were submitted to an adaptation period of five days and fed the control diet. The
control diet included (g/kg): casein (150), soybean oil (100), cellulose (10), vitamin (10) (AIN-
93-MX Mineral mix Cat. No. 960 402), mineral mixtures (36.7) (AIN-93-MX mineral mix
Cat. No. 960 400) of the American Institute of Nutrition for laboratory animals, choline (2),
and wheat starch added up to 1 kg (691.3). They were housed in individual plastic cages
(TECNIPLAST S. p. A, 21 020, Italy), and clean water and feed were provided ad libitum
for six weeks of the experiment. Rats were fed once daily at 10:00 am. The feed intake
was controlled daily. The first group (control) was offered the basic diet, and the second
positive control group (chol) was hypercholesterolemic (containing 1% of cholesterol—
Sigma-Aldrich-C8667) without inclusion of kiwiberry. The other experimental groups
contained both cholesterol (1%) and 5% of kiwiberry of different cultivars: Bingo/chol,
M1/chol, Anna/chol, Weiki/chol, Jumbo/chol, and Geneva/chol. At the end of the
experiment (after 24 h of starvation), rats were anesthetized using inhalation of halothane
(Narcotan-Zentiva). The study procedures were approved by the Animal Care Committee
of Warsaw University of Life Sciences (SGGW), Poland.

2.2. Actinidia arguta Samples

Hardy kiwifruits (Actinidia arguta (Siebold et. Zucc) Planch. ex. Miq.) were grown on
the ecological, non-fertilized field of the Department of Environmental Protection, Warsaw
University of Life Sciences (SGGW), Poland. Six cultivars were studied: Bingo, M1, Anna
(Annasnaja), Weiki, Jumbo, and Geneva. Fruits were picked at their eating ripeness stage
from different parts of vines in 2013. Harvested fruits (3 kg of each cultivar) were washed
under tap water and then freeze-dried with the peel and added to the rat diets.

2.3. Mineral Analyses of Soil Samples

The soil was sieved through a sieve (1 mm2). The soil samples were then weighed into
quartz vessels and burnt in a muffle furnace with temperature control at about 480 ◦C for
4–6 h. After cooling, the powder was quenched with 20% HCl and refluxed in a heating
block for 60 min at 148 ◦C. At the end, the samples were filtered through a hard filter
washing with small portions of acidified water to a volume of 50 mL. Mineral analyses
were performed using the atomic emission spectrometer inductively coupled plasma
atomic emission spectroscopy (ICP-AES) Thermo iCAP 6500 DUO. The method consists
of measuring in test solutions the intensity of emitted radiation, which is a measure of
the concentration of the mineral determined. Pure argon (99.9%) was used as the carrier
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gas. For Ca, the average of three lines with lengths of 315.8, 373.6, and 422.6 nm was used.
For Mg the average value from the lines, 279.5, 285.2, and 382.9 nm, was used. For Fe,
the average value from the lines, 238.2 and 259.9 nm, was used. For Mn, the mean value
from the lines, 257.6, 260.5, and 293.9 nm, was used. For Zn, the mean value from the lines,
202.5 and 213.8 nm, was used. For Cu the average value from the lines, 224.7, 324.7, and
327.3 nm, was used.

2.4. Mineral Analyses of Biological Samples

Approximately 0.5 g of lyophilized fruits, liver, kidney, and spleen were placed in
Teflon vessels, and 5 mL of HNO3 (Merck 1.00441) and 1 mL of H2O2 (Merck 1.07298)
were added. The samples were mixed and allowed to react for 24 h. Mineralization was
carried out in the microwave Milestone Ethos 900 (USA–Italy). The mineral elements,
Ca, Mg, Fe, Mn, Zn, and Cu, were determined by flame atomic absorption spectrometry
in a Perkin-Elmer 1100 B, using hollow cathode lamps at 422.7, 285.2, 248.3, 279.5, 213.9,
and 324.8 nm, respectively. The standards were prepared on the base of Titrisol Standard
series (Merck).

For the estimation of the mineral bioavailability, the “three-point assay” model was
applied according to the description of Littell et al. [26] This model was used after confirma-
tion that in all groups the correlation between mineral intake and content in the liver was
linear (y = a + bx). The relative bioavailability value (RBV) of the mineral was calculated
as follows:

RBV =
b (kiwiberry)

b (chol)
× 100

where b (kiwiberry) is the tangent of an angle of regression curve for mineral contents in
the livers of rats fed diet with kiwiberry, b (chol) is the tangent of an angle of regression
curve for mineral contents in the livers of rats fed chol diet (1% cholesterol).

More details of the calculation of mineral bioavailability have been presented in [27].

2.5. Statistical Analyses

The results are presented as means ± SD (standard deviation). One-way analysis of
variance (ANOVA) for statistical evaluation of results was used and post-hoc Duncan’s
new multiple range test was applied (p < 0.05). For the bioavailability of minerals, the
Scheffe test (p < 0.05) was applied.

3. Results

It is very important to choose among the market available kiwiberry fruits, the most
valuable in terms of nutritional value. Most of the publications concentrate on the bioactive
compounds, such as dietary fiber, polyphenols, vitamins, and enzymes [4,28,29]. Our study
brings new data on mineral composition in six cultivars of mini kiwifruits and helps to
indicate which one of them is the best source of minerals. First, we analyzed soil richness
in macro- and microelements. It should be noted that no fertilization was applied on the
studied field. The soil pH was between 7.1 and 7.4. Mineral composition of the soil is
presented in Table 1. The highest contents of microelements was in the Weiki cultivar
fruits and the lowest in the Bingo mini kiwi (Table 1). M1, Anna, Geneva, and Jumbo have
comparable amounts of Cu, Mn, Zn, and Fe in whole fruits (together with peel and seeds).

The mineral element contents in soil and six cultivars of kiwiberry fruits are shown in
Table 1.
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Table 1. Mineral element contents in soil and six cultivars of kiwiberry fruits (DM basis); mean ± SD.

Ca (g/kg) Mg (g/kg) Fe (mg/kg) Mn (mg/kg) Zn (mg/kg) Cu (mg/kg)

Soil 8.82 ± 3.35 2.38 ± 1.49 6031 ± 1018 271 ± 79 90 ± 9 15 ± 4

Actinidia cultivars
Bingo 1.12 ± 0.11 a 0.88± 001 b 21 ± 1 a 4 ± 0.2 a 10 ± 1.3 a 5 ± 0.1 a

M1 1.36 ± 0.11 b 1.01 ± 0.03 c 22 ± 1 a 7 ± 0.4 b 14 ± 1.6 b 9 ± 0.4 b

Anna 1.51 ± 0.14 b 0.93 ± 0.02 b 22 ± 1 a 7 ± 0.2 b 14 ± 1.2 b 9 ± 0.3 b

Weiki 1.03 ± 0.10 a 0.90 ± 0.01 b 38 ± 1 b 9 ± 0.3 c 17 ± 1.1 c 11 ± 0.2 c

Jumbo 1.02 ± 0.10 a 0.85 ± 0.01 a 23 ± 1 a 7 ± 0.1 b 14 ± 1.3 b 7 ± 0.2 b

Geneva 1.05 ± 0.08 a 0.81 ± 0.01 a 22 ± 1 a 7 ± 0.1 b 14 ± 0.7 b 7 ± 0.1 b

a–c—means of Actinidia cultivars in columns marked with different letters differ at p ≤ 0.05 (n = 5).

The Weiki cultivar seems to be the richest source of trace elements, while M1 and
Anna cultivars contained the highest level of macroelements. We used the rat model to
estimate the mineral profile depending on hypercholesterolemic diets supplemented with
various kiwiberries. The mineral contents in the diets for rats are presented in Table 2.
Diets supplemented with Anna and Weiki cultivars of kiwiberry differed significantly from
the control and chol diets in the Cu, Zn, Mg, and Ca contents. The manganese contents in
all experimental diets ranged from 10.7 to 12.8 mg·kg−1 DM. The highest contents of Fe
were in the diets with 5% of Weiki kiwiberry added. Diets supplemented with kiwiberry
fruits were willingly consumed by rats. The feed intakes during the experiment were
687 ± 37, 710 ± 31, 695 ± 30, 708 ± 28, 692 ± 36, 718 ± 15, 719 ± 17, and 718 ± 19 g in the
control, chol, Bingo/chol, M1/chol, Ann/chol, Weiki/chol, Jumbo/chol, and Geneva/chol
groups, respectively.

Table 2. Contents of mineral elements in the diets for rats (mg·kg−1 DM); mean ± SD.

Diets/Groups Ca Mg Fe Mn Zn Cu

Control 4707 ± 345 a 485 ± 28 a 76.3 ± 18.3 a 11.3 ± 0.4 35.2 ± 0.6 a 3.7 ± 1.2 a

chol 4591 ± 450 a 514 ± 38 a 80.9 ± 10.2 a 10.7 ± 0.8 37.3 ± 2.0 a 4.5 ± 1.8 a

Bingo/chol 4973 ± 367 a 586 ± 21 b 83.9 ± 9.9 a 11.9 ± 0.7 38.7 ± 3.8 a 6.5 ± 1.5 ab

M1/chol 5431 ± 487 b 580 ± 25 b 88.1 ± 8.7 ab 12.6 ± 1.2 42.6 ± 5.1 ab 7.6 ± 1.0 b

Anna/chol 5721 ± 504 b 615 ± 86 b 88.4 ± 8.1 ab 12.2 ± 0.4 47.6 ± 7.7 b 7.2 ± 0.6 b

Weiki/chol 5500 ± 317 b 646 ± 41 b 91.8 ± 14.4 b 12.8 ± 1.0 49.3 ± 6.9 b 7.6 ± 0.7 b

Jumbo/chol 4873 ± 205 a 499 ± 37 a 83.3 ± 14.1 a 11.9 ± 0.4 38.9 ± 4.9 a 6.5 ± 0.4 ab

Geneva/chol 4892 ± 324 a 659 ± 57 b 81.5 ± 17.3 a 11.7 ± 1.2 40.2 ± 7.0 a 7.1 ± 1.2 b

a,b—means in columns marked with different letters differ at p < 0.05 (n = 5). Abbreviations: control—control
diet, chol—control diet with 1% of cholesterol, Bingo/chol—diet with 1% of cholesterol and 5% of Bingo fruits,
M1/chol—diet with 1% of cholesterol and 5% of M1 kiwiberry, Anna/chol—diet with 1% of cholesterol and 5% of
Anna kiwiberry, Weiki/chol—diet with 1% of cholesterol and 5% of Weiki kiwiberry, Jumbo/chol—diet with 1% of
cholesterol and 5% of Jumbo kiwiberry, Geneva/chol—diet with 1% of cholesterol and 5% of Geneva kiwiberry.

The contents of mineral compounds in the livers of rats are shown in Table 3. The
contents of manganese in the livers were comparable except for the M1/chol group in
which the contents were the lowest (1.7 ± 0.1 mg·kg−1 DW). The zinc contents in the livers
ranged from 28.5 in the Anna/chol group to 33.3 mg·kg−1 DW in the control group. Rats
from the Geneva/chol group had the lowest contents of Cu in the livers and significantly
differed from the control group. The manganese, copper, and zinc contents in the livers
were slightly lower in all groups receiving the diets of cholesterol and kiwiberries compared
to the control group (p < 0.05). The high content of Fe in the livers was obtained in rats
fed diets with M1, Anna, Weiki, Jumbo, and Geneva cultivars of A. arguta. There were
no significant differences in the Mg contents in the livers. The highest value of Ca was in
rat livers from the Anna/chol group. The mineral contents were also determined in the
spleens and kidneys of rats (Table 3). The highest contents (p < 0.05) of manganese were
recorded in the spleens and kidneys in the Jumbo/chol group and in the Weiki together
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with the Jumbo/chol group, respectively. No significant differences in contents of other
minerals in the spleens and kidneys were obtained, except in the Fe contents in the spleens,
which were the highest in the M1/chol group (Table 3).

Table 3. Contents of minerals (mg·kg−1 DM) in (A) livers, (B) spleens, and (C) kidneys of rats fed
diets with kiwiberry fruits; mean ± SD.

(A)

Group Ca Mg Fe Mn Zn Cu

Control 21.2 ± 5.5 a 200 ± 35 113 ± 28 ab 2.7 ± 0.3 b 33.3 ± 2.0 6.5 ± 1.4 b

chol 28.8 ± 4.0 b 201 ± 18 97 ± 16 a 2.5 ± 0.5 ab 31.0 ± 3.2 5.4 ± 1.0 ab

Bingo/chol 21.1 ± 3.5 a 206 ± 13 110 ± 10 ab 2.4 ± 0.3 ab 32.7 ± 3.6 5.6 ± 0.6 ab

M1/chol 27.2 ± 4.1 ab 197 ± 7 121 ± 18 b 1.7 ± 0.1 a 31.7 ± 2.3 4.9 ± 0.7 ab

Anna/chol 31.0 ± 6.0 b 202 ± 15 127 ± 25 b 1.9 ± 0.5 ab 28.5 ± 2.5 5.3 ± 1.0 ab

Weiki/chol 20.2 ± 2.0 a 218 ± 11 135 ± 24 b 2.3 ± 0.3 ab 33.0 ± 1.8 5.9 ± 1.5 ab

Jumbo/chol 21.3 ± 5.0 a 215 ± 12 132 ± 16 b 2.4 ± 0.4 ab 31.5 ± 3.0 5.2 ± 0.9 ab

Geneva/chol 22.0 ± 3.4 a 213 ± 11 131 ± 31 b 2.1 ± 0.3 ab 30.2 ± 1.2 4.5 ± 0.5 a

(B)

Group Ca Mg Fe Mn Zn Cu

Control 42.7 ± 13.2 254 ± 14 298 ± 31 a 1.1 ± 0.5 a 28.5 ± 3.5 1.9 ± 0.1
chol 42.0 ± 13.0 252 ± 9 283 ± 71 a 0.6 ± 0.1 a 26.9 ± 2.8 2.1 ± 0.4

Bingo/chol 38.0 ± 8.1 250 ± 9 339 ± 71 ab 1.9 ± 0.8 ab 27.5 ± 1.5 2.1 ± 0.3
M1/chol 39.9 ± 8.3 252 ± 32 377 ± 132 b 1.2 ± 0.8 ab 26.8 ± 3.4 2.2 ± 0.4

Anna/chol 43.1 ± 8.2 247 ± 6 300 ± 104 a 2.3 ± 0.4 b 25.5 ± 1.4 2.1 ± 0.1
Weiki/chol 39.5 ± 9.0 252 ± 21 346 ± 91 ab 2.6 ± 1.2 b 26.6 ± 3.5 2.1 ± 0.3
Jumbo/chol 43.8 ± 11.0 257 ± 20 288 ± 67 a 3.0 ± 0.4 b 28.6 ± 3.2 2.0 ± 0.2
Geneva/chol 37.9 ± 7.4 247 ± 12 298 ± 75 a 0.7 ± 0.1 a 23.3 ± 1.8 1.8 ± 0.2

(C)

Group Ca Mg Fe Mn Zn Cu

Control 38.4 ± 10 237 ± 9 71.4 ± 3.9 0.8 ± 0.2 a 26.7 ± 0.9 4.6 ± 0.1
chol 38.6 ± 14 230 ± 8 69.9 ± 10.0 1.0 ± 0.4 a 27.6 ± 2.6 4.8 ± 0.2

Bingo/chol 34.8 ± 7.5 224 ± 11 69.5 ± 3.1 1.0 ± 0.1 a 25.8 ± 1.6 4.9 ± 0.2
M1/chol 35.0 ± 5.0 219 ± 10 72.0 ± 7.0 0.9 ± 0.2 a 26.1 ± 1.9 4.7 ± 0.2

Anna/chol 36.3 ± 6.4 224 ± 8 69.8 ± 6.7 1.3 ± 0.3 ab 27.4 ± 2.0 4.5 ± 0.2
Weiki/chol 36.5 ± 7.0 227 ± 15 69.6 ± 3.7 1.6 ± 0.4 b 26.7 ± 2.1 4.7 ± 0.2
Jumbo/chol 36.1 ± 4.9 226 ± 13 68.2 ± 5.9 1.6 ± 0.4 b 27.0 ± 3.3 4.8 ± 0.3
Geneva/chol 37.3 ± 7.1 224 ± 4 68.6 ± 6.8 1.5 ± 0.3 b 28.7 ± 1.5 4.7 ± 0.2

a,b—means in columns marked with different letters differ at p < 0.05 (n = 7). Abbreviations: control—rats
receiving control diet, chol—rats receiving control diet with 1% of cholesterol, Bingo/chol—rats receiving diet
with 1% of cholesterol and 5% of Bingo fruits, M1/chol—rats receiving diet with 1% of cholesterol and 5% of M1
kiwiberry, Anna/chol—rats receiving diet with 1% of cholesterol and 5% of Anna kiwiberry, Weiki/chol—rats
receiving diet with 1% of cholesterol and 5% of Weiki kiwiberry, Jumbo/chol—rats receiving diet with 1% of
cholesterol and 5% of Jumbo kiwiberry, Geneva/chol—rats receiving diet with 1% of cholesterol and 5% of
Geneva kiwiberry.

The bioavailability of the selected minerals is shown in Figure 1. The reference group
was the chol group (positive control), which was placed on the graph as 100% (the bolded
line on the Figure 1). Supplementation of all studied kiwiberries for the atherogenic diet
decreased bioavailability determined on the basis of the concentrations of Mn, Cu, and Zn in
the livers vs. control. A significant decrease of manganese, copper and zinc bioavailability
was obtained in rats fed atherogenic diets with Anna and Weiki cultivars of kiwiberry
addition versus the control rats. The bioavailability of Fe was significant higher in the
Anna/chol group compared to the control. In other groups, except for the Bingo/chol
group, there was a slight increase in bioavailability of Fe. Only in the Jumbo/chol group an
increase in bioavailability of Mg was recorded and was significant versus the Weiki/chol
and Geneva/chol groups. The bioavailability of Ca was significantly higher in the M1/chol
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and Anna/chol groups versus the Weiki/chol group. A slight decrease of Ca bioavailability
was also obtained in the Geneva/chol group.
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Figure 1. Bioavailability of macro- and microelements in rats fed diets with kiwiberry fruits and
cholesterol. a,b—columns marked with different letters differ at p < 0.05 (n = 7). Abbreviations:
control—rats receiving control diet, chol—rats receiving control diet with 1% of cholesterol, the
horizontal line (100%), Bingo/chol—rats receiving diet with 1% of cholesterol and 5% of Bingo
fruits, M1/chol—rats receiving diet with 1% of cholesterol and 5% of M1 kiwiberry, Anna/chol—rats
receiving diet with 1% of cholesterol and 5% of Anna kiwiberry, Weiki/chol—rats receiving diet with
1% of cholesterol and 5% of Weiki kiwiberry, Jumbo/chol—rats receiving diet with 1% of cholesterol
and 5% of Jumbo kiwiberry, Geneva/chol—rats receiving diet with 1% of cholesterol and 5% of
Geneva kiwiberry.

4. Discussion

Our results indicate that Weiki is more abundant in the analyzed microelements (Fe,
Mn, Zn, Cu) compared to Anna (Table 1) and that is why Weiki should be more widespread
and commonly cultivated commercially around the world. Bieniek [16] has shown that
fruit of the ‘Sientiabrskaja’ cultivar of A. arguta contained the highest concentrations of Ca,
and Mg as well as Cu and Mn compared to the hybrid cultivars of A. arguta × A. arguta
var. purpurea or A. arguta var. purpurea. This is also confirmed by our study; A. arguta
(especially the Weiki cultivar) is a better source of microelements than the hybrids (for
example Bingo). Latocha and Krupa [15] indicated that Ananasnaja (Anna) and M1 have
comparable concentrations of Ca. These cultivars also have higher contents of Ca than other
kiwiberry fruits in our study (Table 1). Okamoto and Goto [6] pointed out that A. arguta
contains higher Ca and Mg than A. deliciosa (cultivar Hayward) and the domestic cultivar of
apple, Fuji, which were purchased at a market. Actinidia arguta and A. arguta var. purpurea
and their hybrids are recommended as rich sources of Fe, Cu, and Mg by Ferguson and
Ferguson [30], Latocha and Krupa [15], Latocha et al. [17], and Bieniek [16]. Latocha [2]
suggests that the mineral components in kiwiberry fruits depend more on genetic features
of the plant than on growing conditions. Bieniek and Dragańska [11] demonstrated that the
concentrations of macroelements (inter alia Ca and Mg) in Ukrainian cultivars of A. arguta
and A. arguta var. purpurea significantly depended on the relationships between cultivars
and meteorological factors in specific phenophases.
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Consumption of kiwiberry fruits provides many health benefits [2,17,21,23]. They
might be the result of the interaction of the natural ingredients present in Actinidia arguta
fruits. Some of these interactions can enhance biological activity of the nutrients or inhibit
them. In the study, we focused on the bioavailability of valuable micro- and macroelements.
We have already known that A. arguta fruits are a precious source of minerals [31] and that
kiwifruit supplementation protects the aortas and livers in rats with induced hypercholes-
terolemia [21]. We are the first to report that diet supplementation with kiwifruit changes
the bioavailability of selected micro- and macroelements in rats loaded with cholesterol.
Reiland and Slavin [32] underline that more and more evidence suggests that the health
benefits of fruits depend on the synergies or interactions of bioactive compounds and
other nutrients in whole diets. That is the way we designed the study to test the impact
of the whole diet on the mineral profile and bioavailability of selected minerals in rats.
Moreover, rats were fed atherogenic diets, and we can indirectly conclude on the impact of
the nutrients on the mineral balance. We studied the contents of Mn, Cu, Zn, Fe, Mg, and
Ca, and some descriptions of their functions are needed to underline their important roles
in the body.

Manganese acts as both a constituent of metalloenzymes and an enzyme activator.
The MnSOD is an antioxidant enzyme that contains manganese as a functional component
and protects against oxidative injury by catalyzing the dismutation of O2

−. Copper is
included in approximately 20 enzymes involved in reduction/oxidation processes. Cop-
per deficiency can be a significant risk factor for diseases related to oxidative reduction
homeostasis and lipid metabolism [33]. Zinc plays a catalytic or a structural role in more
than 200 enzymes involved in digestion, metabolism, reproduction, and wound healing.
Zinc is an antioxidant and anti-inflammatory agent [34]. These elements help to avoid
oxidative damages because they could convert potentially dangerous products of the re-
active oxygen species. There was a significant decrease in copper bioavailability in rats
with hypercholesterolemia-induced dietary supplements of kiwifruit, which may be as-
sociated with a high content of dietary fiber in these fruits (A. arguta are eaten with the
peel) and reduced copper absorption. We have also demonstrated in experiments with
rats loaded with cholesterol and organic kiwifruit (A. deliciosa cultivar Hayward) [35] a
decreased bioavailability of Cu and a significant decrease of Mn and Zn. In the present
study bioavailability of Mn and Zn was also lowered (Figure 1). Reduced manganese,
copper, and zinc bioavailability (determined on the basis of the concentrations of those
elements in kidneys) in hypercholesterolemic rats fed with organic Hayward has also been
revealed [18]. This drop in bioavailability could also affect antioxidant defense because
Mn, Zn, and Cu in SOD (superoxide dismutase) forms are the first line of antioxidant
defense [36]. The disturbance of balance between free radicals and antioxidants leads to
oxidative stress and oxidation of LDL cholesterol, which appears to contribute to atheroge-
nesis [37,38]. We have shown that the smallest percentage of lesions in the aortic arch was
in the ChGeneva, ChWeiki, and ChAnna, and positive nutritional effects of supplemented
A. arguta for hypercholesterolemia were noted [21]. Iron is required in numerous essential
proteins, e.g., as the heme-containing proteins [39]. Vitamin C increases iron absorption,
and kiwi and kiwifruit are precious sources of this mineral [15,18,24]. We obtained that the
Fe contents in the livers of rats supplemented with kiwifruit, except for Bingo, were signifi-
cantly higher than in the control and chol group (Table 3A). These results were reflected in
the bioavailability of iron (Figure 1). On the other hand, inhibitors may reduce nutrient
bioavailability. An example of competition for the same uptake system is the interaction
between calcium and non-heme iron. A significant decrease in Mg bioavailability was
shown in the study with organic and conventional kiwifruit Hayward [35]. The present
study also confirms this relationship in the case of the kiwiberry (Figure 1). Dietary fiber
may impair mineral balance [40,41]. It was shown by Gralak et al. [42,43], revealing that
dietary fiber can reduce the absorption of Cu, Zn Fe, Mg, and Ca. It is the indigestible cell
wall component of plants, which is considered to play an important role in human diet
and health. The inhibitory effect of dietary fiber can also be used advantageously. Soluble
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fibers have been shown to increase the rate of bile excretion, reducing serum total and LDL
cholesterol, decrease pro-inflammatory cytokines, such as interleukin-18, and decrease
levels of C-reactive protein [44]. The effect of kiwifruit on the bioavailability of the studied
minerals may be connected with the bioactive substances present in fruits (polyphenols,
vitamins, dietary fiber, and tannins) or the other elements of diet.

5. Conclusions

The mineral composition of kiwiberries varies significantly among the cultivars. The
Weiki cultivar has the highest contents of trace elements, iron, manganese, zinc, and
copper, compared to the other cultivars. The Bingo cultivar has substantially the lowest
contents of manganese, zinc, and copper. Remarkably higher contents of macroelements,
calcium, and magnesium were found in the M1 and Anna cultivars. The addition of 1% of
cholesterol to the rat diet did not affect the mineral concentrations in the livers, spleens, and
kidneys, except for the calcium contents in the livers, which were higher than in rats fed
the control diet. The addition of 5% of any studied kiwiberry fruits significantly decreased
the bioavailability of manganese, zinc, and copper in most cases. The bioavailability of
calcium, magnesium, and iron was not influenced by kiwiberry supplementation into rat
diets significantly, although there was some increasing tendency in Fe bioavailability in
groups supplemented with all kiwiberries except with the Bingo cultivar. This trend was
also noted in Ca bioavailability except for the Weiki/chol group, where the bioavailability
decreased. The bioavailability of magnesium showed a downward trend with the exception
of the group fed with the Jumbo kiwiberry.

Author Contributions: Conceptualization, M.A.G., I.L., M.L., H.L., P.L. and S.G.; investigation,
M.A.G., I.L., M.L. and H.L.; methodology, M.A.G., I.L. and P.L.; project administration, I.L., M.L. and
H.L.; software and statistics, M.A.G.; writing-original draft, M.A.G. and I.L.; review and editing, M.L.,
H.L., P.L. and S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the National Science Center 2012/05/B/NZ9/
03327, Poland.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Animal Care Committee of Warsaw University of Life Sciences
(SGGW), Poland.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lim, S.; Han, S.H.; Kim, J.; Lee, H.J.; Lee, J.G.; Lee, E.J. Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-

methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chem. 2016, 190, 150–157. [CrossRef]
2. Latocha, P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta)—A Review. Plant Foods Hum. Nutr. 2017, 72,

325–334. [CrossRef]
3. Ahn, J.H.; Park, Y.; Yeon, S.W.; Jo, Y.H.; Han, Y.K.; Turk, A.; Ryu, S.H.; Hwang Bang, Y.; Lee, K.Y.; Lee, M.K. Phenylpropanoid-

Conjugated Triterpenoids from the Leaves of Actinidia arguta and Their Inhibitory Activity on α-Glucosidase. J. Nat. Prod. 2020,
83, 1416–1423. [CrossRef]

4. Stafaniak, J.; Przybył, J.L.; Latocha, L.; Łata, B. Bioactive compounds, total antioxidant capacity and yield of kiwiberry fruit under
different nitrogen regimes in field conditions. J. Sci. Food Agric. 2020, 100, 3832–3840. [CrossRef]
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