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Abstract: The Fourth Industrial Revolution, characterized by an unprecedented fusion of technologies
that is blurring the lines between the physical, digital, and biological spheres, continues the trend to
manufacture ever smaller mechanical, optical and electronic products and devices. In this manuscript,
we outline the way cardiac implantable electronic devices (CIEDs) have evolved into remarkably
smaller units with greatly enhanced applicability and capabilities.
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1. Introduction

The Fourth Industrial Revolution [1], characterized by an unprecedented fusion of technologies
that is blurring the lines between the physical, digital, and biological spheres, continues the trend
to manufacture ever smaller mechanical, optical and electronic products and devices [2]. In this
manuscript, we outline the way cardiac implantable electronic devices (CIEDs) have evolved into
remarkably smaller units with greatly enhanced applicability and capabilities.

2. Prevention of Sudden Death

The current annual incidence of sudden cardiac death in the United States is in the range of
180,000 to 450,000 per year [3,4]. Although the prevalence of malignant ventricular arrhythmias as the
etiology has declined, they remain the most common cause of cardiac arrest [3]. Multiple studies have
confirmed the preeminence of implantable cardioverter defibrillators as the treatment of choice for
primary and secondary prevention of sudden cardiac death [5].

The first implantable defibrillator (AID) was large (289 g, 150 mL), required a median sternotomy
to open to place patch electrodes and two screw-in sensing leads on the heart’s epicardial surface.
The pulse generator had to be implanted subcutaneously in the abdominal region [6].

The earliest implantable defibrillators had no or very limited capabilities with respect to pacemaker
function, stored telemetry, and arrhythmia discrimination ability [6]. Modern devices can perform
virtually all the functions of a pacemaker, including cardiac resynchronization therapy pacing,
storing large amounts of arrhythmia and other physiologic data, and have some ability to discriminate
between supraventricular and ventricular tachycardias [7].

Modern implantable cardioverter defibrillator (ICD) systems are implanted under the skin of
the upper chest area and have two basic elements, a pulse generator and 1–3 leads placed in the
cardiac chambers or epicardially via the coronary sinus into a cardiac vein to pace the left ventricle.
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They are available as single-chamber (right ventricular lead only), dual-chamber (right atrial and right
ventricular leads) and triple-chamber devices (right atrial, right ventricular and left ventricular leads)
capable of bradycardia, anti-tachycardia (termination), and cardiac resynchronization (triple-chamber
only) pacing [8].

The majority of an ICD pulse generator consists of the battery and a capacitor (the component
that stores and delivers charges). Defibrillators must store energy to deliver lifesaving shocks.
Developing capacitors which required a minimum of stored energy but still delivered enough energy
for defibrillation without affecting the ICD service life was pivotal in size reduction [9].

Capacitors are electronic components that take advantage of the ability of electrical fields to reach
across an insulator. They consist of two flat plates made from a conducting material, separated by a thin
insulating material. When a battery is connected to the conducting plates, the battery voltage negative
side pushes negative charges toward one plate. The positive battery voltage side simultaneously
pulls electrons (negative charge) away from the second plate. The electric field that rapidly builds
between plates permits current to flow. As the circuit’s negative plate fills with electrons, the electric
field created pushes electrons away from the plate on the opposite side of the insulator toward the
positive battery voltage side. When current flows, an excess of electrons builds up on the negative
capacitor plate as the positive side develops an electron deficiency, creating a potential difference
(voltage) between the capacitor’s plates. Current only flows briefly. As electrons accumulate on the
negative plate and are depleted on the positive plate, the differences in charge between plates increases
and the voltage between them increases. The voltage increases until the capacitor voltage is equal
to the battery voltage. Once the voltages are equal, current flow ceases, and the capacitor is charged.
When the capacitor has been charged, the battery may be disconnected and the voltage remains in the
capacitor (does not depend on the battery for its continued presence). Thus capacitors are capable of
storing change (a quality known as capacitance) [10].

Electrolytic capacitors can hold a massive electric charge in their tiny footprint [10].
Current implantable cardioverter defibrillators (ICDs) are minicomputers that and are small enough to
fit in the palm of your hand. The newest devices weigh as little as 70 g at a volume of less than 40 mL
and are less than a centimeter thick [11].

The subcutaneous implantable cardioverter defibrillator (S-ICD) was approved for use in the
United States in 2012 [12]. Although innovative, it is clearly a step backward from miniaturization and
enhanced capability. S-ICDs do not have the capability of providing bradycardia pacing, antitachycardia
pacing or cardiac resynchronization therapy. Even the third-generation pulse generator (EMBLEM™
MRI S-ICD System, Boston Scientific, St. Paul, MN, USA) is reminiscent of the early, bulky ICD models.
It weighs 130 g and its volume is 59.5 cm3. Its height, width and thickness are 69.1 mm, 83.1 mm,
and 12.7 mm, respectively [13].

S-ICDs may be considered for: (1) Younger patients due to the expected subcutaneous lead
longevity and a desire to avoid chronic transvenous leads; (2) ICD candidates without a current or
anticipated need for pacing; (3) Patients at high risk for bacteremia, including those with end-stage
renal disease on hemodialysis or with chronic indwelling endovascular catheters; (4) Patients with
limited vascular access or prior transvenous ICD complications [12].

Inappropriate shocks, mainly resulting from oversensing, are a significant limitation of S-ICDs.
Non-invasive reprogramming options are not always successful and device explantation may
be required.

3. Advances in Implantable Cardioverter Defibrillator (ICD) Lead Technology

Older DF-1 leads consist of bifurcated (in a single-coil lead) or trifurcated (in a dual-coil lead)
header connector pins. One pin is a pace-sense connector and the other(s) are high-voltage coil
connectors. The connectors are joined in a yoke that incorporates them into one lead body. The distal
end of the lead is implanted in the right ventricle. The pulse generator header may have three plugs
for connector insertion (dual-coil lead, single-chamber ICD), four plugs (dual-coil lead, dual-chamber
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ICD), or five plugs (dual-coil lead, cardiac resynchronization therapy defibrillator). Altogether, large
headers combined with the bi/trifurcated yoke result in an ICD system that is quite bulky [12].

The four-pole inline DF-4 connector system was endorsed by the Association for the Advancement
of Medical Instrumentation in 2011 [14]. DF-4 connectors are designed to facilitate lead-to-device
connection, minimize the risk of incorrect device connection, and reduce the bulk of the device.
Unfortunately, these advantages are achieved at the expense of additional connectivity, which precludes
strategies such as adding a subcutaneous or azygos vein coil to overcome the problem of high
defibrillation energy requirements [14,15].

4. Pacing for Bradycardia

Cardiac pacemakers were invented in 1949. The original versions were bulky boxes plugged
into walls for power [16]. In 1958, three developments paved the way for modern cardiac pacing.
Furman introduced a transvenous electrode and successfully stimulated the right ventricle (RV) for
96 days. Medtronic (Minneapolis, MN, USA) developed a four-inch, battery-powered box that could
be taped to a patients’ chest and Lillehei and Bakken reported efficacy of a battery-powered external
pacemaker in 18 patients. The first wearable pacemaker weighed 283 g. Later that year, Senning and
Elmqvist performed the first pacemaker implant using an epicardial lead [16–18]. Soon thereafter
devices became small enough to be implanted internally, but the need for frequent recharging was
problematic. Medtronic produced the first commercially implantable pacemaker technologies in
1960 [16]. Rate-adaptive pacing first appeared in the 1980s. Despite development of multiple
sensor types, as well as blending of sensor technologies, there has been no significant observable
symptom benefit or impact on clinical outcomes from different sensors or combination of sensors [19].
Magnetic Resonance Imaging (MRI) conditional devices have been developed over the last 10 years [16].

It is currently estimated that nearly one million patients worldwide receive conventional permanent
transvenous cardiac pacemakers annually. Pacemakers are limited by device-related complications.
Adverse events related to cardiac pacemakers occur in 10% of recipients [20]. Typically these events
are related to the surgical pocket, pulse generator or transvenous lead(s). Leads are vulnerable
to fracture, insulation failure or dislodgement and can also cause venous thrombosis/occlusion,
tricuspid regurgitation, and cardiac perforation. Lead-related endocarditis is a significant concern,
with mortality rates reported between 12–31% [21]. Pulse generators have been associated with pocket
hematoma, skin erosion and infection.

Although pulse generators have grown smaller and leads are thinner, reduction in pacing
lead size has been a mixed blessing. Smaller leads appear to be more likely to result in cardiac
perforation [22]. Additionally, device infection is on the rise [23]. FINELINE II™ Sterox EZ Leads
(Boston Scientific, Minneapolis, MN, USA) screw-in active-fixation leads, have been used worldwide
since 2001. A mannitol coating surrounds the helix, facilitating easy passage through the great veins of
the thorax. The mannitol melts in the cardiac chamber allowing helix fixation. Lead durability has been
proven satisfactory [24]. Unfortunately, Fineline™ leads are at high-risk for disruption (severance)
with traction and difficulties during lead extraction procedures have led many operators to avoid use
of these leads.

In response to these concerns, two leadless cardiac pacemakers have been developed for patients
requiring permanent ventricular pacing. Two leadless pacing systems have been available: the Micra
Transcatheter Pacing system (Medtronic, Inc. Minneapolis, MN) and the Nanostim Leadless Cardiac
Pacemaker (Abbott; subsidiary St. Jude Medical, St. Paul, MN, USA). Both systems provide right
ventricular sensing, pacing, and rate responsiveness. While both of these pacing systems are delivered
percutaneously via the femoral vein through a catheter delivery system, they differ with respect to
size, fixation to the myocardium, and responsiveness. The Nanostim recently had two major recalls:
The first due to premature battery failure and the second due to spontaneous detachment of the docking
button (a feature designed to allow retrieval of the Nanostim). Abbott is maintaining a worldwide
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halt on implantations of the Nanostim leadless pacemaker after reports surfaced of problems with the
device’s docking button [25]. Hence, the remainder of this discussion will focus on Micra.

Micra has a length of 25.9 mm, a volume of 0.8 mL and weighs 2 g. Its size has been compared to a
“large vitamin” (Figure 1) [26]. A percutaneous transfemoral venous catheter-based approach is used
to introduce the device into the right ventricle. Micra requires a 23 French (inner diameter)/27 French
(outer diameter) sheath. Four nitonol tines are used to affix the device to the right ventricular septal
myocardium. Multiple fluoroscopic views are used to ascertain fixation. At least two tines are required
to assure stable fixation. Micra uses conventional radiofrequency communication to confirm acceptable
pacing and sensing parameters and provides rate responsiveness using a 3-axis accelerometer. Micra is
tethered to the introducer sheath and can be retrieved and repositioned if unacceptable pacing/sensing
parameters are recorded. The introducer sheath and a goose neck snare can be used to remove a device
that is no longer tethered.
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Figure 1. A typical dual-chamber pacemaker (left) and the Micra (right). Reproduced with permission
from reference [26] and Medtronic, Inc.

In the Micra investigational device exemption prospective study, implantation was successful in
719 of 725 (99.2%) patients. Complications occurred in 3.4% of patients, including cardiac perforation
(1.5%), vascular complications (0.7%), venous thromboembolism (0.3%), and increased pacing
thresholds (0.3%). There were no device dislodgements. The trial included a pre-specified historical
cohort of patients implanted with a single-lead transvenous permanent pacemaker. Micra implantation
was associated with a 48% reduction in major complications compared to the transvenous permanent
pacemaker group [27].

Despite these encouraging results, the downside of chronic right ventricular pacing (mechanical
dyssynchrony leading to heart failure) limits the current use of leadless pacing. We await development
of leadless VDD systems, dual-chamber systems and possibilities for cardiac resynchronization therapy
to facilitate the expansion of leadless pacing to a broader group of patients.

5. Pacing to Treat Heart Failure

Cardiac resynchronization therapy (CRT) is applicable to 25–30% of patients with symptomatic
systolic heart failure. Patients with left bundle branch block (LBBB) and QRS duration ≥ 150 ms are
seen to benefit the most from CRT. Current evidence suggests that approximately 30% of the patients
who are selected for CRT do not respond to this therapy [28]. However, there is a lack of standard
definitions for CRT response and the spectrum of CRT response and reported response rates vary
widely depending on metrics used and whether a placebo effect is considered [28].
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CRT may be employed in association with bradycardia pacing (CRT-P) or an implantable
cardioverter defibrillator (CRT-D). CRT is usually achieved via biventricular pacing. Right ventricular
leads are placed via the great veins of the thorax. Left ventricular leads are also advanced via the great
veins of the thorax and ultimately positioned in a branch of the coronary sinus (Figure 2) [29].
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Early attempts at biventricular pacing used leads that were not designed for cardiac venous
placement. The Attain models 2187, 2188 (Medtronic, Inc., Minneapolis, MN) were stylet-driven
and designed for atrial pacing. Lead lengths ranged from 58–85 cm and lead diameters ranged for
6.2–6.7 French. Although optimal outcomes could be achieved (Figure 3) [29], manipulation into small
branches was frequently impossible. The subsequent development of novel narrow diameter leads
easily advanced over guidewires has become the mainstream method for cardiac resynchronization
therapy. The characteristics of state of the art left ventricular leads are summarized in Table 1.

Table 1. Cardiac venous (LV) leads sizes.

Manufacture Prodtct Line Lead Body Diameter Lead Length Range

Abbott QuartetTM 4.7 F 75–92 cm
Medtronic AttainTMPerformaTM 5.3 F 78–88 cm

Boston Scientific AcuityTMX4 5.2 F 86–95 cm
Biotronik Sentus® 4.8 F 77–97 cm
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Figure 3. Chest radiographs showing lead placements. (A) Posteroanterior and (B) lateral chest
radiographs showing tip of a large left ventricular lead (arrows) in a tributary of the middle cardiac
vein. Despite proximity of the lead to the left hemidiaphragm, phrenic nerve stimulation did not take
place. The right ventricular lead points anteriorly toward the rib cage. Reproduced with permission
from reference [29].

A multi-center trial recently demonstrated that cardiac resynchronization can be achieved at least
as well as biventricular pacing by substituting His bundle pacing (HBP) for cardiac venous pacing [30]
(Medtronic, Inc., Minneapolis, MN). HBP is usually performed using the Select Secure (model 3830,
4 FR, 69 cm, Medtronic, Inc., Minneapolis, MN) pacing lead delivered through a fixed curve sheath
(C315 HIS, Medtronic, Inc., Minneapolis, MN).

6. Pressure Monitoring to Manage Heart Failure

An estimated 57.4 million heart-failure-associated admissions occurred during the years 2001–2014.
Although primary HF admission declined by an average annual rate of 3%, heart failure remains a
major public health burden worldwide [31]. Additionally, hospital readmissions remain a continued
challenge in the management of the heart-failure patients. Although small gains have been made
over the past 5–7 years, over 20% of patients are still readmitted within 30 days and up to 50% are
readmitted by 6 months [32].

Right heart catheterization remains an important diagnostic tool in cardiology’s armamentarium,
providing direct hemodynamic data to determine cardiac output (CO), evaluating intracardiac
shunts, assessing valve dysfunction, diagnosing pulmonary hypertension, judging the effects
of pharmacotherapy for heart failure, and evaluating patients prior to heart and/or lung
transplantation [33].

In the 1980s, development of balloon flotation catheters which could be left in place for prolonged
periods resulted in a surge in right heart catheterization in critical care units. Current standard
thermodilution catheterization have 6–7.5 French. diameters and are 110 cm in length [34].
Unfortunately, pulmonary arterial catheterzation-guided management was associated with increased
mortality and length of intensive care unit stay and led to a substantial decline in their use [33].

In recent years, improvements in the diagnostic power and availability of non-invasive cardiac
imaging modalities, in addition to evidence of potential harm associated with pulmonary artery
catheterization in patients in critical care, have resulted in an additional decline in right heart
catheterization [33].

The public health and financial burden associated with heart failure has spurred efforts to detect
early markers of clinical deterioration. A variety of implantable sensors have been designed to create
opportunities for preemptive intervention to facilitate better heart failure care [35].

Sensors incorporated into CRT systems have been used to monitor hemodynamic, biochemical
and electrical parameters. Piezoelectric sensors have been added to specialized right ventricular
leads to monitor right ventricular pressure, peak endocardial acceleration and mixed venous oxygen
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saturation. The requirement for specialized leads with risks of lead-related complications has limited
the applicability of these options [35]. The HeartPOD, a sensor lead placed at the inter-atrial septum
and attached to a coil antenna used to measure left atrial pressure, was studied in the LAPTOP-HF
outcomes trial. This trial was terminated early due to the perception of excess of implant-related
complications [35–38].

Measurement of heart rate variability is not practical during atrial pacing or atrial tachycardias
and may be altered by the use of cardiovascular medications [35]. Monitoring physical activity
with accelerometers is a potentially useful adjunct, but not a viable option for prompt intervention.
Intrathoracic impedance measurements may lack sensitivity and/or specificity in the presence of pleural
effusion or concomitant pneumonia [35]. Early detection (via CRT devices) and prompt treatment of
atrial arrhythmias may limit their adverse effects in heart-failure patients.

The search for practical implantable pressure sensor has been vigorously pursued with research
and development for many years [39]. Despite the reduction in size of pacemakers and ICDs,
they remain relatively large and have limited battery lives. An ideal pressure sensor would eliminate
bulky hermetic sealing [40].

Recent rapid improvement in microfabrication has enabled development of smaller implantable,
highly accurate pressure sensors capable of chronic monitoring. Microelectro-mechanical systems
(MEMS) have significant miniaturization advantages [40]. The design of these sensors is fairly simple
consisting of a scaled-down deformable membrane (diaphragm) and electrodes placed on the top and
bottom within a sealed cavity [40].

The CardioMEMS™ HF System (St. Jude Medical, Inc. (Abbott), Little Canada, MN, USA) is
the first (and only) FDA-approved heart failure monitor proven to significantly reduce heart-failure
hospital admissions and improve quality of life [41]. The system is a miniaturized, implantable
wireless monitoring sensor that is placed percutaneously (via the femoral venous approach) in the
pulmonary artery to directly measure pulmonary arterial pressure. The CardioMems PA sensor
(St. Jude Medical, Inc. (Abbott), Little Canada, MN, USA) is delivered to the pulmonary artery via
a catheter utilizing a 0.018” over-the-wire system. The sensor is attached to the distal catheter by a
tethering release cord. The sensor measures 15 mm in length, 3.5 mm in width, and 2 mm in thickness.
Two polytetrafluoroethylene-coated nitinol loops (each measuring 10 mm in diameter) keep the sensor
in contact with the vessel walls after its release [42]. As noted, the sensor resides in a completely sealed
capsule that uses microelectromechanical systems (MEMS) technology which allows measurement
stability and energy efficiency.

The system is capacitive. Pressure deforms the membrane, changing the distance between the
electrodes and increasing the capacitance across the electrodes. An LC electrical circuit (L = inductor;
C = capacitor) stores energy and oscillates at the circuit’s resonant frequency [43]. The sensor is
powered by radiofrequency (RF) energy (it does not require a battery) and made of materials chosen for
biocompatibility, insensitivity to alterations in body chemistry or biology, and durability. It is designed
to last the lifetime of the patient.

Once implanted, the sensor wirelessly sends pressure readings to the portable external patient
electronic system. The electronic unit is turned on and reads pressure measurements wirelessly while
the patient lies on a special pillow containing an antenna [44,45]. The electronic unit uses audible and
visual signals, prompting the patient to press a button to initiate a reading.

The portable external electronic unit and the specialized pillow help complete a system that
permits the implantable sensor size to be small. The system allows patients to transmit PA pressure
data (to a secure website) from their homes to their health care providers, allowing for personalized
and proactive management geared toward reducing the likelihood of hospitalization [45].

7. Minimally Invasive, Long-Term Heart Rhythm Monitoring

An implantable loop recorder (ILR) is a small device (1.2–6.5 mL in volume; less than the size
of a chewing gum pack or USB memory stick [46,47]) implanted subcutaneously around the 4th
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intercostal space to the left of the sternum. These single-lead, electrocardiographic monitoring devices
are used for diagnosis in patients with unexplained recurrent palpitations or syncope, for long-term
monitoring in patients at risk for or with known atrial fibrillation (AF), cryptogenic stroke, for risk
stratification in patients who have sustained a myocardial infarction and for individuals with certain
genetic disorders. ILRs (with nearly 3 years of battery life) have a significantly greater diagnostic yield
than 24-h Holter, 30-day event, or 30-day mobile cardiovascular telemetry monitors [46]. ILRs are
exclusively diagnostic devices.

ILRs are leadless, have self-contained electrodes and solid-state loop memory capable of recording
and storage of bipolar electrocardiogram (ECG) recordings when activated by a patient or bystander
during symptomatic episodes [48]. The BioMonitor2 and BioMonitor3 (Biotronik, Lake Oswego,
OR, USA) insertable cardiac monitors have antennae that are added to increase detection sensitivity.
The antennae increase the device length (see Table 2 below). Each device primarily relies upon R-wave
(ventricular activity) sensing. These devices can transmit data transtelephonically to a physician’s office
for review. Device interrogation may also take place using individual manufacturers’ programmers.

Table 2. Implantable loop recorder (ILR) sizes.

Size
Variable Biotronik

BioMonitor 2
Biotronik

BioMonitor 3
Medtronic

Reveal LINQ
St. Jude Medical Confirm

Length (mm) 88.4 77.5 44.8 56.3
Width (mm) 15.2 8.6 7.2 18.5

Thickness (mm) 6.2 4.6 4.0 8.0
Volume (cm3) 5.0 1.9 1.2 6.5

Although ILRs have significant strengths compared to noninvasive monitoring devices, they also
have several important limitations. These include oversensing, undersensing and a propensity for
false-positive AF detection. False-positive episodes may be related to an irregular sinus rhythm,
noise in the recording, ventricular and/or atrial ectopy [48].

8. Conclusions

Miniaturization has dramatically reduced the size of cardiac pacemaker and implantable
defibrillator systems, while simultaneously facilitating advances in their therapeutic capabilities.

Additional advances in leadless pacing are likely to revolutionize the field in the near future.
Smaller, more maneuverable leads have made cardiac resynchronization therapy for heart failure
a practical, mainstream technique. Implantable monitoring for heart-failure recipients promises to
reduce readmission rates and facilitate ongoing assessment of various pharmacological therapeutic
interventions. Implantable loop recorders extend our ability to find the cause of unexplained syncope,
define the etiology of infrequent palpitations and unveil occult atrial fibrillation as a mechanism of
cryptogenic stroke. Smaller, faster devices with even greater capabilities hold great promise to help
patients live longer and better electrically.
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