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1  | INTRODUCTION

Trypanosoma brucei is one of the causative agents of African 
Trypanosomosis.1 These parasites are continuously exposed to 
attacks by host antibodies, type 1 proinflammatory cytokines and 
nitric oxide (NO).2-4 In combination, these molecules can have 
both direct and indirect trypanotoxic activities. Prolonged inflam-
mation is however also a detrimental hallmark of the infection for 

the host itself. Indeed, trypanosomosis‐associated immunopathol-
ogy is linked to excessive activation of the monocyte/macrophage 
compartment,5-8 and results in T‐cell‐mediated immune suppres-
sion 9,10 as well as the depletion of several host lymphocyte popu-
lations.5,9,11-13 The latter has been addressed at very specific time 
points of infection, but so far, comprehensive data detailing with 
the quantitative dynamic changes of these populations through-
out infection is lacking. In particular, no published information is 
available on systematic changes of the mature spleen neutrophil 
population throughout the entire course of infection covering 
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Abstract
Trypanosomosis is a chronic parasitic infection, affecting both humans and livestock. 
A common hallmark of experimental murine infections is the occurrence of inflamma-
tion and the associated remodelling of the spleen compartment. The latter involves 
the depletion of several lymphocyte populations, the induction of T‐cell‐mediated 
immune suppression, and the activation of monocyte/macrophage cell populations. 
Here, we show that in experimental T b brucei infections in mice, these changes are 
accompanied by the alteration of the spleen neutrophil compartment. Indeed, ma-
ture neutrophils are rapidly recruited to the spleen, and cell numbers remain elevated 
during the entire infection. Following the second peak of parasitemia, the neutrophil 
cell influx coincides with the rapid reduction of splenic marginal zone (MZ)B and fol-
licular (Fo)B cells, as well as CD8+ T and NK1.1+ cells, the latter encompassing both 
natural killer (NK) and natural killer T (NKT) cells. This report is the first to show a 
comprehensive overview of all alterations in spleen cell populations, measured with 
short intervals throughout the entire course of an experimental T b brucei infection. 
These data provide new insights into the dynamic interlinked changes in spleen cell 
numbers associated with trypanosomosis‐associated immunopathology.
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multiple time points of the early, intermediate and late‐stage of 
parasitemia.

Neutrophils are known to play a key role in the first line of de-
fence against invading pathogens via the innate arm of the immune 
system. Upon arrival at the site of inflammation, neutrophils engage 
their effector functions by eliminating invading pathogens and trig-
ger inflammatory reactions.14-16 However, recent data demonstrate 
that neutrophils can also extend their functions beyond their role in 
pathogen clearance and can play a role in promoting parasite survival, 
in particular, during the onset of tsetse‐transmitted trypanosomo-
sis.17 The lack of systematic data on quantitative changes in spleen 
cell numbers throughout infection prompted the data collection re-
ported here.

2  | MATERIAL AND METHODS

2.1 | Parasites and infection in mice

Eight‐week‐old female C57BL/6 mice were purchased from Koatech 
(Gyeonggi‐do, Republic of Korea) and infected by intraperitoneal 
injection using 5 × 103 T b brucei AnTat1.1E. Experiments were ap-
proved by the GUGC IACUC protocol n° LM16‐839/2018‐006. 
Parasitemia was assessed as previously described.18

2.2 | Cell isolation and flow cytometry assay

Single‐cell spleen suspensions were prepared at 0, 4, 5, 6, 7, 8, 9, 
10, 14, 17, 21, 24 and 28 days post‐infection (dpi) as previously de-
scribed.13 Unless otherwise stated, cell suspensions were re‐sus-
pended in 0.05% FBS BD FACSFlow Sheath Fluid. Cell washings 
were carried out by centrifugation at 314 g for 7 minutes. Incubations 
were performed at 4°C for 30 minutes. Non‐specific binding sites 
were blocked using anti‐CD16/CD32 (Fc γ III/II block—final dilution 
1/1000). Afterwards, 5  ×  105 cells were incubated with antibody 
cocktails (dilution of 1/600), using anti‐B220‐FITC, anti‐CD1d‐PE, 
anti‐CD138‐PE/CY7, anti‐CD93‐APC, anti‐CD4‐FITC, anti‐CD8a‐
PE, anti‐TCR β chain‐APC, anti‐Ly6G‐AlexaFluor488, anti‐Ly6C‐PE, 
anti‐CD11b‐APC, anti‐NK1.1‐APC and anti‐Ter119‐PE (BioLegend, 
San Diego, CA, USA), 1 µg of 7‐amino‐actinomycin D (7AAD) to ex-
clude nonviable cells, and finally analysed using a BD Accuri™ C6 
Plus flow cytometer.

2.3 | Statistical analysis

Prism® 7.0 software (GraphPad Software Inc) was used to graphi-
cally represent data and perform statistical analysis, using unpaired 
student t tests. Data are presented as mean ± SD.

3  | RESULTS

Spleen leucocyte population changes were analysed during T b bru-
cei AnTat1.1E infections. Table 1 shows the number of spleen, early TA
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B lineage (encompassing all CD93+ B cells), plasma B, follicular (Fo)
B, marginal zone (MZ)B, CD4+ T, CD8+ T, and NK1.1+ cells, mono-
cytes and neutrophils throughout infection (see supplemental 
Figure 1 for FACS gating strategy). A major influx of mature neu-
trophils (CD11b+Ly6G+Ly6CInt) is observed as early as 4 dpi (Table 1, 
Figure 1A, 1), and cell numbers remain elevated throughout infec-
tion (Figure 1B). Figure 1C displays the T b brucei AnTat 1.1E para-
sitemia profile.

Coinciding with the clearance of the first parasitemia peak (6 dpi), 
a 5‐fold increase in spleen neutrophil cells is observed (Figure 1D, 
Table 1). The neutrophil cell number remains high throughout the 
progressing infection, reaching a 15‐fold increase following the 
control of the third peak of infection. In contrast, while monocyte, 
plasma B, and early B lineage cells increase immediately following 
the first wave of infection, cell numbers drop again towards the end 
of infection, albeit not to baseline levels. Moreover, MZB, FoB, CD4+ 

F I G U R E  1   Alterations in spleen 
immune cell populations and parasitemia 
of Trypanosoma brucei brucei infected 
C57BL/6 mice. A, Flow cytometry plots of 
CD11b+Ly6CIntLy6G+ spleen neutrophils 
(naive and 4 dpi, one representative 
result). B, Dynamic changes in spleen 
neutrophil numbers throughout T b brucei 
AnTat1.1E infections (n = 3 mice per time 
point). Statistical analysis is performed 
by comparing each time point to the 
data obtained of uninfected controls 
(0 dpi). ***P < .001. C) Parasitemia 
levels of T b brucei AnTat1.1E infected 
mice. Parasitemia peaks are indicated 
by arrows (n = 5 mice per time point). 
D) Fold change in cell number of early 
B lineage, plasma B, follicular (Fo)B, 
marginal zone (MZ)B, CD4+ T, CD8+ 
T, and NK1.1+ cells, monocytes, and 
neutrophils during T b brucei AnTat1.1E 
infection (n = 3 mice per time point). 
Absolute cell numbers were obtained by 
multiplying the viable spleen cell count 
with the percentage value obtained by 
flow cytometry for every specific cell 
population (excluding 7AAD+ and Ter119+ 
cells). The following criteria were used; 
Mature neutrophils: CD11b+Ly6CIntLy6G+, 
Monocytes: CD11b+Ly6C+Ly6G‐, 
Early B lineage: B220+CD138‐CD93+, 
†Plasma B: B220IntCD138+, FoB: 
B220+CD138‐CD93‐CD1d‐, MZB: 
B220+CD138‐CD93‐CD1d+, CD4+T: 
TCRβ+CD4+, CD8+T: TCRβ+CD8+, NK1.1+: 
FSC/NK1.1+. †Plasma B cells express 
CD93 as well. Data are represented as 
mean ± SD. One representative of two 
experiments is shown
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T and CD8+ T cells reach peak numbers following the clearance of 
first peak of parasitemia. Thereafter, progressing infection results 
in sustained loss of these cells, except for CD4+ T cells, which only 
show a transient reduction following the second peak of infection 
(10  dpi). The coinciding significant increase in early B lineage and 
plasma B cells (previously reported 11,12), could result from extra-
medullary B lymphopoiesis, and polyclonal B cell activation and/or 
differentiation of MZB into plasma B cells. In contrast, NK1.1+ cell 
numbers (NK and NKT cells) reduce immediately following the onset 
of infection and remain severely depleted thereafter. Collectively, 
our data show that following the control of both the first and sec-
ond T b brucei AnTat1.1E parasitemia peaks, a cumulative increase of 
neutrophils coincides with the destruction of other mature spleen 
lymphocyte populations.

4  | DISCUSSION

While analysing trypanosomosis‐induced anaemia in the past, we 
reported the early influx (4  dpi) of neutrophils in the spleen of 
infected mice, preceding the first peak of parasitemia.5 Here, we 
show that this cellular recruitment persists throughout the entire 
course of infection, reaching a 15‐fold increase upon the control of 
the third peak of infection. At the same time, MZB, FoB, NK1.1+ and 
CD8+ T cells are all depleted due to the ongoing infection. This per-
sistent infection‐associated neutrophil accumulation is remarkable, 
as neutrophils are usually characterized as short‐lived cells associ-
ated with acute immune responses, dying within a limited time after 
performing their function.19 However, several recent studies have 
indicated that neutrophils are capable of executing more diverse 
functions, including the regulation of inflammatory responses, and 
acting as effectors of the adaptive immune system.20,21 Since neu-
trophils play an important role in regulating immune response dur-
ing parasite infections, the dynamic change of this cell population 
was addressed in an experimental T b brucei infection setup.

Following the observed persistent infection‐associated influx of 
spleen neutrophils during T b brucei AnTat1.1E infections, two ques-
tions can be put forward, that is what is the role of these cells with 
respect to the control of parasitemia, and secondly, could these cells 
contribute to the observed infection‐associated pathology?

Two possible scenarios can be suggested in which neutrophils 
would contribute to the regulation of parasitemia, dampening the 
parasitemia load while other immune cells are being depleted. 
Indeed, neutrophils could contribute to parasitemia control by (a) 
phagocytosis, (b) granular secretion of antibacterial compounds, 
(c) release of neutrophil extracellular traps (NETs), and (d) the in-
duction of a hostile inflammatory environment.22-26 The latter, 
that is the combined action of neutrophil‐derived tumour necrosis 
factor (TNF) and NO, could aid the significantly weakened remain-
ing antibody response in maintaining a certain parasitemia control 
lever during later stages of infection. In addition, neutrophils can 
stimulate the adaptive immune response, as they activate splenic 
B cells through the release of B‐cell‐stimulating factors. This can 

lead to (a) improved B cell survival, (b) IgM antibody secretion, 
(c) IgG and IgA isotype switching and (d) somatic hypermutation 
induction.27 Finally, neutrophils can positively regulate anti-
gen‐specific T cell responses and can act as antigen‐presenting 
cells.28,29 Collectively, these neutrophil effector functions could 
all contribute to parasitemia control by triggering both innate and 
adaptive defence responses. In contrast, neutrophils can play a 
role in the establishment and persistence of the parasite infection. 
A recent study revealed that the rapid recruitment of neutrophils 
to the dermal bite site of T b brucei infected tsetse flies, did con-
tribute to higher systematic parasitemia levels during the onset 
of infection.17

With respect to the second question and the possible role of per-
sistent spleen neutrophil accumulation as part of the infection‐as-
sociated immunopathology, it should be noted that a link between 
trypanosomosis‐associated B cell depletion and the activation of the 
NK‐perforin pathway has been suggested.30 Hence, since neutrophils 
can be an additional source of perforin, they could possibly contribute 
to B cell depletion during infection and aggravate the reported detri-
mental NK cell activity. In an ever‐accelerating cycle of immunopathol-
ogy, spleen B cell destruction and architecture disruption could than 
further drive inflammation by enhancing the influx of IFN‐γ producing 
neutrophils, fueling the ongoing type I inflammatory immune response.
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