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Abstract: For the last 20 years, it has been common lore that the free energy of RNA duplexes
formed from canonical Watson–Crick base pairs (bps) can be largely approximated with dinucleotide
bp parameters and a few simple corrective constants that are duplex independent. Additionally,
the standard benchmark set of duplexes used to generate the parameters were GC-rich in the
shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes
ranged between 6 and 8 bps. We were curious if other models would generate similar results and
whether adding longer duplexes of 17 bps would affect the conclusions. We developed a gradient-
descent fitting program for obtaining free-energy parameters—the changes in Gibbs free energy (∆G),
enthalpy (∆H), and entropy (∆S), and the melting temperature (Tm)—directly from the experimental
melting curves. Using gradient descent and a genetic algorithm, the duplex melting results were
combined with the standard benchmark data to obtain bp parameters. Both the standard (Turner)
model and a new model that includes length-dependent terms were tested. Both models could fit
the standard benchmark data; however, the new model could handle longer sequences better. We
developed an updated strategy for fitting the duplex melting data.

Keywords: RNA secondary structure; free-energy parameters; Kuhn length; cross-linking entropy;
gradient-descent fitting program; genetic algorithm

1. Introduction

In RNA structure, a stem is a segment of double-stranded RNA (dsRNA) forming a
duplex that is typically 3 to 10 bps long. It is the primary information extracted from contact
maps [1,2] and forms the scaffolding for all other motifs of RNA structure, particularly the
base pairing maps of RNA secondary structure and pseudoknots. From the latter part of
the 1950s to the early part of the 1960s, it was quickly recognized from hypochromicity
measurements of RNA [3–9] that there was base pairing [7,8,10–13], and that these base
pairs could result from self-folding of single-stranded RNA (ssRNA)—the concept of RNA
secondary structure [5]. Base pairing was used very early in describing the denaturing
or melting of RNA duplexes [3,6,14–17]. Unlike protein secondary structure, which only
describes the orientation of adjacent amino acids, RNA secondary structure describes the
global base pairing. Fundamental interactions of inter-polymer and intra-polymer chains
also formed the bases of much of the work in the 1960s [17–22].

A formal description of base pairing parameters began to emerge toward the early
1970s [22–35]. The concept of dinucleotide base pair (2-nt bp) parameters were largely
a product of Tinoco’s group in the early 1970s [29]. The 2-nt bp parameters were also
called first-neighbor or nearest-neighbor (NN) parameters [29]; these have become the
general standard. In that work, nth-neighbor for tri-, tetra-, etc. nucleotide bps were
also considered. Owczarzy et al. attempted to measure second-neighbor parameters for
canonical Watson–Crick (WC) bps [36,37]. However, in general, the strongest coupling
appears to occur between nearest neighboring bases with only a limited degree of coupling
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between next-nearest-neighbor bases. The precise measurement of 2-nt bp parameters was
taken up and improved on mostly by members of the Turner group [38–45]. Similar work
was also done with DNA [46–48]. The work has been extended to a multitude of motifs
beyond RNA/DNA duplexes to include hairpin loops (H-loops) [49–54], internal loops
and bulges (I-loops) [47,55–57], and multibranch loops (M-loops) [58–60].

The standard stem motif consists of a dsRNA duplex bound solely by either canonical
Watson–Crick (WC) or GU bps, which are often found in the context of other canonical WC
bps. The melting of a single duplex composed of contiguous bps forming a single stem
motif in the current model can be summarized with the following core equation:

∆G(l) =
l

∑
bp

∆Gbp + ∆Ginit + ∆Gsym + ntAU∆GtAU (1)

where l is the length of the stem, ∆Gbp is the free energy for a given canonical WC or

GU 2-nt bp
5′−XY− 3′

3′ −
−
X
−
Y−3′

(where
−
X and

−
Y reflect a corresponding partner of X and Y,

respectively; e.g.,
5′−GA− 3′

3′−CU− 3′
), ∆Ginit is what has been called the initiation free-energy,

∆Gsym is nonzero when the two sequences forming the duplex are complementary (about
0.5 kcal/mol and independent of sequence length), and ntAU and ∆GtAU refer to the number
and free-energy correction for terminal AU and GU bps, respectively. For simplicity, 2-nt

pairing patterns of the form
5′−XY− 3′

3′ −
−
X
−
Y−3′

will be written with the following shorthand:

XY ∼
−
Y
−
X or, equivalently, XY/

−
X
−
Y. Whereas refinements have recently been applied to the

original WC 2-nt base pairing parameters [61], the WC duplex parameters measured by
Xia [62] have changed only modestly since 1998. The original GU parameters [38] showed
more significant changes in later releases. Nevertheless, even in the context of more
complete modeling of the thermodynamics of various RNA motifs [63], the fundamental
underlying model remains the same.

These base pairing parameters are used in a variety of programs including mfold [64–67],
UNAFold [68], the Vienna package [69–71], and a pseudoknot prediction program, vs-
fold5 [72], and its corresponding suboptimal structure prediction program, vs_subopt [73].

In the development of vsfold5 and vs_subopt, a central concept was that the stem
has a particular stiffness that is a function of stem length. The stiffness was defined in
terms of the structures’ Kuhn length (ξ) [74,75]. There is also a concept of fraying that
is worked into the free-energy model, and fraying is also dependent on sequence length.
On the other hand, the Turner model merely applies a constant, ∆Ginit, to account for
unspecified stem formation costs. We are in the process of building a next-generation
integrated package based on what we learned from the vsfold5/vs_subopt package that
permits variability in the Kuhn length (i.e., stiffness) for different stems in an RNA structure.
As some RNA structures can exhibit highly variable degrees of stiffness, we are interested
in finding out how the length of the duplex might affect the free energy beyond the
sequence-dependent 2-nt base pairing parameters, ∆GtAU and ∆Ginit, if at all. To do
this, we measured several longer sequences and added parts of that set to the standard
benchmark set from Xia et al. [40,61]. From the melting data, we generated base pairing
parameters using two different models, the one commonly used to generate the parameters
for programs like mfold and the Vienna package and an equation we discuss in this work.

Other approaches that have been shown to work—such as CentroidFold [76], which
works with a host of strategies to establish base pairing probabilities; clustering of a
Boltzmann-weighted ensemble of RNA secondary structures; a sampling approach; and
clustering Sfold [77] and its own maximum expected accuracy estimator, or Pfold [78],
which uses stochastic context-free grammars—will not be discussed here. We simply
show that a stem model such as the Turner model, although it is generally used and often
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generates good predictions, is not the only possible model that can be shown to fit the
experimental data. Both sequence/structure data and thermodynamic data are fitted using
a—gradient-descent (GD) fitting program developed in-house and an approach using a
genetic algorithm (GA; based on the Pyevolve package as a driver) to build 2-nt parameters
that are native to the cross-linking entropy (CLE) model [50–53]. For comparison, it is also
used to fit duplexes using the Turner model (Equation (1)) with the standard benchmark
data used to generate the model parameters.

2. Concepts behind the Algorithm
2.1. Kuhn Length, Stem Length, and RNA Thermodynamics

In numerous studies of the CLE model, it has been shown that the Kuhn length in
folded ssRNA can be largely approximated by assuming that the Kuhn length is propor-
tional to the length of a given stem in an RNA structure. As the length of dsRNA stem
is extended, there will be a point where the Kuhn length will essentially reach a maxi-
mum. When a complementary sequence of ssRNA is made, the structure becomes dsRNA.
Figure 1 compares the change in Kuhn length between three identical transfer RNA (tRNA)
structures folded as ssRNA. The same three tRNA structures were combined with their
respective complementary sequences and run through a long Monte Carlo simulation,
where pentanucleotide correlation was also included. The dsRNA stem remained rather
straight and exhibited a vastly different Kuhn length from the corresponding ssRNA struc-
tures even though it was the same sequence. Therefore, the context of interaction is just as
important as the particular sequence on nucleotides.
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boundaries of short oligonucleotide duplex structures, particularly in terminal AU and 

Figure 1. Comparison of the Kuhn length for two types of RNA. Three identical transfer RNA (tRNA,
pdb: 1EVV) structures (consisting of folded single-stranded RNA (ssRNA)) are shown at the top
and the resulting double-stranded RNA (dsRNA) when all three tRNA sequences are joined with
the corresponding complementary sequence are shown at the bottom. Kuhn length is a measure
of the tendency for a polymer to remain straight over a given distance. Clearly, dsRNA has a far
longer Kuhn length compared to the ssRNA structure for tRNA, and context is a major determinant
of stiffness. Images made using Pymol.

2.2. The Concept of “Fraying” at the Boundaries of a Contiguous Stem

Even given that we start with a completely contiguous stem, i.e., no mismatches
at all, it is unlikely that the Kuhn length is constant throughout the entire length of the
stem. Experimentalists have long noted that there appears to be some “fraying” at the
boundaries of short oligonucleotide duplex structures, particularly in terminal AU and
GU bps [7,35,62,78,79]. Fraying is an effect where instabilities at the boundaries of the
stem, probably largely due to interactions with water, penetrate partially into the stem,
reducing the stiffness at the boundaries. This is illustrated in Figure 2a–d. Figure 2a
shows an unfrayed stem. The stem is stable to all denaturing and disordering interactions.
Figure 2b–d reflect the extent to which external interactions can disrupt stacking. One
might see this as a kind of penetration depth of solvent interactions along the axis of the
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stem starting from the ends, as shown in the figure. If the solvent is somewhat denaturing,
then the penetration into the stem is likely to be quite deep (Figure 2d). The Kuhn length
becomes the average over the length of the stem where the center is the largest and the
boundaries the smallest. It is not clear exactly how deep such fraying extends from the ends,
but hypochromicity measurements suggest that penetration or fraying could extend as
deep as three or four bps [7,10,13,80–82], effectively two bps from each end of the structure
as in Figure 2c. For normal environments in the cell, extreme fraying in the RNA, as shown
in Figure 2d, seems unlikely.
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Figure 2. Illustration of fraying in a stem where the stem remains largely ordered, but the ends are
slightly disordered: (a) a case where there is very little fraying of the stem so the total length of the
stem (lstem) and the Kuhn length of the stem (ξstem) of the stem are proportional; (b) a small degree of
fraying occurs at the ends of the stem (one base pair (bp)); (c) most likely the actual degree of fraying
of a typical stem (two bps); (d) a more extreme example of fraying. The purple arrows indicate the
magnitude of penetration of the solvent into the stem.

2.3. New Free-Energy Model for a Stem

Here, we propose a modified version of Equation (1) that allows accounting for
stiffness and fraying of the strands ends:

∆G(l) =
l

∑
bp

∆Gbp + ∆Gsym + ntAU∆GtAU + wt · ∆Glcle

(
l,
−
ξstem

)
+ ∆Gfray(l, ξc) (2)

where the first three terms are as defined in Equation (1). Although not explicitly written
in Equations (1) and (2), temperature (T) dependence is to be assumed for all terms. In
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the place of ∆Ginit, two new terms appear at the end of Equation (2). The first term,

∆Glcle

(
l,
−
ξstem

)
, reflects the change in entropy caused by a change in the stiffness as the

two independent free single strands combine to form the duplex, and wt is a dimensionless
scaling factor. The free strand ssRNA is a very flexible structure, as can be seen in Figure 1
where the loops of the tRNA allow a very compact structure. Depending on the length of
the duplex stem, the dsRNA can be far stiffer and becomes even more so as the length of
the duplex increase. This is because there is far more order in a double-stranded duplex
than in the separate parts and, therefore, a proportional increase in entropy loss [83]. In its
simplest form, the free-energy change resulting from the stiffening of a single chain is

∆Glcle

(
l,
−
ξstem

)
=

(γ+ 1/2)kBT
D

∫ −ξstem

1

(
ln(x)
1− x

+ 1
)

dx (3)

where γ is the self-avoiding walk parameter that accounts for the fact that a chain cannot
walk back on itself (resulting in a fractal dimension for the system), D is a correction that is

proportional to the spatial dimensions of the polymer (D ∼ 3), and
−
ξstem can be estimated

from the persistence length in a worm-like chain

−
ξstem(l) = ξm

{
1− ξm

2l
(1− exp(−2l/ξm))

}
(4)

In Equation (4), ξm is the maximum Kuhn length for dsRNA (around 200 bps). Note

that when l is small,
−
ξstem(l) ≈ l, and when l is large,

−
ξstem(l) ≈ ξm. For l > 10 (bp),

Equation (3) tends toward a linear increase as proposed by Landau and Lifshitz [84].
The other term that is new in Equation (2), ∆Gfray(l, ξc), expresses the fraying of the

ends of the duplex, as described in Section 2.2. The exact form of the expression is not
known. However, we know from the early studies of Rich et al. [7] that hypochromicity
is lower for short oligonucleotide strands, where it was undetectable for strands shorter
than seven bps. Therefore, we assume that the intensity of the fraying follows a kind
of sigmoidal curve, maximizing at the edges and tapering off deeper inside the duplex.
The critical stem length, ξc, represents where the inflection point is. The sharpness of the
inflection is defined by the parameter bw, and each bp near each end contributes to the
entropy loss as a function of depth. A thermodynamic weight cw scales the temperature
and inflection dependence. The fraying contribution is an integral of these individual
contributions:

∆Gfray(l, ξc) =
cwT
bw

{
bwl + ln

[
1 + exp(−bwξc)

1 + exp(bw(l− ξc))

]}
(5)

Choosing the values ξc = 4.0 (bp), bw = 1.0 (bp−1), and cw = 1.0 (kcal/mol·K·bp),
a graph of Equation (5) and its derivative are shown in Figure 3. The derivative of
Equation (5) is a sigmoid function indicating the degree of fraying, shown in the green
curve in Figure 3. In the first approximation, the sigmoid function should be perfectly
symmetric at both ends of the stem, so Figure 3 shows the projection of only one of the
ends for clarity. Note also that the variability of the fraying contribution is strongest for
very short chains and approaches a constant for longer chains.
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ξc = 4.0 (bp), the sharpness of the inflection bw = 1.0 (bp−1), and the thermodynamic weight
cw = 1.0 (kcal/mol·K). For stem lengths longer than 7 bp, the contribution reaches a constant that
resembles initiation free energy (∆Ginit). Graph made using gnuplot.

Note that the temperature-dependent forms for the free-energy terms in Equation (1)
are as follows: ∆Gbp(T) = ∆Hbp − T∆Sbp, ∆Ginit(T) = −T∆Sinit, ∆Gsym(T) = −T∆Ssym,
and ∆GtAU(T) = −T∆StAU, respectively. It is clear, therefore, that ∆Ginit, ∆Gsym, and
∆GtAU are all derived from entropic phenomena. Indeed, ∆Gsym results from the Gibbs
paradox [85] and the correction for concentration when forming a duplex from a self-
complementary sequence.

2.4. The Duplex Benchmark Set Itself

Here, we call the RNA sequences used to derive the current Turner energy rules for
canonical WC bps the “standard benchmark”. This dataset first appeared in Xia et al. [40]
and has been revaluated since that time in Chen et al. [45] and Spasic et al. [61]. The lengths
of the sequences in the standard benchmark vary from 4 bps to 14 bps. There are only one
9 bp, one 10 bp, and one 14 bp sequence in the dataset. The bp composition is pure GC at
4 bps and gradually shifts toward increasing AU richness as the length of the sequences
increase, until the final sequence of 14 bps is pure AU. Largely equal distributions of AU
and GC pairs are found for 7 and 8 bps sequences, with some richer in AU. Highly GC-rich
sequences only appear for duplexes of 6 bp or less. It is true that a roughly average and
generic RNA secondary structure is likely to have stems that range around 6 to 8 bps and
most organisms have a roughly equal distribution of A, C, G, and U; hence, the 6 to 8 bp
part of the standard benchmark reflects that.

Since most of the sequences in the standard benchmark are 6 and 8 bps long and we
are interested in the length dependence of RNA stems, we combined the data from the
standard benchmark with the 17 bp sequences from our data. The 17 bp sequences were
measured in a physiological salt concentration of 150 mM because our aim was to obtain
thermodynamic parameters under conditions that approach the physiological conditions
observed for most biological organisms. Chen et al. [86] measured 18 of the duplexes
from the standard benchmark under a variety of salt concentrations and derived empirical
equations to express melting temperature (Tm) and ∆G as a function of salt concentration.
Both sets contain canonical WC bp patterns. Therefore, we recalibrated the standard
benchmark using the reported empirical equations. We also directly recalibrated the data
in Chen et al. [86] using linear interpolation of their salt-dependent data.

Within the 17 bp sequences, 14 of the 17 bps were identical for all sequences. To
minimize redundancies, we selected only 4 sequences from the 17 bp set and added them
to the recalibrated standard benchmark. We fit the combined sequences with both the
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Turner model in Equation (1) and the new model in Equation (2) using a GD strategy to
obtain the free-energy parameters.

2.5. Gradient Descent

In GD, a proposed function is fitted with respect to various parameters, as follows:

hθ(x) = θ0 + θ1x1 + f(θ2, θ3, x2, x3) · · · (6)

where θ0, . . . ,θj, . . . ,θn is the list of parameters to be fitted (n in total), and x =
[
x0, . . . , xk, . . . , xp

]
is a list of various physical conditions associated with a particular piece of data; e.g., xk
represents the free energy of a 2-nt bp aa~uu. Here, f(θ2, θ3, x2, x3) represents a function
that has parameters θ2 and θ3 along with some associated data properties x2 and x3. Equa-
tion (6) is meant to express the same value as an observable parameter y; in this case, y
is the free energy of a specified duplex at 37 ◦C. Given m independent measurements
y =

[
y0, . . . , yi, . . . , ym

]
, and m corresponding sets of parameters x0, . . . xi, . . . , xm, we built

a cost function

J(θ) =
1

2m

m

∑
i=1

(hθ(xi)− yi)
2 (7)

where i represents a particular piece of experimental data and m is the total number of data
points. For data point i, the proposed scalar function hθ containing the specific physical
condition list, xi = [x0, . . . , xp]i, is compared with a scalar measured property yi; e.g., the
measured free energy at 37 ◦C of sample i. The parameter θj is obtained by evaluating

θ′j = θj −
αj

m

m

∑
i=1

(hθ(xi)− yi)
∂hθ(xi)

∂θj
(8)

where θ′j becomes the updated parameter θj and αj defines the desired learning rate [87],
which, in these problems, is around a few parts per hundred. Since the number of pa-
rameters is relatively finite, we chose to define the learning rate, αj, as an independent
variable for each parameter θj. This allowed us to examine the convergence of individ-
ual parameters. In the proposed function hθ(xi), ∂hθ(xi)/∂θ0 = 1, ∂hθ(xi)/∂θ1 = x1,
∂hθ(xi)/∂θ2 = ∂f(θ2, θ3, x2, x3)/∂θ2, and ∂hθ(xi)/∂θ3 = ∂f(θ2, θ3, x2, x3)/∂θ3. One then
proceeds to update all n parameters of θj using the m items in the reference data with each
iteration. The functions typically approached convergence after a few thousand steps but
were carried out to 60,000 iterations.

2.6. The Genetic Algorithm

The genetic algorithm has been explained in the literature [87]. The current scoring
function was based on four criteria. In these tests, the comparison was based on the
difference between the reference structure and what is ultimately predicted by using the
dynamic programming algorithm with the given input sequence. As with the previous
discussion of GD, we assume m is the number of data points. We also assume the same
physical condition list xi = [x0, . . . , xp]i, test function hθ, and scalar properties yi.

The first criterion is the number of base pairs computed correctly with respect to the
reference structure

δSbp =
m

∑
i=1

(nref
i,bp − npred

i,match)
2

(9)

where nref
i,bp is the number of bp in the reference structure i, and npred

i,match is the number of bp
that match between the predicted structure i and the corresponding reference structure.

The second criterion examines the match of the stems, where the tail of the stem
from both the reference structure and the predicted structure must match. This is then
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weighted by the stem length itself. Hence, a poor match between the predicted stems and
the reference or a distorted predicted stem will yield an unfavorable (positive) score,

δSstem = ∑m
i=1 (s

ref
i,stem − spred

i,match)
2
, (10)

where sref
i,stem is the same as nref

i,bp but is defined as the number of reference stems in structure

i multiplied by the respective stem length, and spred
i,match is all the corresponding cases where

the predicted structure’s stems match the reference stems.
The third criterion examines the self-consistency between the predicted structure and

the reference structure in terms of the free energy,

δVsc = ∑m
i=1 (V

ref
i −Vpred

i )
2
, (11)

where Vref
i is the calculated free energy of the reference structure i and Vpred

i is the calculated
free energy of the predicted structure.

Finally, when the data is available, for a fourth criterion, we compare the experimen-
tally obtained free energy of structure i and the predicted free energy,

δExpt =
m

∑
i=1

(Eref
i,xpt − Epred

i,calc)
2

(12)

where Eref
i,xpt is the experimentally measured reference structure and Epred

i,calc = Vpred
i .

To compute the score, we define a weighted variance expression,

δS =
(

wbpδSbp + wstemδSstem + wscδVsc + wxptδExpt

)
/m2, (13)

where wbpδSbp is the weighted variance of bp matches, wstemδSstem is the weighted stem
variance, wscδVsc is the weighted variance of the calculated reference structures and pre-
dicted structures, and wxptδExpt is the weighted variance between the observed reference
free-energy and the calculated prediction. Finally, the score becomes

score = 100 exp(−δS) (14)

where a score of 100 would be a perfect score.

3. Results and Discussion

To check the basic concepts put forward in the previous section, we fit the standard
benchmark (found in [40]) under the condition of 1M salt with both Equations (1) and
(2) using the GD tools we developed. The resulting free-energy parameters from fitting
the standard benchmark using Equation (1) are shown in Table 1 in column 2 and are
compared with those reported in the most recent update [61] in column 4 of the table. The
fitted parameters clearly agree within the experimental error bars (column 4) and largely
within the estimated error bars (column 3). The predicted free energy of the duplex is
plotted against the experimentally evaluated free energy in Figure 4, showing a reasonable
match. The inset in Figure 4 reports the chi-squared and residuals of the fit. Hence, the
methodology used here reproduces the parameters reported in the literature within the
experimental error. Additional details are shown in the Supplementary Materials, Table S1.
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Table 1. Parameters for the standard benchmark [40] and the most recent update [61] using the Turner model, gradient
descent (GD), and the genetic algorithm (GA). The symbols and definitions for ∆Gbp, ∆Gsym, ∆GtAU, ∆Ginit, ∆Glcle, cw, bw,
and ξc can found in Equations (1) and (2) and subsequent expressions.

Turner Model New Model

Parameters
Fitted Weight ± Error Bars (kcal/mol)

Parameters
Fitted Weight ± Error Bars (kcal/mol)

Standard
Benchmark

Recent
Update GD GA

2-nt bp parameters (∆Gbp)

AA/UU (aa~uu) −0.94 ± 0.03 −0.93 ± 0.03 AA/UU (aa~uu) −1.17 ± 0.03 −1.43 ± 0.03
AC/UG (ac~gu) −2.26 ± 0.03 −2.24 ± 0.06 AC/UG (ac~gu) −2.47 ± 0.03 −2.38 ± 0.03
AG/UC (ag~cu) −2.05 ± 0.03 −2.08 ± 0.06 AG/UC (ag~cu) −2.26 ± 0.03 −2.35 ± 0.03
AU/UA (au~au) −1.10 ± 0.04 −1.10 ± 0.08 AU/UA (au~au) −1.33 ± 0.04 −1.33 ± 0.03
CA/GU (ca~ug) −2.09 ± 0.03 −2.11 ± 0.07 CA/GU (ca~ug) −2.29 ± 0.03 −2.28 ± 0.03
CC/GG (cc~gg) −3.33 ± 0.03 −3.26 ± 0.07 CC/GG (cc~gg) −3.54 ± 0.03 −3.44 ± 0.03
CG/GC (cg~cg) −2.29 ± 0.03 −2.36 ± 0.09 CG/GC (cg~cg) −2.50 ± 0.03 −2.58 ± 0.03
GA/CU (ga~uc) −2.43 ± 0.03 −2.35 ± 0.06 GA/CU (ga~uc) −2.64 ± 0.03 −2.66 ± 0.03
GC/CG (gc~gc) −3.55 ± 0.03 −3.42 ± 0.08 GC/CG (gc~gc) −3.76 ± 0.03 −3.65 ± 0.03
UA/AU (ua~ua) −1.36 ± 0.04 −1.33 ± 0.09 UA/AU (ua~ua) −1.57 ± 0.04 −1.50 ± 0.03

Sequence-independent parameters

∆Gsym 0.47 ± 0.02 0.5 ** ∆Gsym 0.46 ± 0.02 0.37 ± 0.03
∆GtAU 0.38 ± 0.02 0.45 ± 0.04 ∆GtAU 0.38 ± 0.02 0.78 ± 0.03
∆Ginit 4.22 ± 0.02 4.10 ± 0.02 ∆Glcle → wt * 0.60 ± 0.02 * 1.16 ± 0.03 *

∆Gfray → cw * 2.53 ± 0.02 * 2.40 ± 0.03 *
∆Gfray → bw * 0.83 ± 0.02 * 0.78 ± 0.03 *
∆Gfray → ξc * 1.84 ± 0.02 * 1.72 ± 0.03 *

* Here f(x)→b indicates b is a parameter of the function f(x). ∆Glcle → wt does not have units. The unit for ∆Gfray → cw is kcal/mol·K·bp,
and the unit for both ∆Gfray → bw and ∆Gfray → ξc is bp−1. ** Not measured in this work.
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Figure 4. Comparison of fits using Equation (1), the standard Turner model (green x), and
Equation (2), an alternative stem model (purple +) for the standard Turner data alone. Here, the
results are very similar. The inset table compares the ranks (the number of fit parameters), the
chi-squared, and the residuals of the two different models as a result of fitting.

It is important to recognize that Equation (2) must be evaluated in the context of its
concepts just as Equation (1) was. Our goal is to understand the concept of a stem and then
address the issue of how we build a prediction scheme around it. Therefore, at this stage,
we simply ask what happens if we replace Equation (1) with Equation (2)? Can we achieve
a similar fit using such a model?

The model in Equation (2) attempts to incorporate additional physical properties
such as stiffness and fraying into the characteristic behavior of a generic stem (here an
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RNA duplex of a given length and bp composition). It is clear from Equation (1) that
some kind of positive corrective term is needed to fit the set of duplexes. The constant is
independent of the length of the stem and was defined as the initiation free-energy (∆Ginit).
In Equation (2), ∆Ginit was suggested in the local cross-linking entropy as accounting for
the increasing stiffness of the stem as it becomes longer (∆Glcle) and as correcting for the
fraying of stems (∆Gfraying), which is particularly important in correcting the free energy of
short duplexes. For sequences of similar lengths, it would be reasonable to surmise that
∆Ginit ≈ ∆Glcle + ∆Gfraying.

Where Equation (2) becomes particularly meaningful is in comparing situations as
suggested in Figure 1. The dsRNA structure exhibits a large local-entropic cost because
of the long, relatively straight stem that forms along a quasi-one-dimensional axis of the
two strands of RNA. The comparatively smaller tRNAs shown in the figure would require
far less correction from ∆Glcle, and most of the contribution would tend to come from
the fraying of the short stems in the structure. It seems quite doubtful that the ∆Glcle
contributions are in any way similar for these two very different structures in Figure 1,
even if we add the four initiation free-energy constants for each tRNA together—it is
arguable that this initiation free-energy is absorbed into the so-called “penalties” that are
used to calculate the loops in RNA secondary structure calculations. On the other hand,
∆Glcle is a function of the Kuhn length, which was provisionally defined as proportional to
the length of the stem. In that sense, there is also proportionality, but some mitochondrial
tRNAs have missing D- or T-loops. What then? In fact, for that whole 212 bp stem, the
rules of Equation (1) assert that only one such ∆Ginit may be applied.

To explore these questions further, we also fitted the standard benchmark using
Equation (2) with the GD tools we developed, assuming the same 1 M salt and 100 micro-
molar concentrations reported in the experimental conditions. We provisionally kept all
other assumptions the same—namely, the 2-nt bp evaluation, terminal AU contribution,
and symmetry corrections for self-complementary sequences. In place of the ∆Ginit con-
stant, we included the Kuhn length corrections in Equations (3) and (4) and the fraying
corrections in Equation (5). The results are also shown in Table 1 (column 5) and in the
Supplementary Materials (Table S1), and the observed and calculated free energies are
also plotted in Figure 4, with the results of the fit shown in the inset. The base pairing
parameters all appear to be slightly downshifted but, in other respects, they appear rather
similar. The fit is only slightly less favorable in its chi-squared and residuals.

The employment of Equations (3) and (5) in the place of ∆Ginit resulted in a similar chi-
squared and residual as Equation (1). Therefore, this stem model is able to work with the
experimental data with largely the same degree of reliability. Context dependence—other
than 2-nt bp formalism—is not considered in either model. The free energy is assessed
as the sum of these generic stem features, which are entropic in character, and a purely
associative combination of 2-nt bps.

We then turned to examining how Equations (1) and (2) would perform if we combined
our experimental data for 17 bp duplexes with the standard benchmark. To do this, we were
forced to consider that Tm was measured in 2.5 micromolar conditions with 150 millimolar
salt. Chen et al. [45] proposed a way to estimate Tm and ∆G when the concentration of salt
is changed from 150 mM to 1 M salt; however, we found that their predicted values did not
agree with any salt conditions we tested for 17 bp and 20 bp sequences. We note that the
Owczarzy equation does not take into account any length dependence and the SantaLucia
equation, although it does, is largely there to calculate an average enthalpy. However,
since Chen et al. evaluated 18 duplexes that are in the standard benchmark set, there
would be more agreement using these corrections on the standard benchmarks, which it
was designed for. Since the range of most of the sequences in the standard benchmark is
between 6 and 8 bps, they cover the same sequence length as that for which Chen et al.
designed this strategy. We therefore recalibrated the standard benchmarks to 150 mM salt
and took into account the different solute concentration conditions; 100 µM vs. 2.5 µM.
We introduced four sequences from our 17 bp collection and mixed them with the full
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standard benchmark. We also attempted to fit one such sequence along with the 18 standard
benchmark sequences reported in Chen et al. with a directly interpolated estimate of the
free energy and Tm corrections.

The results of the fitting Equation (1) and Equation (2) are shown in Table 2 and
Figure 5 and in the Supplementary Materials (Table S2). The chi-squared and residuals are
indicated in the inset of Figure 5. Both results have a higher chi-square and residual than
found when fitting the standard benchmark in 1M salt conditions. However, the new model
has a significantly better agreement with the experimental data. This strongly suggests that
length dependence is important in computing stems, as we originally proposed. Indeed,
we should be taking into account the stiffness of the RNA when calculating stem structures.
There is clearly room for improvement. We are currently working on the details of the
stem, and this current rendition is not the final product; it is a conceptualization of the
broad issues that remain when predicting RNA structure from thermodynamics, a process
that is fraught with difficulties that evolutionary methods of sequence homology are less
subject to.

The advantage of using ∆Gfray(l, T) is that it is length-dependent; so, in principle,
this correction can be applied to stems that are even shorter than four bps. It is clear
from the general form of the internal loop data that a constant penalty of approximately
4 kcal/mol·K (very close to ∆Ginit) is also applied. It is known that shifting the internal
loop toward the boundaries of the stem tends to increase the instability, i.e., most likely,
this fraying tendency is increased.

Figure 2 helps explain why assigning a mere constant in the duplex calculation
parameter set produced largely acceptable results; the standard benchmark starts at 4 bps,
and the longest sequence was 14 bps. The current dataset is only marginally able to test
this hypothesis because the shortest stem length is still four bps long. More tests will be
needed to establish the extent to which models, such as that expressed in Equation (2),
improve prediction. We are currently testing such models for more complex stems—stems
that contain extensive interior loop patterns—using concepts that can be deduced or
extrapolated from the stem length-dependent Equations (3)–(5).

Table 2. Parameter comparison for the standard Turner data combined with our data using the Turner and new models.
The symbols and definitions for ∆Gbp, ∆Gsym, ∆GtAU, ∆Ginit, ∆Glcle, cw, bw, and ξc can found in Equations (1) and (2) and
subsequent expressions.

Turner Model New Model

Parameters
Fitted Weight ± Error Bars (kcal/mol)

Parameters
Fitted Weight ± Error Bars (kcal/mol)

Standard Benchmark GD

AA/UU (aa~uu) −0.71 ± 0.06 AA/UU (aa~uu) −1.65 ± 0.05
AC/UG (ac~gu) −1.78 ± 0.05 AC/UG (ac~gu) −2.73 ± 0.04
AG/UC (ag~cu) −1.48 ± 0.05 AG/UC (ag~cu) −2.48 ± 0.04
AU/UA (au~au) −0.58 ± 0.06 AU/UA (au~au) −1.62 ± 0.05
CA/GU (ca~ug) −1.55 ± 0.05 CA/GU (ca~ug) −2.51 ± 0.04
CC/GG (cc~gg) −2.69 ± 0.06 CC/GG (cc~gg) −3.70 ± 0.05
CG/GC (cg~cg) −1.56 ± 0.05 CG/GC (cg~cg) −2.74 ± 0.04
GA/CU (ga~uc) −2.07 ± 0.05 GA/CU (ga~uc) −2.94 ± 0.04
GC/CG (gc~gc) −3.20 ± 0.05 GC/CG (gc~gc) −4.05 ± 0.04
UA/AU (ua~ua) −0.95 ± 0.07 UA/AU (ua~ua) −1.79 ± 0.06

∆Gsym 0.39 ± 0.04 ∆Gsym 0.40 ± 0.03
∆GtAU 0.32 ± 0.04 ∆GtAU 0.39 ± 0.03
∆Ginit 2.56 ± 0.04 ∆Glcle → wt * 2.28 ± 0.03 *

∆Gfray → cw * 2.79 ± 0.03 *
∆Gfray → bw * 1.07 ± 0.03 *
∆Gfray → ξc * 2.25 ± 0.03 *

* Here f(x)→b indicates b is a parameter of the function f(x). ∆Glcle → wt does not have units. The unit for ∆Gfray → cw is kcal/mol·K·bp,
and the unit for both ∆Gfray → bw and ∆Gfray → ξc is bp−1.
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Figure 5. Comparison of fits using Equation (1), the standard Turner model (green x), and
Equation (2), an alternative stem model (purple +) for the standard Turner data combined with
our data. The recommended correction factors proposed by Chen et al. [86] were used to adjust the
thermodynamic parameters at 1.021 M Na+ to parameters corresponding to 0.15 M Na+, which are
the conditions we used to obtain our data. The inset table compares the ranks (the number of fit
parameters), the chi-squared, and the residuals of the two different models as a result of fitting.

The length-dependent corrections that account for stiffness and corrections for fraying
required the introduction of only three additional parameters and produced a modest
improvement in the fit, as can be seen in the inset in Figure 5. Whereas the fit to the
standard benchmark showed no improvement, there was clearly a detectable improvement
when other much longer sequences were added. Even in the case of fitting the standard
benchmark alone, it is important to emphasize that the models are quite different. Therefore,
this shows that there are alternative models for a stem that are just as valid.

In addition to the GD method, we also attempted fitting the standard benchmark
using the GA, employing the package drive Pyevolve. The GA works from a different
philosophy from GD. As the GA works toward fitness, which is defined by the scoring
function in Equation (14) in this case, it is possible to choose a variety of criteria to establish
the goodness of a fit. For example, more than one RNA structure might have the same free
energy. A fit using only GD can only say that the free energy is a match; however, the GA
can contain a score that indicates whether the target structure was found. Then, the score is
optimized only when both the target free-energy and the structure are a match. Moreover,
the GA has a parallel nature to its search [87]. For example, if the parameters are not so
single-valued, solutions from the GA will tend to cluster around multiple regions of higher
quality in the scoring landscape. Hence, the GA can find local minima and maxima in the
landscape. The GA is fitness driven; it does not depend on evaluating the derivatives or
various functions and parameters in the test equation. Only the scoring function matters.
Blanket coverage of the parameter space is initially applied. After running a generation,
the parameter combinations that yield the fitter results are retained while the poorer ones
are gradually suppressed. This results in the hill climbing feature of the GA.

Hence, an important aspect is the definition of the scoring function and how much
weight is used for each consideration of the score. We used matching base pairs, stems, and
free energy (both calculated for the given structure and observed) as the criteria, shown in
Equations (9)–(14). In general, we put the most weight on it matching the experimental
free-energy value δExpt and the base pairs δSbp. An example of the current scoring in the
first 20 generations is shown in Figure 6. The blue curve at the top is the maximum score,
but we also calculated the average score (purple). The purpose of the green line is to outline
the boundaries where most of the scores are found and is defined as 2*average—maximum
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score. For generation 0, the score is out of range (around 76 in this instance). The scores
ranged between 20 and 99 for generation zero. The lower bound of the green line moves
up rather rapidly and, from roughly generation 7, fluctuates with the average score. The
average score does not necessarily get progressively better with each generation; however,
the maximum score does. As a result, there is a gradual improvement with each generation
in the maximum score. An important feature of the GA is its so-called “hill climbing”
abilities [87].
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Figure 6. Progress of fitting using the GA using the Pyevolve driver. The blue line shows the
maximum score (max), purple the average (avg), green represents 2*avg−max score (i.e., the primary
spread), and the gray squares show all the individual scores for each test of the standard benchmark.

We see that the advantage of the GA approach over GD is that we obtain some picture
of other minima with the landscape. When using GD, one implicitly assumes that there is
one and only one solution, whereas the GA need not assume that, though it also aims to
achieve convergence. It does appear that there are multiple threads through the solution
set. For example, in Table 1 (last column), the parameter found by the GA for AA~UU is
significantly different from that of the parameter found by GD; −1.43 vs. −1.17 kcal/mol,
respectively. However, if we look at the actual values that Pyevolve selected at each
generation for a given individual, it turns out that the program was oscillating between
roughly −1.0 and −1.4 kcal/mol. A calculation of the weighted average shows a rather
strong shift at various stages of the 100-generation run with a population of 80 (Figure 7).
Hence, GD found a compromise solution to the problem that fell between two solutions
that GA kept testing. There was also correlation in the attempts made by the GA because
there was the tendency that if it attempted the more negative value for AA~UU, it also
employed a more positive value for the ∆Glcle weight. On the other hand, since GD selected
a more modest value for AA~UU, it also compromised with a smaller contribution from
the ∆Glcle weight. We are still examining these aspects to understand the landscape better.
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4. Materials and Methods

To obtain the thermodynamic parameters from experimental data, the melting data
were fitted as a function of temperature to a sigmoid function with a linear correction
and a small Gaussian function that accounts for some small anomalies around 60 ◦C. The
methods for determining the parameters are explained in detail in the Supplementary
Materials. To summarize, after fitting to the sigmoid equation with linear and Gaussian
corrections, the corrections were removed from the fit, and the resulting fraction of dsRNA
was obtained. This fraction was then fitted with respect to 1/T to generate ∆G and ∆H.
The value for ∆G was then adjusted to 37 ◦C, after correcting for the concentration of solute
and salt in the system. These free energies were then fit using either Equation (1) or (2). A
schematic is shown in Figure 8a–c.

For the experimental data obtained in this work, the 17 bp oligo-ribonucleotide
sequences were ordered from Hokkaido System Science Co., Ltd. (Sapporo, Japan). The UV
melting experiments were performed in V-730BIO Spectrophotometer (JASCO Corporation,
Tokyo, Japan) using 10 mm path length quartz cuvettes. Other details are explained in the
Supplementary materials.

The remaining free-energy data (at 37 ◦C) and Tm were obtained from Xia et al. [40]:
the stems of lengths 4 nt, 6 nt, 8 nt, 10 nt, and 14 nt were all measured at 10−4 M substrate
concentration and 1 M salt.

To obtain bp parameters, Equation (1) or Equation (2) were fitted using a GD evalua-
tion of the standard benchmark. The data were also fitted using the GA (Figures 6 and 7),
obtaining similar results. For the GA, the population was set at 80 and the number of
generations set to a maximum of 100.

Figures were made using Pymol (Schrödinger, Tokyo, Japan), Adobe Illustrator (Adobe
Inc., San Jose, CA, USA), and gnuplot. All original software code was written in Python 3
and the genetic algorithm code was supported with the Pyevolve package. Gnuplot,
python3 and pyevolve are packages that are available to all LINUX users and are developed
and maintained by their respective communities.
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Figure 8. Workflow of how the experimental data were processed and fitted to obtain the 
free-energy parameters. The details are explained in the Supplementary Materials. (a) The data Figure 8. Workflow of how the experimental data were processed and fitted to obtain the free-energy
parameters. The details are explained in the Supplementary Materials. (a) The data were fit to a
function using a GD algorithm. (b) Based on the fit, the concentration of dsRNA was deduced.
(c) Using a fit of the line around Tm in (a)—the yellow dots—these data were then plotted as 1/Tm

vs. −R ln(Keq) (as a function of alpha)—from (b)—to derive the free-energy parameters: ∆G, ∆H,
and ∆S. In (a), the red line is the experimentally measured data, the blue line is the resulting fit, the
green line marks Tm, and the yellow points correspond to a linear fit of sigmoid curve for ±3 ◦C
on each side of Tm. In (b), the blue curve is the concentration of dsRNA, the red curve is just a
copy of the experimental data from (a), and the green line indicates Tm. In (c), the red points and
line indicate the experimental data from the seven yellow dots in (a) plotted as 1/T vs. −R ln(Keq),
where Keq is derived from (b), and the dashed blue line indicates the linear fit of the red dots. See
the Supplementary Materials for an explanation of how to obtain Keq.
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5. Conclusions

In this study, we showed how the integrated fitting package we developed can be
merged with our RNA structure program to test different stem models. Here we tested
duplexes using the standard benchmark for estimating the free energy of canonical Watson–
Crick base pairs and experimental data we measured of longer sequences of 17 base pairs.
We used two equations, the standard equation for duplexes and one that we reported here.
For the standard benchmark, both expressions worked well. However, when much longer
sequences were included in the dataset, the estimates of the standard model were less
favorable. The advantage of the model development is that we can test the hypotheses
systematically and optimize the parameter sets from first principles, i.e., we can propose a
theoretical model and test it. Here, we proposed that stems have the property of fraying at
the ends, which adds an entropic cost due to the increased order, that the change in stiffness
introduces an entropy correction in the transition between the free strand state, and that
the duplex and this strategy appear to be particularly promising for longer sequences.

The package currently employs two independent optimization approaches, GD and
the GA. After constructing the appropriate derivatives for functions in a given model,
GD is extremely fast, converging close to an asymptotic limit after even a few hundred
iterations. However, GD requires considerable care in building datasets and is restricted
to examining rather specific themes, such as computing the free energy of RNA duplexes,
as presented here. To obtain useful information, GD test sets need to be narrow in scope
and aimed at specific physical properties. The GA is far easier to set up and use and
is far more adaptable to different datasets. It is also possible to build scoring functions
that test a variety of experimentally available features beyond a single parameter like
the free energy. However, the GA requires considerably more computational resources.
Nevertheless, for that expense, one can see how diverse the solution set turned out to
be. Based on an examination of the results from the GA fitting, the solution set was more
diverse than the single-valued solution GD suggested. Why? Most likely, it was because
the model for the duplex was far too simple and never was reducible to a mere set of 10
dinucleotide base-pair parameters plus a few other parameters or parameterized functions.
That said, GD is more likely to generate the best “averages” of such a set of parameters.
The GA is, with its hill-climbing abilities, the best way to see the surprises and reveal how
single-valued the solution set really is.

Therefore, whereas the model proposed here performed better when additional du-
plexes of considerably longer length were added to the original dataset and performs as
well when challenged with the original dataset, a lot more experimental data are needed in
a wide variety of duplex lengths (from 4 to 20 bps at least), base pair arrangements (i.e.,
context dependence), and physical conditions to achieve a parameter set that approaches a
single-valued representation. Such issues remain under investigation. Understanding the
fundamentals is essential to moving RNA structure prediction forward from here.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189708/s1.
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