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Nanoparticle systems are being explored for the display of carbohydrate antigens,
characterized by multimeric presentation of glycan epitopes and special chemico-physical
properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are
receiving great attention, combining antigen presentation with the immunopotentiator effect
of the Toll-like receptor agonists naturally present on these systems. In this context, we are
testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from
Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here,
we investigated the impact of saccharide length, density, and attachment site on the immune
response elicited by GMMA in animal models, using a variety of structurally diverse
polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C,
Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella
Typhi Vi). Anti-polysaccharide immune response was not affected by the number of
saccharides per GMMA particle. However, lower saccharide loading can better preserve
the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be
optimized for each specific antigen. Interestingly, GMMA conjugates induced strong
functional immune response even when the polysaccharides were linked to sugars on
GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune
response to polysaccharides that is strictly dependent on the nature of the polysaccharide.
The results obtained are important to design novel glycoconjugate vaccines using GMMA as
carrier and support the development of multicomponent glycoconjugate vaccines where
GMMA can play the dual role of carrier and antigen. In addition, this work provides significant
insights into the mechanism of action of glycoconjugates.
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INTRODUCTION

During the last years, nanoparticle systems have received increased
interest for the display of carbohydrate antigens. Special physico-
chemical properties of nano-sized particles and the presentation of
multiple saccharide epitopes support the development of novel and
more effective glycoconjugate vaccines (1–5). Among
nanoparticles, outer membrane vesicles (OMVs) combine antigen
presentationwith intrinsic adjuvant properties (5–7). Traditionally,
outer membrane protein complex (OMPC) from Neisseria
meningitidis has been used as carrier for Haemophilus influenzae
type b conjugate vaccine (8, 9). OMPC has been shown to possess
TLR2-mediated adjuvant activity (10) and may contain TLR4
agonists such as lipopolysaccharides (LPS) since they derive from
the outer membrane of Gram-negative bacteria.

More recently,Escherichia coliOMVshave been used as carriers
for the display of heterologous polysaccharides (PS), resulting
in glycoengineered OMVs (glyOMVs) (11). Streptococcus
pneumoniae CPS14 capsule, for example, displayed on engineered
E. coliOMVs induced IgG levels and efficacy in opsonophagocytic
activity tests comparable with those induced by PCV13 (12).

Generalized Modules for Membrane Antigens (GMMA),
OMVs naturally released from Gram-negative bacteria
genetically manipulated to increase blebbing and modulate
toxicity through modification of the lipid A portion of LPS
(13, 14), have recently been proposed as delivery systems for
O-antigen chains naturally present on their surface (15–19). O-
antigens displayed on non-typhoidal Salmonella GMMA have
been shown to induce high levels of anti-O-antigen-specific IgG
antibodies, comparable with corresponding CRM197 conjugates
formulated on alum (20). However, GMMA enhanced the IgG
antibody isotype profile resulting in greater serum bactericidal
activity than traditional protein conjugates. More recently, we
have proposed GMMA as carrier for heterologous PS through
chemical conjugation, and we have shown that GMMA
glycoconjugates promote equal or enhanced saccharide
immunogenicity as compared with more traditional
glycoconjugates with CRM197 carrier protein (21).

It is well known that parameters such as saccharide length and
density, conjugation chemistry, and attachment site can impact the
immune response induced by glycoconjugate vaccines (22). Impact
of such variables on the immune response elicited by OMV-based
vaccines has not been greatly explored so far. Here, we have used
different conjugation strategies to verify impact of saccharide
length, density, and attachment site to proteins or LPS and
lipooligosaccharide (LOS) molecules on GMMA surface on the
immune response in animal models. Saccharide from different
pathogens, having different structures, has been used as models
and conjugated to GMMA from different pathogens.
MATERIALS AND METHODS

Source of Generalized Modules for
Membrane Antigens and Antigens
Salmonella Typhimurium GMMA (obtained from 1418 DtolR
mutant strain) and meningococcal B (MenB) GMMA (produced
Frontiers in Immunology | www.frontiersin.org 2
from four knock-out DsynX, Dctra, Dgna33, and DlpxL1 N.
meningitidis strains) were produced and characterized as
previously described (15, 23). Meningococcal serogroup A
(MenA), meningococcal serogroup C (MenC), and H.
influenzae type b (Hib) oligosaccharides were provided by
GSK. Vi and streptococcal Group A Carbohydrate (GAC) PS
were purified as previously described (24–27). MenA and Vi PS
of reduced length were generated as previously described
(26, 28).
Synthesis and Characterization of the
Generalized Modules for Membrane
Antigens Conjugates
Conjugates were synthesized as described below. The main
characteristics of all the conjugates tested in this study are
reported in Table 1.

Conjugation via Adipic Acid
Bis(N-hydroxysuccinimide) Chemistry
MenA, MenC, or Hib oligosaccharides terminally activated with
adipic acid bis(N-hydroxysuccinimide) (SIDEA) as previously
described (29) were added to a suspension of GMMA in NaPi 50
mM pH 7.2. The mixture was stirred overnight at room
temperature. Different conjugation conditions were used
according to the PS linked and the GMMA used, as detailed in
Table 1. Conjugates were purified by ultracentrifugation
(110,000 rpm, 4°C, 1 h) and recovered in phosphate-buffered
saline (PBS). Ultracentrifuge Thermo Scientific Sorvall MX 150+
Micro-Ultracentrifuge equipped with Thermo Scientific S110-
AT rotor (K factor = 15) and 4-ml PC Thick Walled Tubes
(Thermo Scientific Cat No. 45239) filled with 2 ml of solution
were used.

Conjugation Through Reductive Amination
Chemistry
GMMA oxidation. MenB GMMA at concentration of 8.0 mg/ml
in NaPi 100 mM pH 6 were oxidized in the presence of NaIO4 5
mM for 30 min in the dark at the controlled temperature of 25°C.
Excess of periodate was quenched with Na2SO3 10 mM for 15
min at room temperature before direct addition of the PS.

S. Typhimurium GMMA at 5 mg/ml in 100 mM of sodium
acetate pH 5 was oxidized in the presence of 10 mM of NaIO4 for
2 h in the dark at the controlled temperature of 25°C. GMMA
were purified by ultracentrifugation (110,000 rpm, 4°C, 30 min).
Oxidized GMMA were resuspended in NaPi 100 mM pH 7.2.
GMMA were characterized by micro BCA (>80% recovery),
dynamic light scattering (confirming no aggregation), and
high-performance anion-exchange chromatography with
pulsed amperometric detection (HPAEC-PAD) (13% oxidation
for S. Typhimurium GMMA and 41% for MenB GMMA).

Polysaccharide Derivatization With Adipic Acid
Dihydrazide Linker
Vi (26), GAC PS, MenA, and Hib oligosaccharides were
solubilized in 20 mM of sodium acetate buffer pH 4.5 at 30–40
mg/ml final concentration and added with ADH linker and
September 2021 | Volume 12 | Article 719315
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TABLE 1 | Conjugation conditions used and main characteristics of the GMMA conjugates tested in this study.

gation conditions Antigen/GMMA w/w
% ratio in purified

conjugate

Number saccharide
chains/GMMA particle

.4; [GMMA] 11.5 mg/ml, pH 7.2, ON, 2.1 1,343

; [GMMA] 11.5 mg/ml, pH 7.2, ON, RT 4.6 1,317

; [GMMA] 11.5 mg/ml, pH 7.2, ON, RT 4.8 726

0; [GMMA] 8 mg/ml, pH 7.2, ON, 30°C 2.9 2,331

0; [GMMA] 8 mg/ml, pH 7.2, ON, 30°C 3.8 1,252

0; [GMMA] 8 mg/ml, pH 7.2, ON, 30°C 4.4 763

; [GMMA] 10.5 mg/ml, pH 7.2, ON, RT 8.1 4,230
; [GMMA] 9.4 mg/ml, pH 6, ON, RT 8.4 4,414

; [GMMA] 1.7 mg/ml, pH 7.2, ON, RT 1.4 673
0; [GMMA] 10 mg/ml, pH 7.2, ON, RT 5.4 2,490
; [GMMA] 1.7 mg/ml, pH 7.2, ON, RT 1.4 650
0; [GMMA] 10 mg/ml, pH 7.2, ON, RT 10 4,523
[GMMA] 4.3 mg/ml, pH 4.5, ON, 37°C 43 93

[GMMA] 3.4 mg/ml, pH 7.2, ON, 37°C 8 17

[GMMA] 4.2 mg/ml, pH 4.5, ON, 37°C 5 138

[GMMA] 4.6 mg/ml, pH 6, ON, 37°C 2 55

[GMMA] 2.8 mg/ml, pH 7.2, ON, 37°C 2.4 5

; [GMMA] 10 mg/ml, pH 7.4, ON, RT 3 7
:1; [GMMA] 5 mg/ml, pH 4.5, ON, RT 20 1,498

mide); BS3 linker, bissulfosuccinimidyl suberate; GMMA, Generalized Modules for Membrane Antigens;
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Conjugate Chemistry Targeting
on GMMA

Saccharide
length

Con

(1) MenA–(MenB)GMMA SIDEA SIDEA Proteins 1.6–3.9 kDa GMMA/OS w/w ratio of 1:
RTDP 5–12

(2) MenA–(MenB)GMMA SIDEA SIDEA Proteins 5.2–8.5 kDa GMMA/OS w/w ratio of 1:
DP 16–26
(3) MenA–(MenB)GMMA SIDEA SIDEA Proteins >11.7 kDa GMMA/OS w/w ratio of 1:
DP > 36
(4) MenA–(MenB)GMMAox Reductive

amination*
LOS 1.6–3.9 kDa GMMA/OS w/w ratio of 1:

DP 5–12
(5) MenA–(MenB)GMMAox Reductive

amination*
LOS 5.2–8.5 kDa GMMA/OS w/w ratio of 1:

DP 16–26
(6) MenA–(MenB)GMMAox Reductive

amination*
LOS > 11.7 kDa GMMA/OS w/w ratio of 1:

DP > 36
(7) Hib-(MenB)GMMA SIDEA Proteins 4.5 kDa GMMA/OS w/w ratio of 1:
(8) Hib-GMMAox Reductive

amination*
LOS 3.7 kDa GMMA/OS w/w ratio of 1:

(9) MenA–(MenB)GMMA LD SIDEA Proteins 4.5 kDa GMMA/OS w/w ratio of 1:
(10) MenA–(MenB)GMMA HD SIDEA Proteins 4.5 kDa GMMA/OS w/w ratio of 1:
(11) MenC-(MenB)GMMA LD SIDEA Proteins 4.5 kDa GMMA/OS w/w ratio of 1:
(12) MenC-(MenB)GMMA HD SIDEA Proteins 4.5 kDa GMMA/OS w/w ratio of 1:
(13) Vi(48.5 HD)-STm GMMA Reductive

amination*
LPS 48.5 kDa GMMA/Vi w/w ratio of 1:3

(14) Vi(48.5 LD)-STm GMMA Reductive
amination*

LPS 48.5 kDa GMMA/Vi w/w ratio of 1:3

(15) Vi(3.8 HD)-STm GMMA Reductive
amination*

LPS 3.8 kDa GMMA/Vi w/w ratio of 1:1

(16) Vi(3.8 HD)-STm GMMA Reductive
amination*

LPS 3.8 kDa GMMA/Vi w/w ratio of 1:1

(17) Vi-STm GMMAox Reductive
amination*

LPS 48.5 kDa GMMA/Vi w/w ratio of 1:1

(18) Vi-STm GMMA BS3 Proteins 48.5 kDa GMMA/Vi w/w ratio of 1:1
(19) GAC-STm GMMA Reductive

amination*
LPS 7 kDa GMMA/GAC w/w ratio of

ON, overnight; RT, room temperature; LPS, lipopolysaccharide, LOS, lipooligosaccharide; SIDEA linker, adipic acid bis(N-hydroxysuccin
GAC, Group A Carbohydrate.
*Saccharide terminally activated with adipic acid dihydrazide (ADH).
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NaBH3CN at a 1:1.2:1.2 w/w ratio. The solutions were mixed at
30°C for 5 days. The derivatized PS were purified by
chromatography on two PD10 column equilibrated with 3 M
of NaCl and then water. HPAEC-PAD was used for saccharide
quantification, while TNBS colorimetric methods were used to
check derivatization degree (100% for Vi, 56% for GAC, and
>80% for MenA and Hib) (30). Free ADH was estimated by
reversed-phase ultra-performance liquid chromatography (RP-
UPLC) (<10% free NH2) (31).

Conjugations
Oxidized GMMA were added to the activated PS in the presence
of NaBH3CN. Reaction conditions used for each conjugate are
detailed in Table 1. The reaction was incubated overnight and
purified by ultracentrifugation (110,000 rpm, 4°C, 1 h). The
purified conjugate was resuspended in PBS.

Conjugation via Bissulfosuccinimidyl
Suberate Chemistry
S. Typhimurium GMMA, at a protein concentration of 4.0 mg/
ml in MES buffer pH 6, was added to BS3 linker at a final
concentration of 50 mg/ml in the reaction mixture. The mixture
was incubated at 25°C for 30 min; then activated GMMA were
purified by ultracentrifugation (110,000 rpm, 16 min, 4°C).
Resulting GMMA (70% recovery by micro BCA) had 43.8% of
NH2 groups derivatized with the BS3 linker according to TNBS
colorimetric method (30).

After GMMA-BS3 ultracentrifugation, Vi-ADH was
immediately added. In the conjugation step, a 1:10 w/w ratio
of GMMA to Vi-ADH was used, at Vi-ADH concentration of
100 mg/ml in NaPi 50 mM pH 7. After overnight incubation at
room temperature (RT), the conjugate was purified by
ultracentrifugation (110,000 rpm, 1 h, 4°) and recovered in PBS.

Conjugate Characterization
Conjugates were characterized by micro BCA for total protein
recovery (21), while amount of saccharide antigen linked was
determined by HPAEC-PAD after performing acid hydrolysis
directly on GMMA as previously described (24, 32–36). It was
verified that there was no interference from GMMA in the
quantification of each saccharide. A known amount of the
conjugated PS was physically mixed to GMMA, and it was
verified that analysis by HPAEC-PAD gave results comparable
with those obtained by testing the same amount of the PS alone.
For MenA, MenC, Hib, and GAC saccharides, conjugate
formation was also confirmed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE)/Western
blotting as previously described (21). For MenA, MenC, and
GAC conjugates, polyclonal sera internally generated in mice
were used as primary antibodies, while for Hib conjugate, a
commercial antibody (Bacto Hib DIFCO 2236-50-1) was used.
NanoTracking Analysis (NTA) was used to count the number of
GMMA particles in solution and estimate the number of PS
chains per GMMA. NS300 Nanosight instrument (Malvern)
equipped with a CMOS camera and a 488-nm monochromatic
laser beam was used. Data acquisition and processing were
Frontiers in Immunology | www.frontiersin.org 4
performed using NTA software 3.2 build 3.2.16, and more
details on the analysis can be found in De Benedetto et al. (23).

Percentage of free saccharide was calculated by solid-phase
extraction (SPE) using a C4 cartridge (Vydac BioSelect) followed
by HPAEC-PAD analysis for MenA, MenC, and Hib (33, 35), by
high-performance liquid chromatography–size-exclusion
chromatography (HPLC-SEC) (refractive index detection) for
Vi and GAC conjugates.

Immunogenicity Studies in Animal Models
All animal sera used in this study were derived from mouse or rat
immunization experiments performed at the GSK Animal Facility
in Siena or at Toscana Life Sciences Animal Facility (Siena, Italy),
in compliance with the relevant guidelines (Italian D. Lgs. n. 26/14
and European directive 2010/63/UE) and the institutional policies
of GSK. The animal protocols were approved by the Animal
Welfare Body of GSK, Siena, Italy, and by the Italian Ministry of
Health (Approval number 804/2015-PR) and Animal Welfare
Body of Toscana Life Sciences and by the Italian Ministry of
Health (Approval number 479/2017-PR).

CD1 5-week-o ld female mice were immunized
subcutaneously (s.c) or intramuscularly (i.m.) at days 0 and 28.
CD1 5-week-old female nude mice (devoid of mature T cells)
were immunized s.c. at days 0 and 28 (37). Crl : CD 8-week-old
female rats were immunized i.m. at days 0 and 28. Mice and rats
were bled from the retromandibular plexus and the tail vein,
respectively. Rats were preheated for 5 min in a warming cage at
37°C before bleeding. Final bleed in rats was performed under
general anesthesia (alfaxalone 20 mg/kg + medetomidine 0.05
mg/kg + fentanyl 0.1 mg/kg). Blood was kept at 37°C up to 2 h or
at RT up to 3 h in the untreated collection tubes and then
centrifuged for 10 min at 2,851 rcf, 4°C before serum collection.
Animal models, immunization routes, and schemes were selected
according to the PS antigens tested. Anti-antigen-specific IgG
levels were measured at days −1, 27, and 42 (40 for the study in
rats) by enzyme-linked immunosorbent assay (ELISA) (38).
Purified O-antigen from S. Typhimurium and Streptococcal
Group A Carbohydrate conjugated to human serum albumin
(HSA) were used for ELISA plate coating at 5 and 1 µg/ml,
respectively, in carbonate buffer pH 9.6; purified Vi at 1 µg/ml in
phosphate buffer pH 7.0; purified MenA and MenC capsular PS
were used at 5 µg/ml in PBS pH 8.2; and Hib PS conjugated to
HSA was used at 2 µg/ml in PBS pH 7.4. ELISA units were
expressed relative to a mouse antigen-specific antibody standard
serum curve, with the best five-parameter fit determined by a
modified Hill plot. One ELISA unit is defined as the reciprocal of
the dilution of the standard serum that gives an absorbance value
equal to 1 in this assay. Each mouse serum was run in triplicate.

Serum bactericidal antibody (SBA) against meningococcal
(MenA, MenC, and MenB) strains was tested using baby rabbit
complement as previously described (29, 39). F8238 MenA, C11
MenC, NZ98/254, M08-0240104, and M01-0240320 MenB strains
were used. Pooled sera from each group were tested by SBA.

Statistical Analysis
Datasets were analyzed using two-tailed non-parametric Mann–
Whitney test (for comparing the same time point for two
September 2021 | Volume 12 | Article 719315
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different groups) or one-tailed non-parametric Wilcoxon
matched-pairs signed rank test (for comparing different time
points for a same group) with Prism (GraphPad Software). p-
Values less than 0.05 were considered statistically significant.
RESULTS

Chemical Linkage of Polysaccharides
to Generalized Modules for
Membrane Antigens
PS with different structural features and size were conjugated to
GMMA from different pathogens. MenA, MenC, and Hib
oligosaccharides were terminally activated with SIDEA linker
(29) and randomly conjugated to lysines of GMMA surface
proteins (Figure 1A). Alternatively, the oligosaccharides were
terminally derivatized with ADH and linked to LOS on oxidized
GMMA by reductive amination (Figure 1B).

A similar approach was used for linkage of streptococcal GAC
and S. Typhi Vi PS to GMMA. By playing with conjugation
conditions, in particular by using different saccharide-to-protein
molar ratios (as for meningococcal oligosaccharides) or different
buffer pH (as for Vi), it was easy to modulate the number of sugar
chains per GMMA particle (Table 1). Formation of saccharide–
GMMA conjugates was verified by Western blotting analysis
(Figure 2); and the amount of total saccharide and total protein
were quantified by HPAEC-PAD and micro BCA, respectively.
The saccharide-to-protein w/w ratio, coupled with an estimate of
the number of GMMA particles per ml measured by NTA,
allowed us to count the average number of saccharide chains
per GMMA particle (Table 1).
A

B

FIGURE 1 | Conjugation schemes used for linkage of PS to GMMA. (A) PS were terminally activated with adipic acid bis(N-hydroxysuccinimide) (SIDEA) linker and
randomly conjugated to lysines of GMMA surface proteins. (B) PS (MenA structure reported as example) were terminally derivatized with adipic acid dihydrazide
(ADH) and linked to LPS/LOS on oxidized GMMA by reductive amination. PS, polysaccharides; GMMA, Generalized Modules for Membrane Antigens; ADH, adipic
acid dihydrazide; LPS, lipopolysaccharides; LOS, lipooligosaccharides.
Frontiers in Immunology | www.frontiersin.org 5
FIGURE 2 | Conjugate formation proved by Western blotting analysis.
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Micoli et al. GMMA as Carrier for Polysaccharides
Impact of Saccharide Length, Density, and
Attachment Site on the Immune Response
Induced by Generalized Modules for
Membrane Antigens Conjugates
The impact that sugar length and linkage site on GMMA could
have on the immune response induced by the conjugates was
initially studied with MenA oligosaccharides linked to MenB
GMMA. MenA oligosaccharides of different and non-
overlapping length (polymerization degree (DP) equal to 5–12,
16–26, and >36) were conjugated to proteins or LOS on MenB
GMMA (Table 1, constructs 1–6) and tested in mice. GMMA
alone or physically mixed to MenA oligosaccharides were used as
Frontiers in Immunology | www.frontiersin.org 6
negative controls, while MenA–CRM197 conjugate was the positive
control. Conjugation to proteins or LOS on GMMA resulted in
induction of a strong anti-MenA IgG response at a level
comparable with that of MenA–CRM197. We found that the
sugar length did not influence MenA-specific serum IgG
response, because no difference in antibody production was
observed after immunization with the different MenA–GMMA
conjugates (Figure 3A), regardless of whether conjugation was
directed to LOS or proteins. Interestingly, the conjugates generated
from saccharides attached to proteins invariably elicited a higher
MenA-specific IgG response 2 weeks after second immunization
compared with MenA oligosaccharides linked to LOS
A

B

FIGURE 3 | Impact of saccharide length and attachment site on the immune response induced by MenA–MenB GMMA conjugates. Eight CD1 mice per group were
immunized i.m. at days 0 and 28, with 1 mg MenA/dose in the presence of Alhydrogel. Sera were collected at days −1, 27, and 42. (A) Summary graphs of anti-
MenA PS IgG geometric mean units (bars) and individual antibody levels (dots) are reported (A). SBA titers of pooled sera collected 2 weeks after second injection
against MenA and MenB strains are reported (B). GMMA, Generalized Modules for Membrane Antigens; PS, polysaccharides; SBA, serum bactericidal antibody.
* 0.01 < p < 0.5; *** 0.0001 < p < 0.001.
September 2021 | Volume 12 | Article 719315
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(Figure 3A). However, all GMMA conjugates, independently
from the attachment site of meningococcal oligosaccharides to
GMMA, induced antibodies with bactericidal activity against a
homologous MenA strain (Figure 3B).

The ability of MenB GMMA to induce an immune response
after attachment of MenA oligosaccharides was verified by testing
the bactericidal activity of antibodies induced against three different
MenB strains (Figure 3B). While bactericidal activity against
UK320 and UK104 strains was not impaired by conjugation, the
one against the New Zealand strain was negatively impacted. As
bactericidal activity against this strain is mainly mediated by the
PorAantigenonMenBGMMA(40, 41),we could speculate that the
random conjugation of MenA oligosaccharides to proteins on
GMMA could impact on PorA structure and conformation.
However, the same was true for the glycoconjugates obtained by
linkage of oligosaccharides to LOS on MenB GMMA, indicating
that probably the saccharide chains masked some protein
components shifting the immune response toward themselves.

Next, Hib oligosaccharides were conjugated to MenB GMMA
by targeting proteins or LOS (constructs 7–8,Table 1), and the Hib-
specific serum IgG response was measured in rats, in comparison
with Hib oligosaccharides mixed to GMMA and Hib-CRM197

conjugate (Figure 4). As observed for MenA conjugates, also in
this case, the conjugate obtained by linkage of Hib to proteins
induced a stronger anti-Hib IgG response than the conjugate
produced by linking oligosaccharides to LOS. Both GMMA
conjugates elicited anti-Hib PS IgG titers significantly higher than
Hib simply mixed to GMMA and comparable with Hib-CRM197.

After having investigated the impact of saccharide length and
attachment via proteins or LOS on GMMA, we interrogated the
effect of the density of saccharide conjugated to GMMA particles,
which is another important feature for glycoconjugate vaccines.We
produced conjugates differing for the average number of MenA or
MenC oligosaccharides linked per GMMA particle (constructs 9–
12,Table 1).Nomajor impact of oligosaccharide density onanti-PS
IgG response (Figure 5A) and functionality of the sera induced in
mice was found (Figure 5B). However, control of glycosylation
Frontiers in Immunology | www.frontiersin.org 7
density could be useful to fully preserve the immune response
inducedbyGMMAper se. In fact, by testing the bactericidal activity
of the sera against a panel of differentMenBstrains,we assessed that
the largest was the number of meningococcal oligosaccharide
chains conjugated per GMMA particle, and the highest was the
impact on the functionality of the elicited sera (this was particularly
evident for MenB NZ98/254 strain). Therefore, linkage of fewer
sugar chains per GMMA particle seems preferable.

To further explore the effect of glycan length and density with a
larger-size PS, conjugates formed by S. Typhi Vi PS attached to S.
Typhimurium GMMA were generated (constructs 13–16, Table 1).
Linkage of Vi to LPS on GMMA allowed to introduce a different
number of PS chains to GMMA, while conjugation to proteins
resulted in few Vi chains per GMMA particle only. As previously
verified for MenA and MenC (Figure 5), we did not find impact of
antigen density on Vi-specific serum IgG response. However, the
saccharide length in this case generated a significant effect, because
longer Vi PS (48.5 kDa) were able to induce significantly higher Vi-
specific serum IgG titers than the shorter Vi (3.8 kDa) (Figure 6A).
All conjugates induced anti-S. Typhimurium O-antigen
IgG response, preserving immunogenicity of GMMA per
se (Figure 6B).
Glycoconjugation to Generalized Modules
for Membrane Antigens Promotes a Shift
Toward a T-Independent Humoral Immune
Response Based on the Type of
Conjugated Saccharide
The display of PS onGMMA, especially if in high-densitymodality,
generates repetitive epitope moieties on GMMA surface that can
facilitate cognate B-cell receptor cross-linking, which could lead to
B-cell activation in the absence of T-cell help. This shift toward a
strong and fast T-independent B-cell stimulation would not
promote germinal center formation and the consequent
generation of long-lived plasma cells secreting high-affinity
antibodies and memory B cells. Therefore, the T-independent B-
cell response can have a negative impact on the efficacy of the
humoral immune response, especially in infants or young children,
and a detrimental effect on immunologicalmemory andpersistence
of the antibody response. To investigate any potential T-
independent nature of the humoral immune response induced by
PS conjugated on GMMA, we evaluated different PS–GMMA
conjugates immunizing wild-type and nude mice, devoid of
mature T cells. We used MenC, Vi, and GAC PS conjugated to S.
Typhimurium GMMA, so as to test PS with different structural
features (constructs 12 and 17–19, Table 1).

MenC–GMMA conjugate was unable to induce a significant
MenC-specific antibody response in nude mice compared with
wild-type animals, clearly confirming the need of the T-cell help to
promote a humoral response against MenC oligosaccharide
(Figure 7A). On the contrary, Vi-GMMA induced a strong
anti-Vi-specific serum IgG response in wild-type as well as nude
mice, revealing that this PS promoted a T-independent humoral
immune response (Figure 7B). Antibody levels induced in wild-
type mice were high after the first dose, with no booster after re-
injection. The same was verified by linking Vi PS to LPS or
FIGURE 4 | Hib oligosaccharides were conjugated to proteins (Hib-SIDEA-
GMMA) or LOS (Hib-GMMAox) of GMMA. Resulting conjugates were compared
in rats together with Hib physically mixed to GMMA and Hib-CRM197 with
Alhydrogel. Eight adult rats per group were i.m. immunized at days 0 and 28
(0.5 mg Hib/dose). Sera were collected at days −1, 27, and 40 and analyzed for
anti-Hib PS IgG response. Summary graphs of anti-PS IgG geometric mean
units (bars) and individual antibody levels (dots) are reported. LOS,
lipooligosaccharides; GMMA, Generalized Modules for Membrane Antigens.
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proteins on GMMA. Using GAC–GMMA conjugate, we observed
an intermediate situation, since nude mice immunized with GAC–
GMMA conjugate generated a GAC-specific serum IgG response,
which was significantly lower than that induced in wild-type mice
(Figure 7C). Thus, GMMA-conjugated GAC PS elicit a weak T-
independent saccharide response.
DISCUSSION

Conjugation to appropriate carrier proteins, providing T-cell
help, is an established way for improving immunogenicity of PS
Frontiers in Immunology | www.frontiersin.org 8
antigens giving rise to immunological memory, isotype
switching, affinity maturation, persistence of antibody
response, and ability to induce adequate protection in infants
and children under 2 years of age (42–46). Few carrier proteins
have been used so far for licensed glycoconjugates (1),
highlighting in certain cases reduced immunogenicity against
the PS hapten due to preexisting immunity toward the protein
(the so-called “carrier epitope suppression”) (47). Recent years
have seen efforts to identify alternative carrier proteins,
particularly with a dual role of carrier and antigen (3).

Recently, we have proposed GMMA as carrier for
heterologous PS, showing the ability to enhance the antigen-
A

B

FIGURE 5 | Impact of saccharide density on the immune response induced by MenA/MenC–MenB GMMA conjugates. Eight CD1 mice per group were immunized
i.m. at days 0 and 28, with 1 mg MenA/MenC/dose in the presence of Alhydrogel. Sera were collected at days −1, 27, and 42. Anti-MenA and MenC IgG response
(A) and SBA titers of pooled sera collected 2 weeks after second injection against MenA, MenC, and MenB strains (B) are reported. HD, high density; LD, low
density. Summary graphs of IgG geometric mean units (bars) and individual antibody levels (dots) are reported. In (B), absent bars for MenA and MenC strains
represent measures not done. GMMA alone were used as control. GMMA, Generalized Modules for Membrane Antigens; SBA, serum bactericidal antibody.
September 2021 | Volume 12 | Article 719315

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Micoli et al. GMMA as Carrier for Polysaccharides
specific humoral immune response compared with the antigen
alone or physically mixed with GMMA (21).

Compared with traditional carrier proteins, GMMA are
nanoparticle systems, with optimal size for immune
Frontiers in Immunology | www.frontiersin.org 9
stimulation and presenting multiple copies of the PS favoring
B-cell activation. They possess immunostimulatory molecules,
such as LPS, lipoproteins, or peptidoglycans, that can stimulate
innate immunity and consequently enhance adaptive immunity
A

B

FIGURE 6 | Impact of saccharide length and density on the immune response induced by Vi-Salmonella Typhimurium GMMA conjugates. Eight CD1 mice per group
were immunized s.c. at days 0 and 28, with 0.8 mg Vi/dose with no Alhydrogel. Sera were collected at days −1, 27, and 42 and analyzed for anti-Vi (A) and anti-S.
Typhimurium O-antigen (OAg) (B) IgG response. Summary graphs of IgG geometric mean units (bars) and individual antibody levels (dots) are reported. HD, high
density; LD, low density; GMMA, Generalized Modules for Membrane Antigens.
A B C

FIGURE 7 | Different PS were linked to GMMA and tested in wild-type or CD1 nude mice. Eight mice per group were s.c. immunized at days 0 and 28 with 1 mg
MenC oligosaccharide (A), 0.8 mg Vi PS (B), or 1 mg GAC (C). All formulations were tested in the absence of Alhydrogel. Sera were collected at days −1, 27, and 42
and analyzed for anti-PS-specific IgG response. Summary graphs of IgG geometric mean units (bars) and individual antibody levels (dots) are reported. PS,
polysaccharides; GMMA, Generalized Modules for Membrane Antigens; GAC, Group A Carbohydrate.
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(5, 7). Importantly, GMMA can be produced using a simple
manufacturing process (15, 48). Here, we developed conjugation
chemistries to easily and efficiently link PS differing in structure
and size to GMMA surface, targeting both LPS and proteins on
GMMA. Also, conjugation to GMMA was modulated not to
impact on the immune response induced by GMMA as antigen.
This supports the use of GMMA with a dual role of carrier and
antigen for the development of multicomponent vaccines
covering various diseases at the same time. In particular,
Salmonella and meningococcal diseases, here used as models,
are both common in several countries of sub-Saharan Africa (49–
51); Hib and MenB are two critical etiological agents of
meningitis, and a unique pan-meningococcal vaccine could
offer a unique opportunity to combat the meningococcal
meningitis worldwide; finally, S. Typhi and non-typhoidal
Salmonella are leading causes of disease and mortality in
Africa (52).

Antigen length and density are parameters that can play a role
on the immune response elicited by glycoconjugate vaccines (22).
Here, by playing with these features on GMMA, we observed that
PS density seems not to play major role on the anti-saccharide-
specific immune response induced in mice. Also, a limited
number of oligosaccharide chains linked to GMMA is
sufficient for inducing a strong immune response. On the other
hand, saccharide length can play a role depending on the specific
PS used. This confirms that, similar to traditional glycan–protein
conjugates, saccharide length needs to be investigated and
optimized specifically for each antigen of interest.

Another relevant aspect of this work is the observation that
the carrier effect of GMMA for PS is observed irrespectively of
whether the antigen is linked on GMMA proteins or LPS/LOS
and can be dependent or not on T-cell help, based on the
nature of the PS. Recently, it has been shown that glycan–
protein conjugates induce a T-cell-dependent response
through generation in B cells of peptides or glycopeptides
(depending on the nature of the conjugated sugar) that are
presented to the helper T cells (53, 54). Our finding suggests
that the immunological mechanisms of the “carrier” effect of
GMMA for PS could be the result of different coexisting
mechanisms, which would be also depending on the nature
of the PS linked.

Interestingly, even when GAC was linked to LPS on GMMA,
the immune response was strongly mediated by T-cell
activation as verified by the much lower response induced by
the conjugate in nude mice. This supports the finding that
direct linkage of PS to proteins is not needed, although co-
presentation seems crucial. It is important that the interaction
between protein and PS moieties is strong enough to allow
internalization in the same B cell to assure T-cell engagement
(3). Finally, our data show that linkage of certain PS (e.g., MenA
and Hib) to proteins on GMMA can result in higher anti-PS-
specific IgG response and seems preferable to conjugation to
the LPS. Recently, E. coli glycoengineered OMVs have been
proposed for the expression of heterologous PS that are
anchored to lipid A-core as acceptor (11, 12, 55). Our
findings can be informative also for this approach. Compared
Frontiers in Immunology | www.frontiersin.org 10
with the chemical conjugation proposed here, glycoengineering
holds the potential for simplified and lower-cost vaccine
production. However, chemical conjugation can be more
easily applied to OMVs/GMMA from different pathogens and
to PS with different structures and can represent a fast tool to
investigate how parameters such as those investigated here
impact the immune response elicited by these novel
glycoconjugates, including glycoengineered OMVs.

Also additional nanoparticle systems, such as Qb (56, 57) and
hepatitis B core antigen virus-like particles (58), are being
proposed as novel carrier systems to provide a strong anti-PS
immune response. It will be interesting to compare GMMA and
OMVs with these other systems for their ability to induce strong
response after one only injection, persistency of the response,
memory, and ultimately efficacy in infants and to see if they will
behave similarly mainly due to their particulate nature and
display of multiple antigens or if there will be specific features
for a difference.

In conclusion, we found that optimization of parameters such
as sugar length and density is crucial to fully exploit the potential
of GMMA as platform for multicomponent vaccines, where
GMMA can act as T-cell helper and antigen. The action of
GMMA as carrier seems independent of the direct linkage of the
sugar to the protein and present some specificity that deserves to
be further investigated. Additional studies, including evaluation
of IgG subclasses, IgM, antibody affinity, and cellular response,
will be needed to further characterize the quality of the immune
response elicited by GMMA conjugates and to better understand
the mechanism of action elicited by these novel carrier systems.
Unraveling these immunological mechanisms could guide the
design of even more effective GMMA-based vaccines and would
be informative for other nanoparticle based conjugates
under development.
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