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Objective: Chemotherapy is one of the important adjuvant methods for the treatment of glioblastoma (GBM), and 
chemotherapy resistance is a clinical problem that neurooncologists need to solve urgently. It is reported that 
Saikosaponin D (SSD), an active component of Bupleurum chinense, had various of antitumor activities and could 
also enhance the chemosensitivity of liver cancer and other tumors. However, it is not clear whether it has an 
effect on the chemosensitivity of glioma and its specific mechanism. 
Methods: The CCK8 assay, Wound healing assay and Matrigel invasion assay were used to detect the effect of SSD 
on the phenotype of GBM cells. We detected the effect of SSD on the chemosensitivity of GSM by Flow cytometry, 
LDH content and MTT assay. Then, we used cell plate cloning, semi-quantitative PCR and western blotting ex-
periments to detect the effect of SSD on the stem potential of GBM cells. Finally, the effect of SSD on the che-
mosensitivity of GBM and its potential mechanism were verified by nude mouse experiments in vivo. 
Results: firstly, we found that SSD could partially inhibit the malignant phenotype of LN-229 cells, including 
inhibiting migration, invasion and apoptosis, and increasing the apoptosis rate and lactate dehydrogenase (LDH) 
release of LN-229 cells under the treatment of temozolomide (TMZ), that is to say, increasing the chemotherapy 
effect of TMZ on the cells. In addition, we unexpectedly found that SSD could partially inhibit the colony forming 
ability of LN-229 cells, which directly related to the stemness maintenance potential of cancer stem cells. Sub-
sequently, our results showed that SSD could inhibit the gene and protein expression of stemness factors (OCT4, 
SOX2, c-Myc and Klf4) in LN-229 cells. Finally, we verified that SSD could improve the chemotherapy effect of 
TMZ by inhibiting the stem potential of glioblastoma in vivo nude mice. 
Conclusion: this research can provide a certain theoretical basis for the application of SSD in the chemotherapy 
resistance of GBM and its mechanism of action, and provide a new hope for the clinical treatment of 
glioblastoma.   

1. Introduction 

Glioblastoma (GBM) may be originated from glial stem or progenitor 
cells [1]. It is the most common and most malignant primary intracranial 
tumor in adults, with great morphological and genetic heterogeneity [2, 

3]. The five-year survival rate is only 5%, which is considered to be one 
of the most difficult tumors in the field of neurosurgery [4]. The treat-
ment of glioblastoma is based on surgery, radiotherapy, chemotherapy 
and other comprehensive treatments. Among them, temozolomide 
(TMZ) based chemoradiotherapy has become the standard therapy for 
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glioblastoma. Despite ongoing research, there has not been improve-
ment in survival in glioblastoma, especially the chemoresistance of TMZ 
is the main challenge in the treatment of GBM [5]. In recent years, many 
scholars have discovered that natural products play a significant role in 
the sensitization of tumor radiotherapy and chemotherapy, but their 
applications in GBM are very few [6–8]. 

Saikosaponin D (SSD) is a triterpenoid compound extracted from the 
traditional Chinese medicine Radix Bupleuri [9]. Recent studies have 
shown that SSD has a variety of biological activities and pharmacolog-
ical effects, including anti-tumor [10], liver protection [11], 
anti-inflammatory [12], sedative [13], anti-epileptic [14], immune 
enhancement [15] and estrogen-like effects [16]. The anti-tumor effect 
is its most important pharmacological effect [17]. And SSD has been 
widely applied to a variety of cancers up to now [17], including liver 
cancer, thyroid cancer, prostate cancer, lung cancer, cervical cancer, 
breast cancer, and so on. In addition, recent studies have shown that SSD 
can also enhance the sensitivity of liver cancer to radiotherapy and 
chemotherapy [18,19]. 

For GBM, it is reported that SSD can induce apoptosis of U87 cells 
[20], but whether it can enhance the chemotherapy sensitivity of glioma 
is still unclear. Here, we found that SSD can inhibit the malignant 
phenotype of LN229 cells, including CCK-8 cell proliferation experi-
ment, Wound Healing assay, and Transwell invasion test. And also in-
crease the content of lactate dehydrogenase (LDH) and the apoptotic 
ability of LN229 cells under TMZ stimulation. Fortunately, we unex-
pectedly discovered that SSD can promote the colony sphere formation 
of LN-229 cells. This discovery prompted us to test the effect of SSD on 
the expression of stemness factors in the cells. The results show that SSD 
can indeed reduce the expression ability of the stemness factor of glio-
blastoma cells, which provides certain research ideas for its mechanism 
of enhancing chemosensitivity on GBM. 

2. Materials and methods 

2.1. Drugs 

SSD (SS8010, purity ≥98%) and TMZ (IT1330, purity ≥98%) were 
both purchased from Solarbio Science & Technology Co. Ltd (Beijing, 
China). 

2.2. Cell lines and cell culture 

LN-229 cells were obtained from the American Type Culture 
Collection (ATCC R CRL-2611, Maryland, USA) and mycoplasma 
contamination were consistently negative. The cells were seeded in 
Dulbecco’s modified Eagle’s medium (DMEM, High glucose) with 10% 
fetal bovine serum (FBS) and 1 × Pen Strep (all from Gibco; Thermo 
Fisher Scientific, Inc., Waltham, MA, US) at 37 ◦C and 5%CO2, in a 
humidified atmosphere. 

2.3. Cell proliferation experiment (CCK-8) 

100 μl (2 × 103 cells) of the cell suspension in the logarithmic growth 
phase were seeded into a 96-well plate and cultured overnight until 
adhered. The cells were treated with various concentrations of SSD and 
incubated for 24 h. The fresh medium was replaced, and 10 μl CCK8 
solution was added to each well, and the cells were continued to culture 
for 2 h. The absorbance was measured at 450 nm on the microplate 
reader. Meanwhile, the blank control group was also set up. 

2.4. Wound healing assay 

The cells in the logarithmic growth phase, culture medium (DMEM) 
and culture-Insert were all prepared in advance. The cells were digested 
and resuspended in serum-free medium. Then the cell suspension was 
seeded into the culture-Insert in the middle of Petri dish. When the insert 

area is full of cells, the culture-Insert could be removed by tweezers to 
produce a scratch with a width of 500 μm. The cells continued to be 
cultured routinely for 24 h, and pictures recorded the width of scratch 
were taken every 6 h. The experimental results were analyzed according 
to the collected image data. 

2.5. Matrigel invasion assay (Transwell) 

The Matrigel frozen at − 80 ◦C was thawed overnight, diluted with a 
serum-free medium containing 10 g/L BSA, and then coated the bottom 
membrane of the Transwell upper chamber with 50 μl per well, and 
placed in a 37 ◦C incubator for 4 h 200 μl of the LN-229 cell suspension 
(1 × 105 cells/mL) in the logarithmic growth phase was added to the 
upper chamber, and SSD was added into the corresponding wells ac-
cording to the experimental group. 500 μl of DMEM containing 10% FBS 
was added to the lower chamber and incubated at 37 ◦C for 24 h. Took 
out the upper chamber of Tanswell, discarded the medium, washed the 
cells twice with PBS, wiped off the cells on the upper surface with a 
cotton swab, and fixed for 30 min with absolute ethanol. Next, the cells 
were washed twice with PBS, stained with 0.1% crystal violet for 15 min; 
then continued to wash with PBS three times, and dried. Finally, 
observed and counted cells under microscope. 

2.6. Lactate dehydrogenase (LDH) release detection 

LN-229 cells in logarithmic growth phase were inoculated into 96 
well cell culture plate to make the cell density reach 80–90%. The cells 
were treated with TMZ (10 μg/mL) or SSD (10 μM) or TMZ (10 μg/mL) 
combined with SSD (10 μM) for 24 h after they adhered to the bottom of 
plate. Then added the LDH release reagent provided by the kit, mix well, 
and continued to incubate for 1 h. The cell culture plate was centrifuged 
at 400g for 5 min. Next, 120 μl of supernatant was added to the corre-
sponding well of a new 96 well plate, and 60 μl of LDH detection 
working solution was added, respectively. Mix well and incubate at 
room temperature for 30min. Then the absorbance was measured at 490 
nm. 

2.7. Cell apoptosis detection (Flow cytometry) 

The cells were digested with trypsin without EDTA and collected into 
a centrifuge tube after being dispersed. The cells were centrifuged at 
1000 rpm for 5 min. The cell precipitate was resuspended with PBS 
precooled at 4 ◦C and centrifuged again. The supernatant was carefully 
removed; the cell precipitate was resuspended with 1 × Binding buffer 
and adjusted the concentration to 3 × 106 cells/ml. 100 μl of cell sus-
pension was put into a 5 ml flow cytometer; 5 μl annexin V/Alexa fluor 
488 was added, and then incubated at room temperature for 5 min in the 
dark. Finally, PI and PBS were added for flow cytometry immediately. 

2.8. The median lethality rate (IC50) assay 

The cells (1 × 104 cells/well) were seeded in 96-well plates,24 h 
before treatment. Cells were treated with TMZ (1, 5, 10, 15 and 20 μg/ 
mL), or SSD (1, 5, 10, 15 and 20 μg/mL), or TMZ (0.5, 2.5, 5, 7.5 and 10 
μg/mL) combined with SSD (0.5, 2.5, 5, 7.5 and 10 μg/mL), with the 
vehicle control (DMSO), and further incubated for 48 h. Cell viability 
was assessed through a modified Alamar blue assay. Briefly, a solution 
was prepared of DMEM medium with 10% of a resazurin salt dye stock 
solution (Sigma. St. Louis, MO, USA) at a concentration of 0.1 mg/mL, 
which was further added to each well after 48 h treatment. After 4 h of 
incubation at 37 ◦C and 5% CO2, the absorbance of the plate was read at 
570 and 600 nm in a BioTeck (BioTek Instruments, Inc., Winooski, VT, 
USA). Cell viability was then calculated in accordance with the 
following equation: Cell viability (%) = (A570-A600) of treated cells/ 
(A570-A600) of control cells × 100%. Half-maximal inhibitory con-
centration (IC50) values were further calculated using GraphPad Prism 
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Software v.7.04 (GraphPad Software, Inc.). 

2.9. Colony sphere formation assay 

The cells in logarithmic growth phase were digested with trypsin and 
pipetted into single cells, and then resuspended in DMEM medium 
containing 10% FBS. The cell suspension was diluted in gradient mul-
tiples, seeded into 96 well plates and cultured in DMEM/F12 medium 
containing B27 (both from Gibco; Thermo Fisher Scientific, Inc.), 20 ng/ 
ml basic fibroblast growth factor (Miltenyi Biotec GmbH, Bergisch 
Gladbach, Germany) and 20 ng/ml epidermal growth factor (Provitro 
Biosciences, LLC, Mount Vernon, WA, USA), and were incubated at 
37 ◦C, 5% CO2 and saturated humidity incubator for 3 weeks. The vol-
ume of cell clones was measured under an inverted microscope 
(Olympus CKX41; Olympus Corporation, Tokyo, Japan).The number of 
clones with more than 10 cells was counted under the microscope. 
Finally, the clone formation rate was calculated. 

2.10. Semi-quantitative PCR 

We perform extract for PCR and Wester blotting at 24 h. The total 
RNA was extracted according to the instructions of Trizol reagent. After 
determining the mass concentration, the cDNA was synthesized by 
reverse transcription and analyzed by semi-quantitative RCR. The 
primers were synthesized as follows: For OCT4, 5′- 
CTGGGTTGATCCTCGGACCT-3′ and 5′-CCATCGGAGTTGCTCTCCA-3′; 
For SOX2, 5′-GCCGAGTGGAAACTTTTGTCG-3′ and 5′-GGCAGCGTG-
TACTTATCCTTCT-3′. For c-Myc, 5′-CGGGTACCGGTCGCCACCATG-
GATTTTTTTCGGGTAGTGGAAAACCAGCAG CCTCCCGCGACGA-3′ and 
5′-CGGAATTCTCACTTGTCATCGTCATCCTTGTAGTCCGCACAA 
GAGTTCCGTAGC-3′; For Klf4, 5′-CGGGTACCGGTCGCCAC-
CATGGCTGTCAGCGACGC-3′ and 5′-CCGGAATTCTCACTTGTCATCGT-
CATCCTTGTAGTCAAAATGCCTCTTCATGTGTAA-3′. Besides, Actin was 
used as an internal reference. 

2.11. Western blotting 

The cells of each group were lysed by RIPA Lysis Solution (P0013C, 
Beyotime) and supplied with protease inhibitor PMSF. The cells lysates 
were loaded and separated by 5% and 10% SDS-PAGE gels. After 
determining the concentration of the cell lysates by the BCA method, the 
samples were loaded and separated by 5% and 10% SDS-PAGE gels. 
Then the proteins were transferred to PVDF membrane (0.2 μm, Mil-
ipore, USA), and blocked with 5% non-fat dry milk in TBST for 1 h at 
room temperature. Next, specific antibodies against SOX2 (ab137385, 
1:1000, Abcam), OCT4 (ab18976, 1:1000, Abcam), c-Myc (ab32072, 
1:1000, Abcam), Klf4 (ab215036, 1:1000, Abcam) together with β-Actin 
(ab8227, 1:2000, Abcam) used as endogenous control were detected by 
the appropriate secondary antibodies (Cell signaling Technology, Bev-
erly, MA). Following detection was performed by Odyssey detection 
system (Licor) and the expression of proteins were quantified by ImageJ 
version 1.48. 

2.12. Nude mice tumorigenicity experiment 

The nude mice (BALB/c, male, 4 weeks old, weighing 14–16 g, 
provided by Beijing Wei tong Li hua Biotechnology Co., Ltd.) used in this 
experiment were approved by the Animal Ethics Committee of Tianjin 
Fifth Central Hospital (Tianjin, China). Before the experiment, they were 
bred adaptively for 1-week, drunk water and ate independently. Then, 
100 μl of LN-229 cell suspension (1 × 106 cells//ml) was inoculated 
subcutaneously into nude mice. When the tumor volumes all reached to 
100 mm3, mice were randomly divided into four groups with 8 mice in 
each group. And mice were intraperitoneally injected with vehicle 
(0.9%NaCl)), SSD (10 mg/kg) [20], TMZ (15 mg/kg) [21], SSD and TMZ 
every two days for 33 consecutive days. At the same time, the 

subcutaneous tumor volume and the weight of mice were monitored. 
Finally, the mice were anesthetized with isoflurane, and the tumor tis-
sues were dissected, collected, weighed, and the tumor masses were 
subjected to in-situ apoptosis experiments. 

2.13. Statistical analysis 

All experiments were repeated at least three times independently. All 
experimental values were reported as mean ± standard deviation (SD), 
and analyzed by GraphPad Prism 8.0 software (San Diego, CA). The 
statistical significance of differences between groups were compared 
with Student’s t-test, while one-way analysis of variance (ANOVA) was 
used for the comparison of multiple groups. A value of P < 0.05 was 
considered statistically significant. 

3. Results 

3.1. SSD inhibits the malignant phenotype of GBM cells 

First of all, we tested the effects of SSD with different concentrations 
and times on the proliferation of LN-229 cells by the CCK8 cell viability 
assay. The results showed that the cell viability of LN-229 decreased 
significantly with the increased concentration of SSD in a dose- 
dependent manner. And with the extension of the administration time, 
SSD could significantly reduce the cell viability of LN-229 (Fig. 1A). 

Subsequently, in order to further confirm the influence of SSD on the 
malignant phenotype of GBM, we conducted wound healing assay and 
Transwell invasion experiments respectively. The results showed that 
the relative migration distance of LN-229 cells treated with SSD (10 μM) 
for 24 h was significantly shorter than that of the control group (Fig. 1B). 
Consistently, as shown in Fig. 1C, the number of invasion cells was 
measured using Matrigel invasion assays. And compared with control, 
SSD significantly reduced the number of cells that penetrated Martrigel 
(Fig. 1C). 

The above results revealed that SSD had an obvious inhibitory effect 
on the malignant phenotype of GBM (including cell viability, migration 
and invasion ability), which was consistent with the results reported in 
the literature that SSD could markedly suppress cell proliferation in a 
dose-dependent manner and enhance apoptosis, excluding migration 
(not mentioned) in human U87 GBM cells [22]. We speculate that the 
more poorer effect of SSD on the LN229 cells compared to U87 cells 
possibly based on the different genetic phenotypes and biological 
characteristics between different GBM lines. 

3.2. SSD increases the chemosensitivity of TMZ on GBM 

GBM is the most malignant glioma [23]. Due to the aggressive 
growth characteristics of malignant glioma and the special anatomical 
location, recurrence is inevitable despite surgery and radiotherapy [24]. 
Chemotherapy plays an important role in further killing the remaining 
glioma cells [25]. TMZ is currently the only oral chemotherapy drug 
approved by the FDA for the treatment of malignant glioma [26]. But 
chemoresistance to TMZ is a major challenge in the treatment of glio-
blastoma (GBM). 

Here, we firstly tested whether SSD affected the chemotherapy effect 
of TMZ on GBM. The LN-229 cells were randomly divided into 4 groups 
and then treated with blank solution, SSD, TMZ and the combination of 
both. After 24 h, used to the content of the release of LDH was detected 
according to the instructions of the LDH ELISA kit. As shown in Fig. 2A, 
both of SSD and TMZ increased the release of LDH in LN-229 cells, and 
their combination significantly increased this effect (Fig. 2A). It is 
inferred that SSD could enhance the chemotherapeutic effect of TMZ on 
GBM. In order to further confirm this inference, we treated LN-229 in the 
same way. After 24 h, the cell apoptosis was detected by flow cytometry 
Annexin V/PI staining. The results showed that the treatment with SSD 
or TMZ significantly increased the apoptosis rate compared with the 
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controls, and the percentage of apoptotic cells was even higher under the 
stimulated by the combination of two (Fig. 2B-C). A similar trend was 
shown by the IC50 assay results (Fig. 2D). 

3.3. SSD reduces the stem cell maintenance potential of GBM 

Tumor recurrence and metastasis are the main reasons leading to the 
failure of malignant tumor treatment [27]. The existence of cancer stem 
cells (CSCs) is considered to be the root of tumor occurrence and 
recurrence [28]. Essentially, CSCs play an important role in tumor sur-
vival, proliferation, metastasis and recurrence through their 
self-renewal and immortal proliferation [29]. Traditional radiotherapy 
and chemotherapy can kill tumor cells in the state of proliferating, but 
CSCs in a resting state may develop drug resistance through mutation 
and escape [30]. So, is the chemo-sensitization effect of SSD on GBM 
related to the stemness potential of tumor cells? Recently, we unex-
pectedly found that SSD could inhibit the colony formation rate of 
LN-229 cells (Fig. 3A). Subsequently, we tested the expression changes 
of stem factors (OCT4, SOX2, c-Myc and Klf4) in LN-229 cells treated 
with SSD through PCR (Fig. 3B) and western blotting experiments 

(Fig. 3C), and the results showed that SSD significantly inhibit the 
expression of these four factors. It can be concluded that the 
chemo-sensitization effect of SSD on TMZ-induced GBM may be related 
to the inhibition of stem cell stem potential. To this end, we also carried 
out the following nude mice tumorigenicity experiment to verify the 
mechanism in vivo. 

3.4. SSD increases the chemosensitivity of GBM to TMZ by reducing the 
stemness of tumor tissue in vivo 

In order to verify the above effects and mechanisms, we established a 
tumor xenograft model of GBM by subcutaneous inoculation of LN-229 
cells, and observed the volume changes of tumors after intraperitoneal 
administration. The results showed that the combination of SSD and 
TMZ made the tumor volume growth rate significantly lower than that of 
the other groups (Fig. 4A). Then the weight of tumor in each group was 
measured at the end of administration, and the results were consistent 
with the changes of volume growth (Fig. 4B). These results suggested 
that SSD enhanced the chemosensitivity of TMZ to GBM. 

Finally, we detected the expression differences of stem factors in the 

Fig. 1. SSD inhibits the malignant phenotype of GBM cells. (A) Cell viability was detected by CCK8 assay in LN-229 cells that treated with SSD at different con-
centrations for 24 h or various times at indicated concentration (10 μM). Then, the cells were treated with effective concentrations (10 μM) of SSD for 24 h. The 
migration ability was determined by wound healing assay (B) while Matrigel invasion assay was used to indicated the number of invasion cells (C).Data are shown as 
means ± SD (n = 3); *P < 0.05 when compared with the control (Student’s t-test). 
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tumors of each group by western blotting, and found that the expression 
of OCT4, SOX2, c-Myc and Klf4 proteins in SSD combined with TMZ 
group was significantly lower than that of other groups (Fig. 4C). 

Therefore, it is inferred that the mechanism of SSD increasing the 
sensitization of TMZ on GBM is closely related to the lower stemness 
potential of GBM stem cells. 

4. Discussion 

In recent years, despite the rapid development of global medical 
science and technology [31], GBM is still a major problem to be solved in 
the neuro-tumor field, and the treatment concept of surgery combined 
with standard chemoradiotherapy has reached the bottleneck stage 
[32]; we still need to adopt the comprehensive treatment mode of sur-
gery combined with chemoradiotherapy before the emergence of more 
effective treatment. However, chemotherapy resistance has greatly 
restricted the advantages of modern medicine in the treatment of ma-
lignant tumors [33]. In this study, we draw the following two conclu-
sions through related experiments, which provides a new idea for 
improving the chemosensitivity of GBM.  

1) SSD is expected to be a sensitizing regulator for chemotherapy of 
various cancers 

Anti-tumor effect is the most important pharmacological activity of 
SSD [34]. Up to now, a large number of literatures have reported the 
inhibitory effects of SSD on a variety of tumors, including pancreatic 
cancer cells [10], hepatocellular carcinoma [35], renal cell carcinoma 
[36], human osteosarcoma [37], undifferentiated thyroid cancer cells 
[38], prostate cancer cells [39], lung cancer cells [40], breast cancer 
cells [41]and so on. This shows that it has broad prospects in cancer 
treatment. 

In addition, SSD can also enhance the sensitivity of tumor cells to 
radiotherapy and chemotherapy. For example, SSD can enhance the 
radiosensitivity of liver cancer cells by inhibiting hypoxia-inducible 

factor-1α (HIF-1α) [42]or adjusting cell cycle G0/G1 and G2/M [43]. 
SSD also made various of cancer cells (including cervical cancer, ovarian 
cancer and non-small cell lung cancer) sensitive to cisplatin-induced cell 
death through the increase of reactive oxygen species (ROS) and caspase 
activation [44]. SSD can even enhance radiation-induced DNA damage, 
and more importantly, increase antioxidant levels after radiotherapy 
[43]. 

In terms of chemo-sensitization, SSD inhibited liver cancer cells and 
enhance chemosensitivity through SENP5-dependent inhibition of Gli1 
SUMOylation under hypoxia [20], and also enhanced the sensitivity of 
human non-small cell lung cancer cells to Gefitinib [18]. It also reversed 
P-glycoprotein-mediated multidrug resistance in breast cancer 
MCF-7/adriamycin cells [19]. Here, we also preliminarily confirmed 
that SSD can reduce the stemness potential of GBM and enhance its 
chemosensitivity to TMZ. It can be inferred that SSD will become a 
chemosensitizer for various drug-resistant tumors. 

However, it was elusive that we tested the effect of SSD on glio-
blastoma LN-229 and found that 10 μM SSD can inhibit 22% cell pro-
liferation than the control group (CCK-8 test results), but induce LDH 
release about 6 times (LDH ELISA results), and induce cell apoptosis 
about 2 times that of the control group (Annexin/PI flow cytometry 
results). We speculate that it may be due to the different initial states of 
cells when exposed to drugs in different experiments, and different 
experimental principles may lead to greater variability in experimental 
results.  

2) The inhibitory effect of SSD on the stemness potential of GBM stem 
cells is its key mechanism as a sensitizer 

Chemotherapy is an indispensable treatment for GBM. But the high 
drug resistance of chemotherapy is a thorny problem. At present, there 
are many opinions about the causes of chemotherapy resistance [45]. 
And most of the viewers believe that the poor therapeutic effects of 
tumors, including radiotherapy and chemotherapy, are closely related to 
the existence of tumor stem cells [46]. Therefore, it is of great 

Fig. 2. SSD increases the chemosensitivity of TMZ on GBM. The cells were treated with blank solution, SSD, TMZ and the combination of both for 24 h. Then, the 
culture medium was collected independently 24 h later and centrifuged at 800 rpm/min for 5 min, and the supernatants were transferred to detect the release of LDH 
by ELISA kit (A). The adherent cells were digested with trypsin without EDTA for 1 min, then terminated by DMEM medium containing 10% FBS. The cell suspension 
was dispersed and centrifuged at 800 rpm/min for 5 min. Both of the centrifuged precipitates were used for flow cytometry Annexin V/PI staining (B and C). The 
median lethality rate (IC50) was assessed through a modified Alamar blue assay (D).Data are shown as means ± SD (n = 3); *P < 0.05 and **P < 0.01 when compared 
with the control (Student’s t-test); ▴▴P < 0.01 when compared with the SSD (Student’s t-test). 
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significance to find out the factors influencing the stemness of cancer 
stem cells and their mechanism of action, so as to understand the in-
ternal mechanism of tumor resistance and recurrence and metastasis. 

Klf4, Sox2, Oct4 and c-Myc are considered to be key genes for 
maintaining the stemness of cancer stem cells. In recent years, many 
studies have shown that OCT4, SOX2, c-Myc and Klf4 are not only 
involved in the normal development of the body, but also closely related 
to the occurrence and development of tumor, especially the chemo-
sensitivity of tumor cells [47]. Da et al. found that there was obvious 
expression of OCT4 in human gliomas, especially in gliomas with high 
degree of malignancy, it was as high as 100%, and all of them were 
strongly positive [48]. And the expression of OCT4 was not related to the 
gender of glioma patients, but was significantly related to tumor 
recurrence and chemoradiotherapy, which was consistent with the 
function of OCT4 in maintaining stem cell characteristics [49]. At the 
same time, the important role of SOX2 in the mechanism of TMZ resis-
tance has been gradually revealed. The overexpression of SOX2 is a 
molecular marker of the subtype of precellar neurons in glioma cells, 
which is the most resistant subtype to chemoradiotherapy [50]. 

The above research results indicate that OCT4 and SOX2 are 
important factors leading to GBM resistance. Fortunately, this article 
found that SSD can significantly inhibit OCT4, SOX2, c-Myc and Klf4, 
and then inhibit the stemness potential of GBM, thereby providing a new 
opportunity for SSD to enhance the chemosensitivity mechanism of 
GBM. However, since this study did not validate these results in other 
glioblastoma cell lines (eg SNB19, U87, U251), the above conclusions 
appear thin and more experiments need to be done in more cell lines, 
even GBM patient-derived cells. Indeed, commercially purchased cell 
lines lose some of the original tumor characterization due to long-term in 
vitro culture. Conversely, patient-derived cells more accurately reflect 
the true characteristics of the tumor. However, patient-derived tumors 
are highly individual and often require a larger number of accumula-
tions to explore a mechanism. In this study, we first identified LN229 
cells express markers of stemness (SOX2 and OCT4), which are just 
suitable for the study of the mechanism of glioma stemness mainte-
nance, so we chose LN229 cells as the experimental object. Therefore, as 
long as conditions permit, the conclusions of this study should be 
demonstrated from more patient-derived tumor cells. In addition, 

Fig. 3. SSD reduces the stem cell maintenance potential of GBM. (A) 100 μl of cell suspension was seeded into 96-well plate and cultured overnight. Then, cells were 
treated with blank solution and SSD for 15 days. During this period, fresh medium was supplemented every three days. When the clone sphere grew to more than 10 
cells, the colony formation rate was counted and calculated. LN-229 cells were treated with blank solution or SSD for 48 h, and digested, centrifuged, lysed and then 
prepared for PCR (B) and western blotting (C) experiment. Data are shown as means ± SD (n = 3); *P < 0.05 and **P < 0.01 when compared with the control 
(Student’s t-test). 
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whether SSD causes cytotoxicity should also be examined in further 
studies. 

However, the chemoresistance mechanism of glioblastoma is intri-
cate and often involves abnormal changes in more than a few signaling 
pathways, and is likely to be regulated by endocrine, immune, and 
nervous systems, it is ultimately difficult to find more effective thera-
peutic targets for glioblastoma. In fact, this study only provides an 
immature reference for improving the chemosensitivity of glioblastoma, 
and more in-depth and comprehensive mechanisms need to be verified 
by more experiments and more rigorous design. 
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