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ABSTRACT
Objective In studies of trajectories of physical functioning 
among older people, the data cannot be measured 
continuously, but only at certain time points in prespecified 
cycles. We examine how data collection cycles can affect the 
estimation of trajectories and their associations with survival.
Study design and setting Longitudinal data from the 
Manitoba Follow- Up Study (MFUS), with 12 measurements 
collected annually from 2004 to 2015, are analysed using 
a summary measures of physical functioning from the 
Short Form- 36 questionnaire. Based on the joint models of 
the functioning trajectories and risk of death, we compare 
the estimations among models using different frequency of 
data collection (annually, biennially and triennially).
Results Our 2004 baseline includes 964 men who were 
survivors from the original MFUS cohort with mean age of 
84 years and range between 75 and 94 years. Results from 
analysis of annual data indicate that the mean physical 
functioning is significantly decreasing over time. Further, 
the rate of decline is increasing over time. The current value 
of physical functioning is significantly associated with the 
hazard of death (p<0.001), whereas the association between 
the change rate and mortality is marginally significant 
(p<0.10). Results from analysis of biennial and triennial data 
reveal similar trajectory patterns of physical functioning, 
but could not reveal the association between the change 
rate of physical functioning and mortality. The frequency of 
data collection also impacts substantially on the estimation 
of heterogeneity of functioning trajectory. The prediction 
of mortality risk obtained using annual measurements of 
physical functioning are better than using biennial or triennial 
measurements, while the predictions obtained using biennial 
or triennial measurements are almost equivalent.
Conclusion The impact of frequency of data collection 
depends on the shape of functional trajectories and its 
linking structure to survival outcome.

INTRODUCTION
The role of frequency of data collection for the 
estimation of change in physical functioning
Research in the field of functional trajectory 
among older people remains challenging due 

to the longitudinal drop- out rates, complex 
endpoints and higher risk of death. Planning 
a longitudinal study of functional trajectory 
raises many concerns related to cost and effi-
ciency of the study. It is important to deter-
mine an efficient length of data collection 
cycle given that the total time period of study 
is fixed, because it directly affects our infer-
ence about the true patterns of change over 
time from the observed change trajectory. 
Collecting data too frequently may place 
undue burden on participants and may lead 
to more drop- outs and non- responses. The 
drop- outs and missingness are considered 
as a loss of information and thus reduce the 
power of a study.1 Moreover, the number of 
data waves determines the functional forms 
of changing trajectories that are able to 

Strengths and limitations of this study

 ► Use annually collected physical functioning data 
up to 12 years from the Manitoba Follow- Up Study 
(MFUS). In its 73rd year, MFUS is among the longest 
running studies of health and ageing and enjoys very 
low non- mortality attrition and very high survey re-
sponse rates.

 ► Use of advanced statistical methods, joint models, 
which allow us to explore the trajectories of physical 
functioning among older men with non- random par-
ticipant truncation due to death.

 ► This is the first study to examine the impact of data 
collection frequency on the estimations using joint 
models of longitudinal and survival data.

 ► Our findings based on a cohort of male aircrew 
recruits from the Royal Canadian Air Force during 
World War II and self- reported physical functioning 
are not necessarily generalisable to other popula-
tions and other functioning measures.
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be investigated. For example, linear change requires a 
minimum of three time points, while quadratic requires 
at least four points.2 3 Ideally the time points are spaced 
in such as way that it allows the true pattern of change 
over time to be observed during the period of study. If 
we collect data too rarely, the observed time interval 
would be too long as compared with the optimal time 
interval and in turn we might not be able to discover the 
true change trajectory. However, a larger number of time 
points is not always better or more accurate than a small 
number of time points,2 because the observed data may 
have measurement errors, that, in turn, might lead to 
unreliable or invalid estimation of change trajectory.

Considerations for optimal frequency of data collection
The optimal frequency of data collection depends on 
research objectives of a longitudinal study. For diseases 
such AIDS that have rapid changes over time, data need 
to be collected frequently with time intervals ranged 
from 2 weeks to 2 months.4 For those that should take 
longer time to manifest changes such as functional trajec-
tories, longer time intervals of 1 or 2 years may often be 
appropriate.2 The optimal frequency may also depend 
on the response scale type in terms of reliability, validity 
and responsiveness. The estimation of trajectories of 
self- reported physical functioning requires measures 
with psychometrically sound reliability and validity. The 
responsiveness or sensitivity to change is an important 
merit for a functioning measure because it quantifies 
the propensity of measures to detect changes in phys-
ical functioning. The more responsive a measure is, the 
more confident researchers can be that the measure 
will be sensitive to functioning change. The proper 
frequency depends on the target population as well. For 
instance, the trajectory of functional and cognitive status 
may differ in older populations compared with younger 
ones.5 Researchers also need to face funding and other 
resource limitations which directly affect the number 
of data waves that can be collected. However, a general 
rule for deciding data collection cycles when developing 
longitudinal studies does not essentially exist and careful 
considerations in each specific study context are needed.6

The physical functioning trajectories in general
There is strong evidence that physical functioning is a 
marker of the current and future health, and the risk 
of mortality.7 8 The physical functioning declines with 
advancing age, particularly in very old age.9 Functional 
decline is characterised by an increased inability to 
perform basic activities of daily living.10 Physical func-
tioning declines throughout adulthood and exhibits 
progressively steeper decrements throughout old age.11 12 
Substantial individual variabilities have been reported in 
both onset of limitations in functioning and progression 
of decline over time.13 Decline in physical functioning 
was steeper in individuals who were older and closer to 
death and change in physical functioning is more strongly 
affected by time to death than by chronological age.14

Declining trajectories of physical functioning were 
found in a variety of cohorts in older populations. A linear 
changing pattern was found among older adults with four 
waves of data collected over 8 years.7 A quadratic trajec-
tory was revealed with four waves of annually collected 
data.15 A linear declining trend was found to have the best 
performance using data collected with a varied length of 
time intervals.16 These and other longitudinal studies 
have adopted trade- offs of the time interval to be 2, 3, 4 
or varied years.

The necessity of joint models for linking physical functioning 
trajectories to mortality
A meta- analysis revealed consistent evidence that better 
physical functioning was associated with a lower rate of 
all- cause mortality among older population.8 Recent 
research has highlighted the change in physical func-
tioning as a short- term predictor of mortality. Andrasfay 
found that conditional on baseline functioning, those 
with steeper declines in physical functioning typically 
have higher mortality in the subsequent 4 years.17 Hirsch 
et al also found that the rates of change in stride length 
and grip strength provide important prognostic informa-
tion for late- life disability and death.18 But the studies in 
the meta- analysis and most of empirical studies on func-
tional trajectories applied traditional statistical models 
such as Cox proportional hazard models18–20 and growth 
curve models (GCMs).7 15 16 Both these traditional statis-
tical approaches have limitations. Separate analysis of 
the longitudinal process of the physical functioning 
trajectory and the mortality- related process might fail to 
capture true change of longitudinal outcome and the 
association between them.21 The joint model for longi-
tudinal and survival data which simultaneously analyses 
the two processes is more appropriate to reflect the true 
changing pattern of functional trajectory and its linkage 
with survival.

Decreasing grip strength was found to be strongly 
related to risk of death using the basic joint model with 
seven waves of data collected through a varied length of 
intervals (ie, 2–4 years).22 Both the changing rate and 
accelerating rate of change in memory performance were 
found to be significant predictors of risk of death with 
five waves of data using a 2- year interval of data collection 
strategy.23 According to a meta- analysis, the application 
of joint models in healthcare fields has been increasing 
noticeably since 2012.24 However, no empirical study has 
been conducted to examine the impact of the data collec-
tion cycle on the estimation of joint model of functional 
trajectory and its linkage to mortality.

The rationale and significance of this study
To the best of our knowledge, whether and how the 
different length of interval of the data collection strategy 
affects the estimations of functional trajectory and its 
impact on mortality risk has not been discussed in the 
literature. Thus, there are outstanding issues—First, 
is joint modelling a better approach to describe the 
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association of physical functioning trajectory with death? 
Second, the optimal sampling frequency for estimating 
the shape of trajectory and predicting risk of death is 
also unclear. In this study, we use data from one of the 
longest running studies of health and ageing to illustrate 
the impacts of using different amounts of longitudinal 
information (annually, biennially and triennially) on 
the estimation of trajectory of physical functioning and 
its associations with death. This will provide a guidance 
for selecting the proper frequency and spacing of data 
collection in age- related longitudinal study to ensure that 
the true functional trajectory and association with risk of 
death could be revealed.

METHODS
Data source
Data are from the Manitoba Follow- Up Study (MFUS) in 
Canada, one of the longest running longitudinal studies 
of health and ageing in the world. This longitudinal study 
began in 1948 with a cohort of 3983 former World War II 
male veterans with mean age of 31 years.25 The process of 
signed, informed consent was not requested for the study 
participants in 1948. However, it has been acknowledged 
by the Human Research Ethics Board of the University 
of Manitoba that the continued response from MFUS 
members to surveys and requests for medical examina-
tions can be seen as consent to participate in the study.25 
By spring of 2019, 107 original cohort members were alive 
with a mean age of 96 years, living across Canada with 
a geographic distribution similar to that of the national 
older male population. Since the inception of the cohort, 
the participants have been actively engaged in the study 
and only 46 participants have been lost to follow- up.

The Successful Ageing Questionnaire (SAQ) was added 
in 1996 and conducted again in 2000, 2002 and annu-
ally since 2004.25 The core components of the SAQ in all 

study years include living arrangement, marital status, 
items of social engagement, self- rated health, items of life 
satisfaction, the ability to perform basic and instrumental 
activities of daily living, definition and self- assessment of 
successful ageing and the Short Form- 36 (SF- 36).26–28

The data used for the current study include the annual 
SAQ and mortality data from 2004 to 2015. Therefore, as 
far as this study is concerned, participants were still alive 
in 2004 and completed the SAQ questionnaire himself 
(or with help from his family member) for at least one 
time during the 11 years. At 2004 baseline, there were 
964 men at a mean age of 84 years, with range from 75 
to 94 years. Response rates for all waves are very high. 
If a respondent was missing for one wave, attempts were 
made to contact for a following wave until we know he 
had died. This aspect of the survey coupled with high 
response rates means that overall non- mortality attrition 
is low. Of 964 participants at 2004 baseline, only 11 (1%) 
were alive but lost to follow- up by 2015. More informa-
tion about the study sample including the percentage of 
missing SAQs, and number of deaths is given in table 1. 
The average number of observations over 12 waves is 6. 
If we take death into consideration that no measurement 
would be collected after death, the average percentage of 
response is over 83%. Nevertheless, we conducted anal-
yses to compare those participants with complete data 
to those with non- mortality missing data, no significant 
differences in physical functioning scores and mean age 
were found for almost all study years. Therefore, our anal-
ysis assumed that non- mortality missingness is missing at 
random.

Study variables
The SF- 36 is a widely used, easily administered measure 
of health- related quality of life which is sensitive to 
change. It contains the Physical Component Score (PCS), 
which considers physical functioning, and the Mental 

Table 1 Sample size, number of deaths, percentage of received SAQs and mean of age in each survey year

Year Sample size Mean age No of deaths No of drop- outs
Per cent of 
drop- out

Per cent of 
received SAQs

Per cent of 
non- responses

2004 964 83.83 28 0 0.00 84.08 15.92

2005 936 84.65 44 2 0.21 85.65 14.16

2006 892 85.57 70 3 0.34 89.66 10.01

2007 822 86.3 71 0 0.00 81.23 18.77

2008 751 87.26 78 0 0.00 76.67 23.33

2009 673 87.97 53 0 0.00 75.32 24.68

2010 620 88.82 78 1 0.16 71.40 28.47

2011 542 89.74 102 1 0.18 73.64 26.20

2012 440 90.71 70 0 0.00 71.89 28.11

2013 370 91.45 65 2 0.54 67.87 31.35

2014 305 92.21 59 1 0.33 68.70 31.02

2015 246 93.02 46 1 0.41 61.50 38.19

SAQ, Successful Ageing Questionnaire.
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Component Score, which considers mental health func-
tioning. In this study, we use the PCS as an illustrating 
example for investigating the functional trajectories of 
older people and their impact on survival. The PCS is 
normalised on a unitless scale with a mean of 50 and SD 
of 10. The death date of those who are known to have 
died have been collected through questionnaires, admin-
istrative database or direct phone calls to physicians or 
family.

Joint models
Two main approaches to study how a longitudinal process 
predicts the survival time are the extended Cox model29 
and joint modelling.21 The Cox proportional hazard 
regression model links the covariates to the survival time 
through the hazard function while the extended Cox 
model is an extension of the Cox model to handle time- 
varying covariates.29 The time- varying covariates in the 
extended Cox model are required to be measured without 
error, remained constant and only updated at measure-
ment times.30 31 However, many time- varying covariates 
especially for self- reported data (eg, physical functioning) 
do not meet the requirement. If the extended Cox model 
is conducted, the parameter estimation can be biased and 
unreliable.21 Joint modelling of longitudinal and survival 
data may complement the Cox models by providing a 
more accurate representation of the quantitative influ-
ence of time- varying factors such as physical functioning, 
on the time to an event such as death.21

The joint model consists of two submodels, mixed- effect 
model for longitudinal outcome and the Cox model for 
survival outcome. An underlying random effects struc-
ture links the survival and longitudinal submodels and 
allows for individual- specific predictions. Suppose we 
have n  subjects, who are followed up for a time period 
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The formula of the survival submodel takes the general 
form29:
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the baseline hazard function;  ωi  is a vector denoting the 
baseline covariates;  Wi

(
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)
  denotes the linking approach of 

the longitudinal and survival processes. The association 
between the longitudinal outcome and the risk of death 
is reflected by the parameter α . The piecewise constant 
model which was evidenced to work well21 was used in this 
study to model the baseline hazard function.

Six different linking approaches were compared using 
Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC).

Model (a): hi(t | Mi(t), ωi) = h0(t)exp
{
α1mi(t)

}
 

Model (b): hi(t | Mi(t), ωi) = h0(t)exp
{
α1mi(t) + α2m

′
i (t)

}
 

Nodel (c): hi(t | Mi(t), ωi) = h0(t)exp
{
α2
´ t

0 mi(s)ds
}
 

Model (d): hi(t | Mi(t), ωi) = h0(t)exp
{
α1mi(t) + α2

´ t
0 mi(s)ds

}
 

Model (e): hi(t | Mi(t), ωi) = h0(t)exp
{
α2
´ t

0 ϖ(s)mi(s)ds
}
 

Model (f): hi(t | Mi(t), ωi) = h0(t)exp
{
α1mi(t) + α2

´ t
0 ϖ(s)mi(s)ds

}
 

Model (a) is the basic joint model linking the two 
processes through adding the true current value of longi-
tudinal outcome into the survival submodel. Model (a) 
assumes that the hazard of survival outcome is affected 
by the current true value of the longitudinal outcome, 

 mi
(
t
)
 , and parameter  α1  quantifies this effect. Model 

(b) assumes that not only the current true value,  mi
(
t
)

 , but also the change rate, denoted by the derivative of 

 mi
(
t
)
 , affects the hazard of survival outcome. Model (c) 

assumes that the hazard of survival outcome is affected 
by the whole history of longitudinal outcome (cumulative 
values of longitudinal outcomes, denoted by the integral 
of  mi

(
t
)
 ). Model (d) assumes that both current value and 

cumulative value affect the hazard of survival outcome. 
The more recent values of longitudinal outcome might 
have stronger impact on the hazard of survival outcome 
than the values earlier in time. Therefore, a weight func-
tion  ϖ

(
s
)
  is added to Model (c) and Model (d) to repre-

sent different impact of previous values, leading to Model 
(e) and (f), respectively.

We identified the best joint model that described the 
functional trajectories and risk of death using all the 
measurements collected annually from 2004 to 2015. 
Then the same best joint model was fitted using every 
other measurement (biennially), that is, the measure-
ments collected in 2004, 2006, 2008, 2010, 2012 and 2014. 
Similarly, we fitted the same model using the triennially 
collected measurements, that is, the measurements in 
2004, 2007, 2010 and 2013. We can imagine that these 
represent three different scenarios of data collection 
cycles (annually, biennially and triennially). Two measures 
of model performance, the mean absolute error (MAE) 
for longitudinal outcome and the area under the receiver 
operating characteristic curve (AUC), were used to 
compare models using different amounts of longitudinal 
information. MAE was used to measure the accuracy of 
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prediction for longitudinal outcomes. AUC was used for 
discrimination ability for survival process. Smaller MAEs 
and larger AUCs indicate better model performance.

Patient and public involvement
There was no patient or public involvement in the study.

RESULTS
The mean PCS at the baseline was 42.5 in our sample 
of men aged from 75 to 94. This is similar to the Cana-
dian normative data for the SF- 36 health survey being 
reported by Hopman and colleagues.32 To examine how 
physical functioning changes over time among survi-
vors, GCMs were conducted on the cohort of those 200 
males who were still alive by the end of 2015. Figure 1 
presents empirical individual growth plots of the physical 
functioning for the 200 males, along with the superim-
posed ordinal linear regression trajectory (red line) and 
smoothed trajectory (blue line) across 200 survivors. The 
preliminary analyses indicated that the declining physical 
functional trajectory among older men can be described 
as a quadratic function of time. We compared the model 
with the physical functioning over study year to that over 
age. The results are shown in table 2 and figure 2. The 
goodness- of- fit index for model selection did not result in 
an overwhelmingly clear determination of which model is 
better. According to a measure of proportional reduction 
in residual variance (ie, R2  in table 2) and AIC, the model 
with time in study is better than the model with age, 
whereas the model with age is better according to BIC. 
However, two models (modelling physical functioning 
over time vs over age) indicated a similar patterns of find-
ings and supported consistent conclusions that the mean 
physical functioning is significantly decreasing over time, 
and the rate of decrease is increasing over time. More-
over, the results from the variance components of both 
models indicated that there are significant variations 
among participants in the baseline value of physical func-
tioning, declining rate and accelerating rate over time. 

For the joint model analyses, we will just model change of 
physical functioning over study year.

With this quadratic growth as the longitudinal submodel 
in which the intercept and linear and quadratic slopes 
have random effects, the six joint models, referred as 

Figure 1 Individual trajectories of physical functioning for 
the 200 survivors by the year of 2015.

Table 2 Results from modelling physical functioning over 
study year versus age (N=200)

Parameter
Over time in 
study Over age

Fixed effects

  Intercept 45.53 (0.60)*** 44.53 (0.58)***

  Time −0.49 (0.16)** −0.65 (0.09)***

  Time×time −0.03 (0.015)* −0.02 (0.01)*

Variance components

  Level 1 25.55 (0.99)*** 26.69 (1.03)***

  Level 2 variance

   Intercept 54.98 (7.30)*** 59.62 (6.68)***

   Time 1.80 (0.53)*** 0.57 (0.15)***

   Time×time 0.015 (0.01)*** 0.004 (0.002)*

  Level two covariance

   Intercept and time 0.02 (1.47) 1.72 (0.70)*

   Intercept and 
time×time

−0.11 (0.13) −0.29 (0.09)***

   Time and time×time −0.14 (0.05)** −0.03 (0.02)

Goodness of fit

  −2LogLik 12 465.7 12 485.7

  AIC 12 485.7 12 505.7

  BIC 12 518.7 12 505.8

  R2 0.225 0.219

Cells format—parameter estimation (SE) significance level; year 
was centred at 2004 and age was centred at 84, the average 
age at baseline (2004). The R2 in the mixed- effect model was 
calculated using the approach suggested by Xu.34

*P<0.05, **p<0.01, ***p<0.001.
AIC, Akaike information criterion; BIC, Bayesian information 
criterion.

Figure 2 Predicted and observed mean trajectories of 
Physical Component Score (PCS) (N=200).
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model (a) to (f) above, were fitted on all measurements 
collected annually from 2004 to 2015. The goodness of fit 
of these models are reported in table 3 where, model (b) 
was identified as the best joint model, indicating that not 
only the current physical function but also its change rate 
was associated with the risk of death.

The best joint models were fitted on three scenarios of 
data collection cycles (annually, biennially and trienni-
ally). The results of longitudinal and survival submodels 
are reported in tables 4 and 5, respectively. Reported 
in tables 4 and 5 are the change in parameter estimate 
from using annual data to using biennial or triennial 
data. Table 4 reveals the differences between models in 
estimates of linear and quadratic slopes were larger than 
the estimates of intercept, so were the variances of these 
estimates. The SEs of these estimates became larger when 
model using the biennial and triennial data than the 
model with annual data. Table 5 reveals that the estima-
tions of the association between current PCS and hazard 
of death were similar across models using different cohort 
data. However, there was considerable variation in the esti-
mation of the association between the change rate of PCS 
and hazard of death. This indicates that data collection 
cycles have relatively small influence on the association 
between current PCS and the risk of death but significant 
influence on the association between changing rate of 
PCS and hazard of death.

Figure 3 shows the accuracy of prediction for longi-
tudinal functional outcomes. The predictions by model 
using the annually collected data had the lower MAE than 
models using biennial or triennial data. The difference 
of MAEs from models using biennial and triennial data 
was negligible. Figure 4 shows AUC estimates calculated 
annually based on these models. The AUCs of prediction 
of risk of death in the next year were calculated since 

2005 to ensure at least one measurement of PCS. Except 
in 2010, the AUCs based on annually collected data was 
the highest. The difference between AUCs in biennial 
and triennial data were not significant except in 2014. 
The predictions of risk of death obtained using annual 
measurements are better than using biennial or triennial 
measurements, while the predictions obtained using bien-
nial or triennial measurements are almost equivalent.

DISCUSSIONS AND CONCLUSIONS
In this research, we used a practical example to illustrate 
the influence of data collection cycles on the estimation 
of physical functioning trajectory and its relationship 
with mortality risk among older men. Our results reveal 
that the impact of data collection frequency on estima-
tions of parameters for describing the functional trajec-
tory is minimal as long as we have enough data points 
to estimate the individual shape of trajectory (eg, three 
points for linear and four points for quadratic GCMs). 
The frequency of data collection has a large impact on 
the estimation of heterogeneity of functioning trajecto-
ries and more frequent data collection is desirable for 
more accurate estimation of heterogeneity. The influ-
ence of data collection frequency on the estimation of the 
association of functioning trajectory and mortality risk 
depends on how the two processes are linked. We found 
when both the current physical function and its change 
are connected to the risk of death, to get more accurate 
estimation of the association between the change rate of 
physical functioning and mortality risk, we need to collect 
data more frequently.

The predictions of mortality risk obtained using annual 
measurements of physical functioning were better than 
using biennial or triennial measurements, while the 
predictions obtained using biennial or triennial measure-
ments were almost equivalent. Analysis of annual data 
revealed that the association between the change rate of 
physical functioning and the hazard of death was margin-
ally significant. Analysis of biennial or triennial measure-
ments could not reveal this association. To increase the 
accuracy of the prediction of survival or the power to 
detect the association between physical functioning and 
mortality, more frequent data may need to be collected.

Joint modelling is often preferred for analysing a 
longitudinal process and survival time. To the best of 
our knowledge, no study has been conducted to explore 
the impact of data collection frequencies on the estima-
tion of joint models in longitudinal studies of ageing. In 
fact, in a longitudinal study, enough data waves need to 
be collected to ensure the true change pattern can be 
reflected by the statistical analysis. Our results reveal that 
the marginal- significant effect of the rate of change in 
the physical functioning on the hazard of death cannot 
be captured in a study design with data collection inter-
vals longer than 1 year. The intersubject variation in the 
trajectories of physical functioning over time could be 
substantially underestimated based on a less frequent 

Table 3 Log- likelihood, AICs and BICs of the six joint 
models

Model Log- likelihood AIC BIC

Model (a) −20 491 41 018 41 106

Model (b) −20 329 40 696 40 789

Model (c) −20 563 41 162 41 249

Model (d) −20 478 40 994 41 086

Model (e) −20 553 41 142 41 230

Model (f) −20 472 40 982 41 075

Model a is the basic joint model with the true longitudinal 
measurement of physical functioning in the survival submodel; 
Model b includes both the true value and the changing rate 
of physical functioning in the survival submodel; Model c only 
contains the history of physical functioning while Model d 
contains both the true value and history of physical functioning 
in the survival submodel; Model e incorporates weighted history 
of physical functioning while Model f incorporates both the true 
value and weighted history of physical functioning in the survival 
submodel. N=964.
AIC, Akaike information criterion; BIC, Bayesian information 
criterion.



7Liu Y, et al. BMJ Open 2022;12:e054385. doi:10.1136/bmjopen-2021-054385

Open access

data collection strategy. Collecting data more frequently 
improves the predictions of mortality risk.

This study has several strengths and limitations. Among 
the strengths of this study are the use of the annually 
collected physical functioning data up to 11 years from 
the MFUS, one of the longest running studies of health 
and ageing. MFUS has experienced very low non- mortality 
attrition and very high survey response rates. The 
advanced statistical approaches, joint models, are used 
to examine the trajectory of physical functioning, which 
allow us to address non- random participant truncation 
due to death. One limitation of this study is that our results 
are based on the physical functioning data. Quality of life 
scales other than the physical functioning—or indeed 
the underlying factor that they measure—may differ in 
their responsiveness to change. Physical functioning may 
be more or less variable than some other measures. For 
example, immune functioning often changes relatively 
quickly (in a matter of weeks) whereas depressive symp-
toms often change more slowly (in a matter of months). 
Caution is therefore needed in extrapolating our findings 
to other measures of health functioning.

Another limitation of this study is our sample selectivity. 
MFUS began in 1948 with a cohort of aircrew recruits 
from the Royal Canadian Air Force during World War II. 
Our findings are not necessarily generalisable to other 
male populations, nor to women. MFUS members may 
have been more highly selected relative to those of other 
arms of service. The cohort is similar to Canadian men 
of the same age in terms of functional status, mortality, 
geographic distribution and marital status.

Moreover, no other covariates are considered in our 
analyses. This may lead to the low AUCs with all values 
below 0.7. Although there is no gold standard for a good 
value of AUC, incorporating more relevant covariates 
such as demographic information could increase the 
discrimination ability of a model. The joint modelling 
analyses on the biennial or triennial data were based on 
individuals with maximum of 6 or 4 observations over 12 
survey waves. There was a high proportion of individuals 
with only one single observations because of early death 
or non- response. This high proportion of individuals with 
fewer observations limited our possibilities of data anal-
yses, for example, specifying cubic change patterns in 

Table 4 Parameter estimations of the longitudinal process of the three study designs

Model 2b

Annual Biennial Triennial

Estimate (SE)sig Estimate (SE)sig Change from annual Estimate (SE)sig Change from annual

Fixed 
effects  ̂β00 

42.52 (0.28)*** 42.50 (0.21)*** −0.05% 42.56 (0.33)*** 0.09%

 ̂β01 
−1.18 (0.10)*** −0.98 (0.11)*** −16.95% −0.93 (0.13)*** 21.19%

 ̂β02 
−0.01 (0.01) −0.007 (0.01) −30% −0.011 (0.02) 10.00%

Random 
effects

 ̂σε 5.35 (0.01)* 5.21 (0.02)* 2.62% 5.04 (0.03)* 5.79%

 ̂σb0 
8.76 (0.03)* 8.52 (0.03)* 2.74% 8.86 (0.03)* 1.14%

 ̂σb1 
1.38 (0.003)* 1.05 (0.002)* 23.90% 1.23 (0.003)* 10.87%

 ̂σb2 
0.09 (0.05) 0.08 (0.05) 11.11% 0.06 (0.06) 33.33%

Cells format—parameter estimation (SE) significance level;  ̂σε  is the estimated variation of within subject residuals;  ̂σb0  is the estimated variation 
of intercept across subjects;  σb1  is the estimated variation of changing rate across subjects;  σb2  is the estimated variation of the accelerating 

rate across subjects;  ̂β00  is the estimated intercept indicating the baseline average physical functioning measurement (PCS);  ̂β01  is the 

estimated changing rate of physical functioning at the baseline;  ̂β02  is the estimated accelerating rate of physical functioning over time. 
N=964.
*P<0.05, **p<0.01, ***p<0.001.

Table 5 Parameter estimations of the survival process of the three study designs

Model 2b

Annual Biennial Triennial

Estimate (SE)sig Estimate (SE)sig Change from annual Estimate (SE)sig Change from annual

 ̂α1 −0.06 (0.005)*** −0.05 (0.005)*** 16.67% −0.06 (0.006)*** 0

 ̂α2 −0.09 (0.05)† 0.03 (0.05) 133.33% 0.05 (0.08) 155.56%

Cells format—parameter estimation (SE) significance level;  ̂α1  is the estimation of the association between current physical functioning 
measurement and the log hazard of death;  ̂α2  is the estimation of the association between the changing rate of physical functioning and the 
log hazard of death. N=964.
***P<0.001.
†p<0.10
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physical functioning or including more baseline or time- 
varying covariates. This also limited the statistical power 
to detect the association between physical functioning 
and mortality. Future empirical and simulation studies 
could be conducted to investigate the impact of using a 
different amount of measurement occasions on the esti-
mation of functional trajectories.

Finally, we studied the influence of data collection 
frequency only based on data from an existing cohort. 
This might not solve the general problem of determina-
tion of the reasonable number of longitudinal measures 
needed for prediction of quality- of- life trajectory and 
mortality risk. Simulation studies might be required to 
investigate the incremental benefit of more frequent data 
collection. Our study, as with most longitudinal ageing 
studies, focuses on intraindividual changes, which relies 
on sequences of widely spaced repeated single measure-
ments. This implies that we cannot examine how short- 
term within- person relationships (eg, emotional reactivity 
to daily stress) change over time. If the research focus is 
on daily or momentary intraindividual variability, it would 
require repeated bursts of daily diary or experience 
sampling assessments that spanned several years.33

In summary, the impact of study design on estimation 
of parameters depends on the complexity of the longitu-
dinal process and its link to survival outcome. In general, 
more frequent measurement might be required to study 
low- frequency events (eg, emotional functioning) than 
higher- frequency events (eg, physical functioning). 
Collecting data annually might bring negligible improve-
ment compared with collecting data biennially or trienni-
ally if the focus is on the estimation of mean changes in 
physical functioning for those far from death. If we focus 
on the estimation of the association between change 
rate of physical functioning and mortality or changes in 
physical functioning within a shorter distance to death, 
collecting data annually appears superior in assessing the 
association or changes than collecting data biennially or 
triennially. This study provides a reference for selecting 
the follow- up strategy in a longitudinal study of ageing 
when focusing on the trajectories of physical functioning 
and its linkage to the survival probability using joint 
models.
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