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Abstract

Objectives

Widespread implementation of electronic databases has improved the accessibility of plain-

text clinical information for supplementary use. Numerous machine learning techniques,

such as supervised machine learning approaches or ontology-based approaches, have

been employed to obtain useful information from plaintext clinical data. This study proposes

an automatic multi-class classification system to predict accident-related causes of death

from plaintext autopsy reports through expert-driven feature selection with supervised auto-

matic text classification decision models.

Methods

Accident-related autopsy reports were obtained from one of the largest hospital in Kuala

Lumpur. These reports belong to nine different accident-related causes of death. Master

feature vector was prepared by extracting features from the collected autopsy reports by

using unigram with lexical categorization. This master feature vector was used to detect

cause of death [according to internal classification of disease version 10 (ICD-10) classifica-

tion system] through five automated feature selection schemes, proposed expert-driven

approach, five subset sizes of features, and five machine learning classifiers. Model perfor-

mance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under

ROC curve. Four baselines were used to compare the results with the proposed system.

Results

Random forest and J48 decision models parameterized using expert-driven feature selec-

tion yielded the highest evaluation measure approaching (85% to 90%) for most metrics by

using a feature subset size of 30. The proposed system also showed approximately 14% to
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16% improvement in the overall accuracy compared with the existing techniques and four

baselines.

Conclusion

The proposed system is feasible and practical to use for automatic classification of ICD-10-

related cause of death from autopsy reports. The proposed system assists pathologists to

accurately and rapidly determine underlying cause of death based on autopsy findings. Fur-

thermore, the proposed expert-driven feature selection approach and the findings are gen-

erally applicable to other kinds of plaintext clinical reports.

1.0 Introduction

Autopsy or postmortem examination provides useful contribution to health-related education

and improves the quality of the healthcare industry [1,2]. In autopsy examination, medical

experts called pathologists to examine the dead body externally and internally and collect

information related to external and internal body organs. Pathologists also collect information

regarding personal details, injury, histopathology reports, and previous medical history of the

deceased person [3]. The collected autopsy findings are correlated with medical history, pre-

mortem and postmortem laboratory studies, microscopic findings of tissues, toxicology, and

other related medical procedures and documents to determine and assign the cause of death

according to the World Health Organization internal classification of disease version 10 (ICD-

10) coding standard [4]. Thus, performing autopsy is both laborious and time consuming.

Autopsy examination culminates in the generation of autopsy reports. The two main types

of autopsy reports include clinical/pathological and forensic (medico-legal) [5]. In developing

countries, a third type of autopsy report, namely, verbal autopsy, is available [6]. Clinical

autopsy is performed to discover the medical cause of death. Clinical autopsy is usually con-

ducted in situations of uncertain deaths. Thus, preventive actions should be carried out to

avoid such incidents in future. Forensic autopsy is performed to discover the cause of death in

criminal matter [5]. In verbal autopsy, an interview is conducted from the relatives or wit-

nesses of the deceased person to discover the cause of death. This method is common in low

economical countries, where health facilities are insufficient [6].

Autopsy examination improves the quality of healthcare. Many hospitals used electronic

database systems, in which autopsy findings and reports are stored in a free text format. In sev-

eral situations, experts use and correlate these stored autopsy reports to solve future cases.

However, the greatest challenges in performing autopsy are lack of human resources and

insufficient time during the investigation to determine the cause of death [7]. Therefore, these

reports must be converted into actionable information that can be used by pathologists to

accurately and rapidly determine the cause of death. Various intelligent systems have been

developed to identify and contextualize concepts of interests, also called named entities, from

plaintext clinical reports by using automatic text classification techniques (ATC). ATC is an

automated process of assigning set of predefined categories to plaintext documents [8,9]. In

recent years, machine learning and ATC techniques have been applied in various application

areas such as banking and finance [10,11], e-commerce systems [12] and bioinformatics

[13,14]. ATC is commonly performed using either ontology-based ATC technique or super-

vised ATC technique [9,15].
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In ontology-based ATC technique, domain-related medical ontologies are developed and

used to identify named entities. To classify pathology reports as cancer positive or negative by

using ontology-based ATC technique, we first created an ontology related to cancer identifica-

tion. This cancer-related ontology includes a set of concepts namely, things, events, or things,

which are specified to develop an agreed-upon vocabulary for information exchange [8,9,15].

Ontology-based ATC techniques can utilize suitable entities that imitate the concept of inter-

est. However, medical ontologies are lacking to imitate entities for certain condition or disease.

Moreover, extensive domain knowledge and human effort are required to develop ontologies.

The yielding acceptable accuracy in plaintext clinical report classification with ontology-based

ATC technique is a significant bottleneck [16–18]. Moreover, ontologies usually evolve

because of constant changes in domain terminologies, thus, ontologies require manual effort

to reflect changing vocabulary [17]. Therefore, these limitations show that ontology-based

ATC technique is inappropriate for medical domain because of its high maintenance and man-

ual effort.

Supervised ATC technique can be used to overcome challenges associated with ontology-

based ATC technique. In supervised ATC, the domain expert first assigns a category or a

class to each plaintext clinical report to create a training set. For instance, in case of an

autopsy report, the pathologist assigns a cause of death to each report based on autopsy find-

ings, such as “multiple injury” or “acute myocardial infarction,” after performing an autopsy

examination. Second, all autopsy reports in the training set are tokenized into unique words

to form a master feature vector. Third, various text classifiers can be applied on the master

feature vector to build a decision model by classifying named entities from the source data

being analyzed. Finally, the constructed decision model can be used in the new autopsy to

assist pathologists in automatically determining the cause of death. The constructed decision

model may accurately or inaccurately determine the cause of death because of numerous rea-

sons [19]. Of these reasons, the most important is the selection of the most discriminative

features in the decision model that correlate well with a specific cause of death. Thus, picking

the finest features with highly discriminative power among various classes or causes of death

is a complicated task and involves substantial effort in constructing a decision model [19].

Hence, this paper aims to develop an automatic multi-class classification system for predict-

ing accident-related causes of death from free text autopsy reports by using expert-driven

feature selection.

In this study, expert-driven feature selection approach, along with supervised ATC tech-

niques, is used to achieve high-performance prediction of nine different accident-related

causes of death from free medical text autopsy reports. Five different ATC classifiers were

compared with the automated and expert-driven feature selection approaches to evaluate clas-

sifier performance by using macro precision (PrecisionM), macro recall (RecallM), macro F-

measure (F-measureM), and accuracy. This paper also investigates the effect of feature reduc-

tion on the overall performance of the decision model. In addition, the proposed expert-driven

feature selection approach is compared with four baselines to show its significance. To the best

of our knowledge, this paper is the first to use complete medical autopsy reports in determin-

ing accident-related causes of death.

This paper is organized in the following manner. In Section 2, the related work is presented.

In Section 3, the methodology of this work is described. This section also includes the experi-

mental setup and proposed feature selection approach. Section 4 presents the findings of the

experiments. In Section 5, the findings are discussed. Section 6 also shows the significance of

dataset and proposed feature selection approach. In addition, the proposed approach is com-

pared with four baselines. Section 7 presents some limitations and future work. Finally, Section

8 concludes this work.
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2.0 Related work

The supervised ATC techniques have been widely employed in the biomedical domain [20–

28]. For instance, authors in [21] used support vector machine (SVM) text classifier to identify

cancer-related causes of death from death certificates. The authors extracted features using

term-based and concept-based features and used them to discover the discriminative features

using information gain. Moreover, authors employed SVM and rule-based approach to classify

death certificates they obtained for diabetes, influenza, pneumonia, and HIV diseases using

term-based and concept-based features. Researchers in [29] developed a freely available

graphic tool for biomedical text classification using various machine learning and text classifi-

cation techniques. In [30], authors constructed and evaluated classifiers by employing SVM

and Naive Bayes (NB)-supervised ATC techniques to classify the pathology reports.

In [31], researchers investigated the applicability and suitability of automatic text classifica-

tion in epidemiological studies. Authors performed a comparative evaluation of a concept rec-

ognition approach and a variety of supervised ATC techniques, and they achieved 96.7%

accuracy in the results. Authors in [32] explored the feasibility of using supervised ATC tech-

niques in classifying clinical reports using NB and SVM text classifier, and they achieved 95%

accuracy. The studies mentioned above gave us a concrete proof that the use of supervised

ATC technique is appropriate for biomedical text documents, such as pathological reports, epi-

demiology reports, cancer-related reports, etc. However, very few studies employing super-

vised ATC techniques in predicting the cause of death from autopsy reports are available. This

lack in related studies motivated us to contribute in this domain.

Perhaps, the work most related to our proposed work is that of [14]. In this study, authors

used case-based reasoning approach coupled with the NB classifier and feature weight learning

technique to support decision-making in forensic autopsy reports to determine the cause of

death. Experimental results revealed that the CBR method, along with the implementation of a

NB classifier, is a feasible approach of predicting the cause of death from forensic autopsy

reports. Another important related work is that of [33], in which the authors used existing

supervised ATC techniques to determine the cause of death using verbal autopsy reports.

Here, authors used different combinations of linguistic and statistical features, such as uni-

gram, bigram, and parts of speech tagging to extract useful features from verbal autopsy

reports. Authors used SVM text classifier with various feature representation schemes to assist

coroners and medical pathologist in determining the cause of death from the collected verbal

autopsy reports, and they achieved 82.8% F-measure in predicting the time of death and 58.7%

F-measure in the cause of death. However, the study only considered verbal autopsy reports in

determining the cause of death.

On the other hand, both of these studies had two major limitations. The dataset used for

cause of death prediction lack features mainly because the dataset only contains a brief sum-

mary or history-related information on the entire autopsy report. Authors did not consider

other aspects, such as internal examination reports, external examination of the case, injury-

related information, and other possible information in this study. However, history-related

features are considered insufficient and are not discriminative to analyze the dynamics of an

autopsy report. Therefore, considering further features from autopsy findings, such as

injury-related findings, external examination findings, and internal examination findings

can drastically improve the performance of prediction. The other limitation is the quality of

features that depend on the source data being analyzed. Many pathologists may use different

terms, synonyms, and vocabulary while preparing the autopsy reports. Hence, the consider-

ation of various similar words using expert knowledge can further increase the accuracy of

prediction. Therefore, an accurate, robust, and an efficient system must be developed to

Intelligent forensic autopsy report generation and reasoning system
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predict the cause of death by considering history-related features, internal examination-

related features, and external examination-related features from free text autopsy reports.

Moreover, an efficient and accurate technique for feature selection is needed to enhance the

performance of a classifier.

3.0 Materials and methods

3.1 Data collection

The experiments involved 2200 autopsy reports on nine different leading causes of death

related to accidents in Kuala Lumpur, Malaysia. These autopsy reports were collected from

Rasmi Pusat Perubatan Universiti Malaya (PPUM) Hospital, Kuala Lumpur, Malaysia. The

ethical letter provided by PPUM has also been attached in supplementary files. The detailed

distribution of all nine classes is shown in Table 1. These reports were collected from one of

the largest hospital of Kuala Lumpur, Malaysia. The causes of death on these reports were

manually labeled unanimously by a team of pathologists. Each report consisted of the detailed

examination of the dead body, including the deceased’s personal information, external exami-

nation, injury-related information, internal examination, history-related information, and

information on histopathology reports. In the subsequent paragraph, the details of all these

attributes are discussed. In addition, a sample of one autopsy report is also shown in S2

Appendix (please refer supporting information).

• Personal information: This section includes the name of the deceased, unique identity num-

ber, gender, date of birth, date of death, age upon death, and nationality.

• External examination: This part includes the information about the deceased’s external body

parts, such as height, weight, eyes, ear, hands, feet, legs, nose, mouth, lips, teeth, and repro-

ductive organs. Furthermore, information about rigor mortis, hypostasis, and decomposi-

tion signs is also recorded here. In addition, any specific symbols or patterns on the body are

noted.

• Injury related information: This portion includes injury related information, such as the

size, location, and pattern of abrasion, laceration, and wound on the body.

• Internal examination: This segment includes the anatomical examination of the brain, neck,

thorax, cardiovascular system, respiratory system, gastro-intestinal tract, liver, spleen, pan-

creas, endocrine system, kidneys, and urinary bladder.

• Histopathology reports: This section includes the result of histopathology reports.

• History: This section records the previous history of the deceases and history of the day of

death.

• Cause of death: This portion is the output variable of the autopsy report. Here, the experts

process the autopsy findings, correlate the findings with previous cases, use their experience,

and finally, decide the primary cause of death according to ICD-10 classification.

In experiments, personal information was not used in the prediction of cause of death

because these features do not contribute to the prediction of the cause of death. Furthermore,

all other features, such as external examination, internal examination, history, and injury-

related features were concatenated in one string for the sake of simplicity. Next, all the reports

were tokenized into words.

Intelligent forensic autopsy report generation and reasoning system
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3.2 Master feature vector creation

A program was coded in Python version 3.4.3 using NLTK [34] to parse and to pre-process

each plaintext autopsy report to determine the distinctive tokens present in all the autopsy

cases. In pre-processing, four basic steps were performed. First, spell checker was used to cor-

rect all the misspelled words using PyEnchant and the NLTK library [34]. Second, the whole

report was broken down into sentences after converting it into lower case, and each sentence

Table 1. The distribution of dataset across all nine classes.

S. No. Cause of Death ICD-10 Code No. of Records Gender Age in years Nationality Total Distribution

1 Multiple Injury T07 260 • Male: 87%

• Female: 13%

• Minimum: 14

• Maximum: 87

• Average: 39

• Malay: 24%

• Chinese: 19%

• Indonesian: 7%

• Indian:24%

• Pakistani: 5%

• Bangladeshi: 19%

• Philippines: 2%

11.8%

2 Craniocerebral Injury S06 260 • Male: 84%

• Female: 16%

• Minimum: 6

• Maximum: 86

• Average: 41

• Malay: 31%

• Chinese: 35%

• Indian: 24%

• Indonesian: 6%

• Bangladeshi: 2%

• Philippines: 2%

11.8%

3 Abdominal Injury S38 260 • Male: 92%

• Female: 8%

• Minimum: 20

• Maximum: 50

• Average: 30

• Malay: 42%

• Indian: 15%

• Indonesian: 29%

• Pakistani: 14%

11.8%

4 Neck Injury S17 260 • Male: 80%

• Female: 20%

• Minimum: 15

• Maximum: 50

• Average: 30

• Malay: 40%

• Indian: 40%

• Pakistani: 20%

11.8%

5 Chest Injury S28 250 • Male: 89%

• Female: 11%

• Minimum: 23

• Maximum: 50

• Average: 31

• Malay: 34%

• Indian: 16%

• Indonesian: 34%

• Pakistani: 16%

11.4%

6 Liver Rupture S36 250 • Male: 67%

• Female: 33%

• Minimum: 20

• Maximum: 55

• Average: 39

• Malay: 33%

• Chinese: 33%

• Indian: 17%

• Pakistani: 17%

11.4%

7 Asphyxiation T71 220 • Male: 86%

• Female: 14%

• Minimum: 5

• Maximum: 50

• Average: 24

• Malay: 34%

• Chinese: 17%

• Indian: 16%

• Indonesian: 17%

• Pakistani: 16%

10.0%

8 Electrocution T75 220 • Male: 88%

• Female: 12%

• Minimum: 5

• Maximum: 44

• Average: 24

• Malay: 38%

• Chinese: 37%

• Indonesian: 25%

10.0%

9 Epileptic Seizure G40 220 • Male: 81%

• Female: 19%

• Minimum: 17

• Maximum: 50

• Average: 33

• Malay: 17%

• Chinese: 33%

• Indian: 17%

• Indonesian: 33%

10.0%

doi:10.1371/journal.pone.0170242.t001

Intelligent forensic autopsy report generation and reasoning system

PLOS ONE | DOI:10.1371/journal.pone.0170242 February 6, 2017 6 / 27



was tokenized into words or tokens to form unigrams. The less common tokens which

appeared only once or twice in the reports were also discarded because of their low occur-

rences. In addition, stop words were removed from the stop word list [35]. Third, each identi-

fied unique token was also represented by lexical categories using parts of speech tagger (POS-

tagger) to identify the semantics of the token. For instance, after applying the POS tagger, the

token or word “knee” was converted to “knee/Noun.” Finally, the tokens with their lexical cat-

egories were stored and represented in the master feature vector. This master feature vector

was used for classification modeling by employing various supervised ATC techniques.

3.3 Feature engineering

To extract the highly discriminative features from the master feature vector, an expert-driven

feature selection approach was used. Moreover, five automated feature selection techniques

were also used to compare the performance of the proposed expert-driven feature selection

approach.

3.3.1 Expert-driven feature selection. The algorithm for the proposed expert-driven fea-

ture selection approach is given in Fig 1. Suppose we want to classify n different number of

causes of death having unique σ ICD-10 cause of death code. Each cause of death comprises of

m number of autopsy reports which are available in the rf raw files. For each cause of death,

one expert feature set, E, exists. E contains the most discriminative features with ranked order

list across all n. This E was prepared independently by two experienced domain experts. More-

over, in E, the possible synonyms and alternative words for the selected features were also

added. Furthermore, both domain experts created the prioritized list of features that would

predict the accurate cause of death from medical autopsy reports. Afterward, the domain

experts matched their feature ranking and resolved their conflicts. A third pathologist was con-

sulted to resolve the conflicts in case of disagreements. In this manner, n number of E was

created.

Once we have the n number of rf,m number of autopsy reports in each rf, and n number of

E, we then created the n number ofMmaster feature vectors. To create theM, we first loaded

one rf into memory and performed five different pre-processing tasks on eachm in the rf to

extract useful features from it. First, Is function was applied onm in rf to correct the mis-

spelled words. Second, Il function was applied onm in rf to convert all words into lower case.

Third, It function was applied on eachm in the rf to tokenize the autopsy reports into unique

tokens. Fourth, Iw function was applied onm in the rf to remove the most common words

which do not contribute in the classification task. Finally, Ip function was applied on eachm
in the rf to assign a lexical category or parts of speech tagging to each token. Finally, the pro-

cessedm in the rfwas stored inM. As such, all n number of rfwere converted into n number

ofM that contained processedm autopsy reports.

After the creation ofM and the preparation of E,M and E were loaded into memory. Eq 1

was applied onM and E to further process theM and form an ARFF file for classification. As

shown, Eq 1 matches the tokens ofm ofM with each E and maintains the frequency count of

the features of each Ematched with the feature ofm ofM. Afterward, a unique ICD-10 cause

of death (σ) was assigned tom ofM, and thism ofM was added to the ARFF file to create the

training set.

ExpertDrivenFeatureWeight ¼
Xtoken end

l¼token1

ðMði; j; lÞ¼¼string teÞ ð1Þ

Intelligent forensic autopsy report generation and reasoning system
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Fig 1. Algorithm of expert-driven feature selection approach.

doi:10.1371/journal.pone.0170242.g001

Intelligent forensic autopsy report generation and reasoning system

PLOS ONE | DOI:10.1371/journal.pone.0170242 February 6, 2017 8 / 27



3.3.2 Automated feature selection. To compare the performance of proposed expert-

driven feature selection approach, five automated feature selection schemes were also used

were used to rank the most discriminative features from the master feature vector. These five

automated feature selection techniques are: Chi-square [36], information gain [36], Pearson

Correlation [36], Fisher Markov Selector [37], and improved global feature selection [38]. In

automated feature selection techniques, the expert guidance was eliminated. Conversely, all

tokens were ranked across all autopsy reports using these five automated feature selection

schemes. Moreover, in all five automated feature selection schemes, subsets of highly discrimi-

native tokens with maximum score were used as features for classifying the cause of death.

(1) Information Gain: Information gain, which identifies the importance of a given attri-

bute in a feature vector, is the measure of reduction in uncertainty once the value of an uncer-

tainty is known. If the uncertainty is largely reduced, knowing the value of an attribute

provides a lot of information, and thus, we have a large information gain [8,15]. We assumed

that the autopsy data set, D, have two classes, i.e., head injury (H) and multiple injury (M),

with a total number of reports, d, containing h and m reports belonging to classes H and M,

respectively. The amount of information is defined as shown in Eq 2.

I ¼ � ðh=dÞlogðh=dÞ � ðm=dÞlogðm=dÞ ð2Þ

If h = m, then I is equal to 1, and if h = s, then I is equal to 0. The information gain for

autopsy dataset D using attribute A is then defined as shown in Eq 3.

GainðD;AÞ ¼ I �
X

iεvaluesðAÞ

ti
S

� �
Ii ð3Þ

I is the number of information before split and
X

i2valuesðAÞ

ti
s

� �
Ii is the sum of information after

the split, where Ii is the information node I, and ti is the number of objects in node i. Once the

information gain was computed for every remaining attribute, the attribute with highest infor-

mation gain was selected.

(2) Chi-Square: The Chi-square test is a statistical test that can be used in determining

whether the observed frequencies of the tokens are significantly different from their expected

frequencies [8,15]. For instance, consider the two classes, head injury (H) and multiple injury

(M), in our autopsy dataset D having a total number of reports of 100. Out of the 100 reports,

50 belonged to class H, and the remaining 50 belonged to class M. Suppose both the classes

contained the word “skull.” Therefore, the expected value for skull would be 50% for class H

and 50% for class M, and the observed value would be the number of times the word “skull”

appeared in class H and M. Therefore, Chi-square was defined as shown in Eq 4. Here, Oi
refers to the observed or collected data, and Ei refers to the expected values.

x2 ¼
X ðOi � EiÞ

2

Ei
ð4Þ

(3) Pearson Correlation: Pearson correlation measures correlation between two variables.

Eq 5 shows the mathematical representation of Pearson Correlation. The value of r is between

Intelligent forensic autopsy report generation and reasoning system
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-1 to +1, where +1 represents high correlation and -1 represents negative correlation [36,39].

rðX;YÞ ¼

Xn

i¼1

ðXi � �XÞðYi � �Y Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðXi � �XÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðYi � �Y Þ

s ð5Þ

(4) Fisher Markov Selector (FMS): Fisher Markov Selector (FMS) is an automated feature

selection scheme that was proposed in [37]. FMS globally selects the optimal subset of features

among the classes. This method is useful for handling high-dimensional data efficiently. In our

experimental setup, we use FMS with linear polynomial kernel with d = 1, where d denotes the

degree parameter [37].

(5) Improved Global Feature Selection (IGFS): The improved global feature selection

(IGFS) scheme is an ensemble method where the power of global feature selection method and

a one-sided local feature selection are combined in a different manner [38]. In our experimen-

tal setup, we have combined Odds Ratio as a one-sided local feature selection schemes and

information gain as a global feature selection scheme [38].

3.4 Feature subset size

We hypothesized that various subsets of features would produce different performance results

in terms of PrecisionM, RecallM, F-measureM, and overall accuracy. To evaluate this proposi-

tion, we selected feature subset sizes of 10, 20, 30, 40, and “all” after performing the sensitivity

analysis (discussed in section 6). In addition, these subsets were extracted because of their

implementation feasibility, thereby allowing the evaluation of classifier performance within a

suitable operating range.

3.5 Text classification techniques

The features dug out from medical autopsy reports were used to build a decision model for

accurately predicting the cause of death. Several machine learning classifiers were tested to

select the best classifier. We tested SVM, NB, k-nearest neighbor (KNN), decision tree (DT),

and random forest (RF) using Weka tool kit [8,40]. Five different text classifiers were

employed because each classifier has a different philosophy behind the learning process. More-

over, these five classifiers have successfully been employed in text classification literature in the

past. In subsequent paragraphs, these classification techniques are discussed.

3.5.1 Naive Bayes (NB). NB is one of the popular inductive learning classifier in super-

vised machine learning classifiers and is considered an efficient and effective decision model.

The classifier has been widely employed in the classification of free text clinical reports

[13,14,41,42]. NB is derived from Bayes’ theorem with strong independence assumptions

among features [43]. NB is very simple to use, fast, and it often produces better accuracy com-

pared with other classifiers. Given a class variable C and dependent features f1 through fn,

Bayes’ theorem states their relationship as shown in Eq 6.

pðcjf1; f2; . . . fnÞ ¼
pðcÞpðcjf1; f2; . . .fnjcÞ

pðf1; f2; . . .fnÞ
ð6Þ

Using the naive independence assumption, we obtained Eq 7.

pðfijc; f1; . . .fi� 1; fi þ 1; . . .fnÞ ¼ pðfijcÞ ð7Þ
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For all i, this relationship is simplified as shown in Eq 8.

pðcjðf1; f2; . . .fnÞÞ ¼
pðcÞ

Yn

i¼1
pðfijyÞ

pðf1; f2; . . .fnÞ
ð8Þ

This technique is further discussed in [43].

3.5.2 Support Vector Machines (SVM). SVM is the popular supervised machine learning

classifier and is based on statistical learning theories [44]. SVM has been proved to be an accu-

rate classifier in many application areas such as image classification [45], and classification of

biomedical documents [17,21,46]. SVMs are hyperplanes that separate the training examples

by maximal margin [14]. Suppose we have two types of accident-related cause of death reports,

i.e., liver rupture (L) and abdominal injury (A) in our autopsy reports. Given a training data of

these autopsy reports (x1, x2,. . .xn) which are expressed in the master feature vector in a certain

space X�. Rd. These instances are labeled as (c1,. . ..cm), where ci ε (L,A). Class L is on one

side of the hyperplane, and class A is on the other side.

3.5.3 K-Nearest Neighbor (KNN). KNN employs instance-based learning. KNN is also

termed as lazy learning classifier because it is the simplest classification algorithm that stores

all the instances and classifies new instance using a similarity measure, such as the Euclidean

distance shown in Eq 9 [47,48].

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk

i¼1

ðxi � yiÞ
2

v
u
u
t ð9Þ

3.5.4 Decision Tree (DT). J48 is a popular DT classifier, and implementation of C4.5

decision model is used to create pruned or unpruned decision trees [49]. DT is the most com-

monly used algorithm for the task of classification and prediction [50]. The DT represents

rules that can be easily understand by humans and constructs the classifier in hierarchical

form. J48 classifier uses entropy to compute for the homogeneity of an autopsy report. J48 is

discussed in detail in [49,51].

3.5.5 Random Forest (RF). RF is an ensemble supervised machine learning classifier that

constructs multitudes of decision trees from training data using randomly selected features

[52]. A new instance can be classified by all decision trees in a forest, and finally, the forest is

responsible for choosing the classification decision using majority vote or by averaging the

prediction using Eq 10.

f ¼
1

B

XB

b¼1

fbðxÞ ð10Þ

RF shows significant performance over a single DT. The classifier also overcomes the issue

of overfitting. The major issue with RF classifier is its complexity, which minimizes interpret-

ability and slows it down. RF was chosen as it was the best performing classification model in a

previous text classification [53] and biomedical studies [54–57]. Moreover, M Fernández-Del-

gado, et al [58] compared 179 classifiers on 121 different datasets and they found that the RF is

the best classifiers compared to other classifiers used in the study [58].

3.6 Experiments

The complete flow of this research study is shown in Fig 2. By utilizing six feature selection

schemes (five automated feature selection schemes and one proposed expert-driven feature
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selection scheme), five subsets of features (10, 20, 30, 40, and “all” features), thirty (6 × 5) vari-

ous feature sets were extracted for the construction and evaluation of text classifiers. Five dif-

ferent text classification techniques (NB, SVM, KNN, DT, and RF) were applied on each of

these 30 feature sets with a total of 150 (5 × 30) analyses. All experiments were performed

using 10-fold cross validation [59,60].

3.7 Evaluation metrics

In all 150 analyses, results obtained by each classifier with feature selection scheme and feature

subset were compared. For performance evaluation, PrecisionM, RecallM, F-measureM, and

overall accuracy were used. These performance measures were used because of imbalanced

class distribution, and these metrics permit equal weights for each cause of death category

[61]. In addition, receiver operating characteristics (ROC) curve and the area under the ROC

curve (AUC) were also used to compare the performance of each cause of death category

because of class imbalance [8]. In subsequent paragraphs, these evaluation metrics are dis-

cussed briefly.

3.7.1 Macro precision (PrecisionM). PrecisionM is the average of each class precision;

whereby the precision is the probability of test correctly predicted as positive cases given that

the number of cases labeled by the system was positive. The mathematical definition of preci-

sionM is shown in Eq 11.

PrecisionM ¼

XC

i¼1

TPi
TPi þ FPi
C

ð11Þ

3.7.2 Macro recall (RecallM). RecallM is the average of each class recall; whereby the recall

is the probability of the test finding the positive cases among all the cases of a given class. Recall

Fig 2. The complete flow of this research study.

doi:10.1371/journal.pone.0170242.g002
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is also known as sensitivity. The mathematical definition of recallM is given in Eq 12.

RecallM ¼

XC

i¼1

TPi
TPi þ FNi

C
ð12Þ

3.7.3 Macro F-measure (F-measureM). F-measureM is the weighted combination of pre-

cisionM and recallM. Mathematical definition of F-measureM is given in Eq 14.

F � measureM ¼
ðb

2
þ 1ÞRecallM � PrecisionM

b
2
ðRecallM þ PrecisionMÞ

ð13Þ

3.7.4 Overall accuracy. Overall accuracy is the fraction of classification results predicted

correctly among all the classes. Mathematical definition of overall accuracy is shown in Eq 14.

AccuracyAvg ¼

XC

i¼1

TPi þ TNi

TPi þ FNi þ TNi þ FPi
C

ð14Þ

3.7.5 Area Under ROC Curve (AUC). The area under ROC curve or simply AUC has

been recently introduced to evaluate machine learning algorithms [62,63]. This measure is

very useful in analyzing the performance of the decision model with respect to a specific class.

The AUC provides a good summary for the performance of the ROC curves. The ROC is a

method to calculate the goodness of machine learning classifier by plotting a specific curve

and calculating the area under this curve. It is instinctively obvious that for good performance

algorithm the value of AUC will be close to 1 and the value of 0.5 or less than that indicates the

poor performance of algorithm [63–65]. Hand and Till [64] presented a simple method to cal-

culate the AUC of decision model using Eq 15. Here, n0 and n1 represent the number of posi-

tive and negative examples respectively, and S0 ¼
X

ri, where ri is the rank of ith positive

example in the ranked list. The detail of AUC has been discussed in [63–65].

AUC ¼
S0 � n0ðn0 þ 1Þ=2

n0n1

ð15Þ

4.0 Results

From all 2200 autopsy reports, after applying the pre-processing steps, a total of 19164 unique

tokens were identified. From the 19164 tokens, 9543 tokens were removed because they

appeared once or twice in the whole autopsy reports set. The remaining tokens were stored in

the master feature vector and evaluated using the aforementioned six feature selection

approaches with subsets of 10, 20, 30, 40, and “all” tokens using five classifiers (please refer S1

Appendix in supporting information). Results of each of the 150 analyses in terms of accuracy,

PrecisionM, RecallM, and F-measureM are as follows. Moreover, the AUC graphs of the best

performing technique which produced the highest accuracy and highest F-MeasureM are also

shown in the results.

Fig 3 shows the overall accuracy of all 150 analyses. In the figure, the expert-driven feature

selection scheme significantly outperformed all five automated feature selection schemes, fol-

lowed by IGFS scheme and FMS scheme. In addition, information gain and Chi-square

Intelligent forensic autopsy report generation and reasoning system
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produced the almost same results. The lowest results were shown by Pearson Correlation

scheme. A fluctuating trend was found in the feature subset size. However, the lowest accuracy

was observed in the “all” and 10 feature subset sizes. The reasonable accuracy was found in the

feature sub set sizes of 20, 30, and 40, respectively. J48 classifier outperformed in all automated

feature selection schemes excluding FMS by producing the highest accuracy of 75.94% (with a

feature subset size of 30), followed by SVM (73.15%, with feature subset size 30) and RF

(73.05%, with feature subset size 40). Moreover, the lowest performance was observed in NB

classifier which produced 67.31% accuracy in the “all” feature subset size, followed by KNN

(70.36%, with feature subset sizes of 20 and 10). In FMS feature selection scheme, SVM outper-

formed all other classifiers. Conversely, RF and J48 classifiers outperformed in expert-driven

feature selection scheme by producing the highest accuracies of 90.09% and 89.50%, respec-

tively, using a feature subset size of 30. In addition, KNN also showed an accuracy less than

that of J48. The lowest accuracies of 80.31% and 82.31% with feature subset size of “all” was

found in NB and SVM, respectively.

Fig 4 shows the precisionM of all 150 analyses. As shown here, in the automated feature

selection schemes, IGFS produced the highest precisionM, followed by FMS. Information gain

and Chi-square schemes yielded roughly the same results and the lowest precisionM was

observed in Pearson correlation. Furthermore, J48, SVM, and RF classifiers produced the

highest precisionM of 85.93%, 83.83%, and 80.65% respectively, with the feature subset size of

30. In addition, NB and RF produced the lowest precisionM of 68.71% and 78.20%, respec-

tively, with the feature subset of “all.” However, in expert-driven feature selection scheme, RF,

Fig 3. Overall accuracy across feature selection schemes, subsets of features and classifier.

doi:10.1371/journal.pone.0170242.g003
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J48, and KNN produced the highest precisionM of 90.10%, 89.50%, and 89.10%, respectively,

using the feature subset size of 30. Moreover, SVM and NB yielded the lowest precisionM of

82.20% and 80.20%, respectively, with the feature subset size of “all.”

Fig 5 shows the recallM of all 150 analyses. The figure shows that the expert-driven feature

selection scheme outperformed the automated feature selection schemes. In automated feature

selection schemes, the highest recallM was observed in IGFS scheme. Moreover, the Minor dif-

ference was observed with the results produced by FMS, information gain and Chi-square

automated feature selections schemes. The lowest recallM was observed in Pearson Correla-

tion. Majority of the developed models yielded the lowest recallM with feature subset sizes of

“all” and 10 and the highest recallM with feature subset sizes of 20 and 30. In automated feature

selection schemes, J48 decision model outperformed by yielding a 75.93% recallM with a fea-

ture subset size of 30. Furthermore, the recallM produced by RF with a feature subset size of 30

was slightly lower than the recallM of J48. In addition, NB and KNN decision models showed

the lowest recallM of 69.10% and 71.81% with feature subset sizes of “all” and 40, respectively.

However, in expert-driven feature selection scheme, RF, J48, and KNN produced the highest

recallM of 90.10%, 89.50%, and 89.10%, respectively, with feature subset size of 30. Moreover,

SVM and NB showed the lowest recallM of 82.30% and 80.30%, respectively, with a feature sub-

set size of “all.”

Fig 6 shows the F-measureM of all 150 analyses. Here, the highest F-measureM was pro-

duced by the expert-driven feature selection approach. In automated feature selection

schemes, IGFS scheme outperformed all other four automated feature selection schemes, fol-

lowed by FMS scheme. Moreover, in many decision models, both information gain and Chi-

Fig 4. Macro precision across feature selection schemes, subsets of features and classifier.

doi:10.1371/journal.pone.0170242.g004
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square automated feature selection schemes produced similar results with extremely minute

fluctuations. The Pearson correlation yielded the lowest F-measureM. Majority of the decision

models yielded the lowest F-measureM with feature subset sizes of “all” and 10 and highest F-

measureM with feature subset sizes of 20, 30, and 40. In automated feature selection schemes,

J48 decision model produced the highest F-measureM of 80.51%, with a feature subset size of

30 followed by SVM (79.94%, with feature subset size of 30). Moreover, the lowest F-measureM

of 68.80% was observed in NB decision model with the feature subset size of 10. However, in

expert-driven feature selection scheme, RF, J48, and KNN showed the highest F-measureM of

90.10%, 89.50%, and 89.10%, respectively, with a feature subset size of 30. Furthermore, SVM

and NB showed the lowest F-measureM of 82.10% and 79.90%, respectively, with feature subset

size of “all.”

In Fig 7, the AUC of all nine classes (T07, S06, S38, S17, S28, S36, T71, T75, and G40)

using expert-driven feature selection approach is shown. Results revealed that in class

“T71,” 100% AUC was achieved by all the five classifiers with all the five feature subset sizes.

Moreover, in class “S36,” all five classifiers produced 100% AUC with all subset sizes exclud-

ing the feature subset of 40, whereas an irregular trend was observed in the AUC of all five

classifiers. In class “S17,” RF, J48, and KNN yielded an almost 100% AUC with all the five

feature subset sizes. However, in “S17,” the AUC observed in NB and SVM is higher than

the AUC of RF, J48, and KNN. In class “S38,” AUC of 98% was observed in all five classifiers

with all five feature subset sizes. Almost a similar type of irregular trend of AUC was found

in classes “T75,” “G4,”’ and “S28,” where all classifiers yielded an AUC in between 95%–98%

with all the five feature subset sizes. The lowest AUC (87%–93%) was produced by NB and

Fig 5. Macro recall across feature selection schemes, subsets of features and classifier.

doi:10.1371/journal.pone.0170242.g005
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SVM in classes “S06” and “T07” with all five feature subset sizes. Nevertheless, RF, J48, and

KNN achieved approximately 95% AUC in “S06” and “T07” with all the five feature subset

sizes.

From Fig 7, the RF decision model parameterized with expert-driven feature selection

approach using a feature subset size of 30 correctly classified approximately 95% of the “S06”

and “T07” causes of death and misclassified 5% in other classes. Moreover, RF decision

model parameterized with expert-driven feature selection approach using feature subset size

of 30 correctly classified approximately 98% of “T75,” “S38,” “S28,” and “G40” causes of

death and misclassified 2% in other classes. Furthermore, RF decision models parameterized

with expert-driven feature selection approach using feature subset size of 30 correctly classi-

fied approximately 100% of “S17,” “S36,” and “T71” causes of death. Therefore, the RF

parameterized with expert-driven feature selection approach using feature subset size of 30

can be concluded as a feasible solution for predicting ICD-10 causes of death in free text

autopsy reports.

In text classification task, one of the crucial performance measures is the computational

time taken by classifier in building the classification model. Fig 8 shows the average computa-

tional time for all five classifiers in all five feature subset sizes by using six feature selection

schemes. All 150 analyses were run on Corei7 system having 2.80 GHZ clock speed and a

16-gigabyte memory. As shown here, the proposed expert-driven approach is much faster than

the automated feature selection schemes. Moreover, in automated feature selection, informa-

tion gain proved to be faster than other four automated feature selection schemes. In all six

Fig 6. Macro F-measure across feature selection schemes, subsets of features and classifier.

doi:10.1371/journal.pone.0170242.g006
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aforementioned feature selection schemes, KNN and NB required the least time to construct

the decision model. Nevertheless, in the majority of the experiments, J48 and RF showed the

highest accuracy, precisionM, RecallM, and F-measureM, however, they both took the longest

computational time to build a decision model.

Fig 7. Area under the ROC curve for all nine classes.

doi:10.1371/journal.pone.0170242.g007
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5.0 Discussion

The experimental results of this research study show that supervised ATC techniques can iden-

tify the cause of death from free text medical autopsy reports with performance measures

between 70%–90%. Furthermore, a considerable difference was observed in most of the analy-

ses. From the experimental findings, different combinations were determined to optimize the

performance of each measurement.

To optimize the overall accuracy, precisionM, and F-measureM, RF decision model built

with expert-driven approach using a subset of 30 features is recommended. Experimental

results also indicate that in automated feature selection approaches IGFS scheme sowed the

highest performance, followed by FMS. Moreover, in most of the experiments, information

gain produced results that are almost similar with those returned by Chi-square. Pearson Cor-

relation showed the lowest performance results in all of the experiments. However, expert-

driven feature selection approach produced much better results than all five automated feature

selection approaches used. Two primary reasons might account for the better performance of

expert driven feature selection approach. First, all the 2200 cases belonged to the group with

“accident” manner of death. All nine different classes under consideration were very similar in

nature. Furthermore, numerous tokens were common across all the autopsy reports. For

instance, the tokens “abrasion”’ and “laceration” are highly related to all types of accident

under consideration. Second, different pathologists might have used different synonyms and

vocabulary while preparing the autopsy reports. For instance, many pathologists used the

tokens “abrasion,” “graze,” and “trauma” interchangeably. Therefore, we suggested to experts

during the creation of expert-driven features to select the features that were the most discrimi-

native to a particular cause of death. In addition, experts were also suggested to come up with a

possible set of synonyms of selected features. Hence, the resultant expert-based feature space

comprised of rich set of discriminative features for each cause of death under consideration.

Fig 8. Computational time analysis of decision models and feature selection approaches.

doi:10.1371/journal.pone.0170242.g008
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Therefore, potential researchers should not only rely on results produced by automated feature

selection but should also explore more features with the help of domain experts. Moreover, the

proposed expert-driven feature selection approach was much faster than all five automated fea-

ture selection approaches. Such result was caused by algorithms, such as IGFS, FMS, Chi-

square, information gain and Pearson Correlation, in automated feature selection which con-

sider the whole dataset in determining the most discriminative features by applying various

computational methods.

However, in expert-driven feature selection approach, the features were already provided

and ranked by experts, hence, this approach only calculated the expert-driven feature weighted

from autopsy reports and prepared the classification data using frequency count. Furthermore,

the classification file prepared by expert-driven feature selection approach was much smaller

in size compared with that of five automated feature selection schemes. The classification file

prepared by expert-driven approach only contained the number of attributes equivalent to the

number of classes. Conversely, the other five automated feature selection schemes counted

each token as one feature after tokenization, and the number of attributes was equal to the

number of unique tokens. Therefore, the automated feature selection techniques required lon-

ger classification time. Finally, the proposed expert-driven feature selection can be used in clas-

sifying any kind of clinical reports. The only thing required by this approach is the ranked

features from an expert.

The accuracy of classification task usually depends upon the quality of features set. The

inadequate, extraneous, and irrelevant features may generate less accurate and incomprehensi-

ble results. Therefore, it is an important task to remove irrelevant and non-discriminative fea-

ture subset from master feature set by using feature subset selectors algorithms prior to

classification [66]. The purpose of feature subset selection is to decide which number of fea-

tures to include in classification and which to remove. For this research, we also hypothesized

that various subsets of features would produce different performance results in terms of Preci-

sionM, RecallM, F-measureM, and overall accuracy. To evaluate this proposition, we aim to

determine the best feature subset size for the classification of autopsy reports to improve the

classification performance. To discover the best feature subset size, initially, the subset of 10

features were selected using all aforementioned six feature selection schemes to evaluate the

performance of all five classifiers. The number of features were increased up to the point

where no further improvement in performance was found. In addition, we also evaluated the

performance of all five classifiers using ‘all’ features. In most of the experiments, we noticed

that increasing the size of feature subset from 10 to 30 led to considerable improvements in

experimental results. Conversely, increasing the size of feature subset from 30 to 40 to “all” did

not cause considerable improvements in the results. As a result, we can infer that a feature sub-

set of larger size may not positively affect the results. Thus, to determine an optimum size of

features in feature vector, researchers are suggested to perform sensitivity analysis to examine

a range of feature sizes from point 10 to a point where no improvement in accuracy is

observed.

According to the “no free lunch” theorem [67], there is no single machine learning algo-

rithm that performs best in all application areas. Hence, a variety of decision models should be

tested. Therefore, we evaluated the performance of five classifiers (NB, SVM, kNN, J48 and

RF) with six aforementioned feature selection approaches to classify free text autopsy reports.

Here, in four automated feature selection approaches namely, information gain, chi-square,

Pearson Correlation and IGFS, J48 classifier produced the most promising results, followed by

SVM and RF. In FMS feature selection scheme SVM produced the highest results, followed by

J48 and RF. Conversely, in expert-driven feature selection approach, RF outperformed the

other classifiers, followed by J48. There may be various possible reasons for the
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outperformance of J48 in automated feature selection such as J48 does not need any domain

knowledge or any parameter setting and it can handle data with high dimensionality. More-

over, J48 can handle datasets with errors and missing values. Furthermore, it is considered as a

nonparametric classifier which means it does not use any assumptions for space distribution

and classifier structure. The main disadvantage of J48 is that it can easily over fit. The possible

reason for outperformance of RF has the best result because of its ensemble nature. RF con-

structs multitudes of decision trees from training data using randomly selected features. To

classify a new autopsy reports from an input dataset, RF put the input vector down each of the

trees in the forest. Each tree predicts the CoD for given autopsy report and finally the forest

chooses the final CoD using having the most votes. SVM, KNN, and NB showed a considerable

lower performance than RF and J48 in all the experiments. We speculated that NB supposes a

conditional independence among features that is possibly inappropriate for the collected

autopsy reports [68]. Furthermore, as the number of features increases, the conditional depen-

dence among the features becomes more complicated, and this can negatively affect the perfor-

mance of NB classifier. The reason behind the poor performance of KNN classifier may be its

default supposition of linear scaling of features that might have led to the inaccurate computa-

tion of KNN distance measures. In addition, this assumption becomes misleading with fea-

tures having very low discriminating power. The performance of SVM lies in the choice of

kernel [69]. The selection of proper SVM kernel and kernel function parameters, such as

width or sigma parameter, may further increase the SVM performance [70]. In our future opti-

mization work, we might find the optimal parameter values for SVM decision model.

6.0 Significance of dataset and proposed feature sets

In medical autopsy, suitably annotated and statistically independent samples of autopsy

reports for the construction and evaluation of classifier are inadequate and expensive. In addi-

tion, ethical considerations often restrict the number of autopsy reports collection. Thus, sam-

ple size planning is an important aspect in the design of experiments. Hence, to find the

optimum sample size for each class, various experiments were performed to examine a range

of sample size from 25 to a number of instances where no further improvement in accuracy

was observed. Here, all the experiments were performed using expert-driven feature selection

approach with feature subset size of “all” and RF classifier. The expert-driven feature selection

approach with RF classifier was used in this study because it produced the best results in all the

performed experiments. Results of these experiments are shown in Fig 9. Here, the lowest

accuracy of 52%–73% was noted when the number of reports were 25 to 50. Accuracy between

79.80%–80.05% was observed with 75 to 100 autopsy reports. The extremely slight variation in

accuracy was observed when the cases increased from 100 to 200. A consistent accuracy of

80% was found in 125 to 200 autopsy reports. Thus, we concluded that a minimum of 75 to

100 autopsy reports are a reasonable number for constructing and evaluating an accurate

model for the classification of medical autopsy reports.

Given the restrictions brought about by privacy or ethical considerations, no public dataset

was available for testing the significance of the proposed approach. To examine such signifi-

cance, four baselines were created from the collected dataset for this research, namely, bag of

words (BoW) and the combination of feature engineering techniques proposed in[14], [41]

and [71,72]. In [14] rule based feature weight learning technique was used to select the features

from forensic autopsy reports. In [41] locally-semi-supervised feature selection technique was

used to select the most discriminative features from verbal autopsy reports belonging to each

CoD. In [71,72] “Ensemble-based Multi-Filter Feature Selection (EMFFS)” was used to select

the most important and the most discriminative features for the classifier by combining many
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filter based feature selection schemes. To compare, our proposed approach with EMFFS, four

feature selection methods were combined, namely, chi-square, information gain, Pearson cor-

relation and gain ratio using Weka tool. Finally, we combined the output of these four feature

selection schemes using a fusion based rank aggregation method proposed in [73] to generate

a final global features ranking list.

The experiments were conducted to measure the overall accuracy of all five classifiers using

these four baseline features. The baseline accuracy was compared with the accuracy of the pro-

posed expert-driven feature selection approach using the “all” feature subset size. The accuracy

of baseline feature selection schemes and proposed expert-driven feature selection scheme is

shown in Table 2. As shown in the table, in all four baselines, the J48 and RF decision models

consistently showed a promising accuracy and the lowest accuracy was observed in KNN, NB

and SVM. In all four baselines, the highest accuracy of 73.85% and 73.18% was obtained by J48

and RF in baseline 4. However, compared to all these baselines, our proposed expert-driven

feature selection technique showed the promising results.

7.0 Limitations and future work

Some of the challenges were also identified in the proposed expert-driven feature selection

approach. First, results of the proposed expert-driven approach depend heavily on the

domain knowledge of the experts and their familiarity with autopsy findings. We believed

Fig 9. Decision model accuracy versus number of autopsy reports.

doi:10.1371/journal.pone.0170242.g009

Table 2. Comparison of accuracy results of baselines approaches and proposed approach.

Classifier Baseline 1 Baseline 2 [41] Baseline 3 [14] Baseline 4 [71,72] Proposed Approach

NB 71.59 70.13 67.72 72.59 80.31

SVM 69.81 68.90 68.40 72.81 82.31

KNN 70.45 70.45 70.45 70.50 82.59

J48 72.45 72.68 73.18 73.85 83.90

RF 70.72 70.72 70.72 73.18 83.18

doi:10.1371/journal.pone.0170242.t002
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that in the current study, the engagement of pathologists yielded experimental results that

can be reflected across other medical systems. Second, the presented findings are exclusive to

the free text autopsy reports obtained from PPUM, one of the largest hospital in Kuala Lum-

pur, Malaysia. We also believed that the quality of the extracted reports is sufficiently hetero-

geneous, diverse, and comprehensive compared with the data gathered by other medical

systems and therefore should produce acceptable results across other healthcare systems.

Third, the developed model can only detect nine accident-related causes of death. However,

the system can be enhanced by following similar steps of detecting various accident-related

causes of death. Finally, this paper proposes the use of supervised ATC techniques to predict

the cause of death from autopsy reports. However, ontology-based approach may produce

better results than our proposed approach. Meanwhile, because the proposed method

resulted in performance measure exceeding 90%, slightly better results may not support the

significant ontology development efforts.

Various opportunities were also identified for the improvement of a system that will require

future work on the domain under consideration. First, reviewing autopsy reports and assign-

ing the cause of death on each autopsy reports by pathologists for the preparation of training

set for classification purpose is a time-consuming and challenging task. Therefore, we suggest

evaluating the presented results produced by the proposed classification task against those of

clustering techniques that require unlabeled data. Moreover, compared with the classification

approach, clustering is painless to implement, and it requires less involvement of experts in

system implementation. Second, though our proposed expert-driven feature selection

approach produced a satisfactory performance, however, in future work, we aim to employ the

ontology-based approach to compare its results with our findings. Finally, in future work, we

aim to employ the supervised ATC and ontology-based techniques on autopsy reports to pre-

dict heart-related causes of death and homicide-related causes of death.

8.0 Conclusion

In this paper, an expert-driven feature selection approach was proposed to predict the cause of

death from free text medical autopsy reports. Moreover, the state-of-the-art supervised ATC

techniques with automated and expert-driven feature selection approaches were used to clas-

sify the cause of death from free text medical autopsy reports. We discovered that the proposed

expert-driven feature selection approach outperformed in terms of performance measures

exceeding 90% when compared with automated feature selection approaches. Moreover, RF

and J48 classifier was found to be suitable for the classification of autopsy reports with a feature

subset size of 30. Based on the results, the proposed system proved to be more robust and

more accurate when it was compared with four baselines. Furthermore, the promising results

indicate that the pathologists can use the proposed system as a source of second opinion,

assisting them in more accurately and rapidly determining the cause of death. In addition, this

research can be enhanced to assist other clinical reports. The proposed technique has the capa-

bility to cut down the time and effort needed for public healthcare reporting.
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