
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



25. Interferons Alpha, Beta, and Omega 
Anthony Meager 

1. Introduction 361 
1.1 Outline of Discovery and 

Characterization of Interferons 361 
1.2 Nomenclature 362 

2. IFN Genes 363 
2.1 Numbers, Structure, and 

Localization 363 
2.2 Inducers and Transcriptional 

Control 364 
3. IFN Proteins 367 

3.1 Structural Features 367 
3.1.1 IFN-a Subtypes 367 
3.1.2 IFN-~ 367 
3.1.3 IFN-0~ 369 

4. Cellular Sources and Production 369 
5. Biological Activities Associated with 

IFN-~/]3/c0 370 
5.1 Antiviral Activity 370 

5.1.1 Molecular Mechanisms 370 
5.1.2 Defense Mechanisms of 

Viruses 371 
5.2 Antiproliferative Activity 371 
5.3 Immunoregulatory Activity 372 

5.4 Biological Activities in vivo 372 
6. Receptors 372 

6.1 Characterization 372 
6.1.1 General Features 372 
6.1.2 Molecular Cloning of IFN 

Receptor Components 373 
7. Signal Transduction 375 

7.1 Signal Transduction 375 
7.1.1 Molecular Mechanisms 375 

7.2 IFN-inducible Genes 375 
7.2.1 IFN-response Gene 

Sequences 375 
7.2.2 Proteins Induced by IFN 375 

8. Mouse IFN-~ and IFN-[3 376 
9. Clinical Uses of IFNs 378 

9.1 General Considerations 378 
9.2 IFN Treatment of Malignant 

Diseases 379 
9.3 IFN Treatment of Viral Diseases 379 
9.4 IFN Treatment of Other Human 

Diseases 380 
10. References 380 

1. Introduction 

1 . 1  O U T L I N E  OF D I S C O V E R Y  AND 

C H A R A C T E R I Z A T I O N  OF 

I N T E R F E R O N S  ( I F N )  

The phenomenon of viral interference was first 
described nearly 60 years ago when Hoskins (1935) 

described the protective action of a neurotropic yellow 
fever virus against a viserotropic strain of the same virus 
in monkeys. Although viral interference was further 
investigated in the 1940s and 1950s, the underlying 
mechanism was not discovered until 1957 when Isaacs 
and Lindemann, working at The National Institute for 
Medical Research (London, UK), isolated a biologically 
active substance from virally-infected chicken cell 
cultures that, on transfer to fresh chicken cell cultures, 
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produced a protective antiviral effect (Isaacs and 
Lindemann, 1957). The word Interferon (IFN) was 
coined for this substance. Its discovery aroused 
considerable scientific and medical interest since by 
1957 antibiotics were widely available to control 
bacterial infections, but, in stark contrast, viral diseases 
such as influenza, measles, polio, and smallpox were 
virtually untreatable. Interest was further heightened by 
many subsequent studies that demonstrated that IFN 
could be produced by human cells and was active 
against a broad spectrum of viruses (see Schlesinger, 
1959, for an early review). 

At that time, IFN was being hailed by the media as a 
wonder drug, but it soon became clear that IFN was 
being produced naturally in too small quantifies for that 
extravagant claim to be immediately confirmed. In fact, 
the low production of IFN was to bedevil attempts both 
to characterize it molecularly and evaluate it clinically for 
many years following its discovery. 

Although the protein nature of IFN was recognized 
at an early stage in its development (see Fantes, 1966, 
for an early review), it was only following the 
introduction of large-scale production methods in the 
1970s (Cantell and Hirvonen, 1977) and the 
simultaneous development of efficient purification 
procedures (Knight, 1976; Rubinstein et al., 1978) that 
sufficient amounts of partially pure IFN protein became 
available for characterization and clinical use. Gradually, 
it became apparent that IFN was not a single protein 
and that there were likely to be different types of IFN 
molecules. However, despite progress in the area of 
purification and in initial characterization by sequencing 
N-terminal polypeptides, IFN proteins all but defied 
full characterization until the advent of recombinant 
DNA (rDNA) technology in the late 1970s. This 
technology, spurred on by the pharmaceutical 
industry's desire to produce pharmacologically active 
proteins cheaply, revealed that one type of human IFN, 
now designated IFN-cx, was a mixture of several closely 
related proteins, termed subtypes, expressed from 
distinct chromosomal genes (Nagata et al., 1980). 
Second and third types of IFN, designated IFN-I3 and 
IFN-y respectively, have subsequently been "cloned" 
(Taniguchi et al., 1980; Gray et al., 1982) but, unlike 
IFN-0q are single protein species. IFN-13 is molecularly 
related to IFN-~ subtypes but is antigenically distinct 
from them, whereas IFN-y is both molecularly and 
antigenically distinct from either IFN-cx subtypes or 
IFN-I3. (For this reason, IFN-y is considered separately 
elsewhere in this volume.) Finally, a fourth type of IFN, 
antigenically distinct from IFN-0~ and IFN-I3, but 
molecularly related to both, has more recently been 
cloned and characterized. Rather untypically, this new 
IFN type has been designated IFN omega (IFN-00) 
(Adolf, 1987). 

The genes for IFN-0~ subtypes, IFN-13 and IFN-03 are 
tandemly arranged on the short arm of chromosome 9. 

They are only transiently expressed following induction 
by a variety of exogenous stimuli, including viruses. 
IFN-0~, IFN-I3 and IFN-00 proteins are synthesized from 
their respective mRNAs for relatively short periods 
following gene activation and are secreted to act, via 
specific cell surface receptors, on other cells. Early 
studies on the characterization of IFN receptors 
indicated that IFN-0~ and IFN-I3 were likely to share a 
common receptor, but it has only been comparatively 
recently that such receptors have been cloned (Uz~ et 
al., 1990; Novick et al., 1994). 

IFN actions are initiated by activated receptors and 
cytoplasmic signal transduction pathways, which are now 
well characterized for the IFN-~/I3 receptor, and 
manifested following expression of a number of IFN- 
specific inducible genes. Induction of the antiviral state, 
which is dependent on such protein synthesis, may now 
be viewed as just one of the many activities attributed to 
IFN in general; these activities include inhibition of cell 
proliferation and immunomodulation (see Pestka et al., 
1987, for a review). 

1.2 NOMENCLATURE 

In the 1960s, two types of lFN were defined on the basis 
of the capacity of their antiviral activity to withstand 
acidification to pH 2. These were termed type I IFN for 
acid-stable IFN and type II IFN for acid-labile IFN. Type 
I IFN included IFN produced by virally infected 
leukocytes, alternatively known as leukocyte IFN, and 
IFN produced by virally infected human diploid 
fibroblasts, alternatively known as fibroblast IFN. Type II 
IFN, which was only produced by antigenically or 
mitogenically stimulated human peripheral blood 
mononuclear cells (PBMC), has often been referred to as 
immune IFN (Stewart, 1979). 

Antigenic differences were described for leukocyte and 
fibroblast IFN and these were put on a molecular basis 
when knowledge of their respective N-terminal amino 
acid sequences became available (Allen and Fantes, 1980; 
Knight et al., 1980; Levy et al., 1980; Zoon et al., 1980). 
At that time, an international nomenclature committee 
(Stewart et al., 1980) reviewed the growing evidence for 
the existence of distinct molecular forms of IFN and 
introduced the Greek alphabetical system to apply to the 
then known antigenically distinct types of IFN. 
Leukocyte IFN was designated IFN-~, fibroblast IFN 
was designated IFN-13, and immune IFN became IFN-y. 
However, complications immediately arose when it was 
revealed, following the cloning of several different 
leukocyte IFN complementary DNAs (cDNAs) (Nagata 
et al., 1980; Brack et al., 1981; Goeddel et al., 1981; 
Streuli et al., 1980), that leukocyte IFN was 
heterogeneous and contained many different, 
molecularly and antigenically related species, now 
commonly referred to as subtypes. The research group at 
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Hoffmann-La Roche labeled the subtypes produced in E. 
coli RA, 0~B, 0~C, 0cD, etc. (Evinger et al., 1981; Rehberg 
et al., 1982), distinguishing them from natural 
components of leukocyte IFN (Rubinstein et al., 1981), 
while the Biogen group labeled these recombinant 
subtypes ix1, 0~2, 0c3, 0~4, etc. (Streuli et al., 1980), 
regrettably without an appropriate alphabetical- 
numerical correspondence: for example, ~ k  - ~2, 0cD - 
0~1. However, the numerical system now prevails. When 
an IFN preparation is a mixture of IFN-~ subtypes, e.g., 
leukocyte IFN, lymphoblastoid IFN, this is often 
designated IFN-o~n. 

The later cloning of cDNAs encoding IFN-0~-like 
proteins (Capon et al., 1985; Hauptmann and Swetly, 
1985) initially led to the naming of this new IFN as IFN- 
o~ subclass II, with all of the earlier-characterized IFN-0~ 
subtypes being reclassified as IFN-tx subclass I. This 
large, unwieldy nomenclature system has been 
superseded by the renaming of IFN-~ II as IFN-03; this 
has been generally accepted with the finding that IFN-03 
is antigenically distinct from IFN-~ and IFN-I] proteins 
and thus qualifies as a separate type of IFN (Adolf, 
1987). 

Fortunately, the nomenclature for IFN-I] has remained 
straightforward since there is only one protein species, at 
least in humans (Derynck et al., 1980, 1981; Taniguchi 
et al., 1980). 

From the initial cloning of IFN-o~ cDNAs, there has 
been a plethora of reports on the cloning of new, and 
sometimes distinct, genomic and eDNA clones, and fairly 
disparate nomenclatures have arisen. Diaz and Allen 
(1993) therefore undertook the considerable task of 
compiling the IFN genes and genomic and cDNA clones 
from the literature and introduced an arabic-alphabetical 
system for naming IFN genes to enable their distinction 
from IFN proteins. Thus, IFN-oc genes became IFNA 
genes with the addition of a numeral to denote subtype, 
i.e., IFNA1, IFNA2, etc. (Table 25.1). The IFN-~ gene 
became IFNB and, since there is only one gene in 
humans, it is referred to as IFNB 1. For IFN-03 genes, W 
has been used; hence IFNW1 (Table 25.1). Besides genes 
that are capable of being expressed and translated into 
IFN proteins, there are a number of pseudogenes which 
are unable to give rise to IFN proteins, and which in this 
new nomenclature system are designated by a P, e.g., 
IFNAP22, IFNWP2, or simply IFNP1 where 
pseudogenes are clearly IFN-like but cannot be definitely 
included in any one of the IFNA, IFNB or IFNW gene 
families (Table 25.1). 

The IFN genomic and eDNA clones have been 
designated in a variety of ways, as illustrated in Table 
25.1. Pseudogenic or non-translatable clones are 
normally prefixed with a Greek ~. For the purposes of 
this chapter, and to reduce the complexity of naming 
IFN clones and proteins, the nomenclature system 
adopted by Weissmann and colleagues will be adhered to: 
IFN-0q, %, {x4, o~, etc. 

2. IFN Genes 
2.1 NUMBERS, STRUCTURE, AND 

L O C A L I Z A T I O N  

In humans, there are 14 nonallelic IFNA genes, one of  
which, IFNAP22, is a pseudogene (Table 25.1). In 
addition, there are a further four nonallelic pseudogenes 
that possibly also belong to the IFNA gene family. Probable 
allelic variants of certain IFNA genes, e.g., IFNA2, are also 
known to exist (Streuli et al., 1980; Goeddel et al., 1981; 
Dworkin-Rastl et al., 1982; Emanuel and Pestka, 1993). 
This extensive family of IFNA genes are tandemly arranged 
on the short-arm of chromosome 9 (9p23) and span a 
region of approximately 400 kb (Owerbach et al., 1981; 
Shows et al., 1982; Slate et al., 1982; Ullrich et al., 1982). 
The IFNB gene and the IFNW gene/pseudogene family 
are also located in the same region of chromosome 9 
(Meager et al., 1979a,b; Owerbach et al., 1981; Henry et 
al., 1984; Capon etal. ,  1985). 

There is a high degree of homology among the IFNA 
genes, but these show much less homology to either 
IFNB or IFNW genes. Nevertheless, all of these IFN 
genes share the common feature of being intron-less 
(Taniguchi et al., 1980; Goeddel et al., 1981; Houghton 
et al., 1981; Capon et al., 1985), suggesting a very 
ancient origin of their common ancestral gene. It has 
been proposed that the primordial IFN gene arose some 
500 million years ago, with the first split occurring 
around 400 million years ago to yield the first IFNA and 
IFNB genes (Wilson et al., 1983). Since then the IFNA 
gene has evolved and duplicated many times to give rise 
to the multiple IFNA genes found in present-day animals 
and man (Mij~ita and Hayashida, 1982; Gillespie and 
Carter, 1983). Around 100 million years ago, an IFNA 
gene appears to have diverged sufficiently from the main 
group to give rise to the IFNW gene family, which is 
present in most mammals except mice and dogs 
(Himmler et al., 1987; Roberts et al., 1992). 

It is not clear what characteristic of IFNA and IFNW 
genes enabled the numerous reduplication events to 
occur in comparison to the nonexistent or more limited 
(some mammals have more than one IFNB gene, e.g., 
bovines (Wilson et al., 1983)) reduplication of the IFNB 
gene (Ohlsson et al., 1985). It is apparent that gene 
conversion, as a result of mismatch repair and unequal 
crossover, contributed significantly to the creation of 
distinct, but highly homologous, nonallelic IFNA (and 
IFNW) genes (De Maeyer and De Maeyer-Guignard, 
1988). In most cases, both coding and noncoding 
regions have diverged, but in the case of IFNA13 the 
coding region has remained identical to that of IFNA1, 
although its 5' and 3' flanking regions have diverged 
(Todokoro et al., 1984). 

The structures of IFNA, IFNB, and IFNW genes are 
similar. Each gene has a 5' regulatory promoter region 
upstream from the transcriptional start (cap) site, a 
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Table 25.1 Nomenclature of the human interferon genes and proteins 

IFN genes; 
new symbols 

Corresponding genomic 
clones (examples) 

Corresponding cDNA 
clones (examples) 

Corresponding 
proteins 

IFN-o~ 

IFN-~ 

FNA1 
FNA 2 
FNA 4 
FNA 5 
FNA~ 
FNA~ 
FNA 8 

IFNA10 
IFNA13 
IFNA14 
IFNAls 
IFNA~ 
IFNA21 

IFNAP~ 

IFN-oq IFN-o h, LelF-D IFN-oq (D) 
;~a 2, IFN-A IFN-%, LelF-A IFN-% (A) 

IFN-Oha, IFN-c~7b - IFN-o h 
IFN-%, IFN-%1 LelF-G IFN-% (G) 
IFN-%, LelF-K - IFN-% (K) 
IFN-o~, LelF-J IFN-%~ IFN-o~ 7 (J1) 
IFN-%, IFN%2 LelF-B, IFN-B IFN-% (B) 

~lFN-oqo, ~LelF-L LelF-C IFN-oqo (L) 
IFN-c~3 (similar to IFN-oq) - IFN-oq3 

IFN-oq4, IFN-% LelF-H IFN-oh4 (H1) 
IFN-oq6, IFN-oqv A IFN-c~N (Gren) IFN-oq6 (WA) 
IFN-oqT, IFN-o h- IFN-c~, IFN-%8 IFN-oq7 

IFN-%~ LelF-F IFN-%l (F) 
~IFN-0% ~LelF-E IFN-%2 (E) 

IFNB 1 IFN-13 

IFN-co 
IFNW 1 IFN-0% 

IFNWP 2 ~IFN-%2 
IFNWP 4 ~FIFN-%4 
IFNWP 5 ~IFN-o% 
IFNWP 9 ~IFN-%9 
IFNWP~5 ~IFN-0% or 15 
IFNWP~8 ~IFN-%M or 18 
IFNWP19 ~FIFN-oq9 

IFN pseudogenes 
not included in (~ 
or co gene families 

IFNP. ~IFN-o~. 
IFNP~2 ~FIFN-c~2 
IFNP20 ~FIFN-%0 
IFNP23 ~IFN-o~? (closely linked to IFNA1) 

IFN-13 

IFN-odl 1, IFN-(o 

IFN-13 

IFN-(o 
m 

m 

Adapted and modified from Diaz and Allen (1993) and Allen and Diaz (1996), which see for specific references for genomic 
clones and cDNAs. Reproduced with permission of Mary Ann Liebert, Inc., New York, USA. 

coding region containing a nucleotide sequence 
encoding a signal polypeptide of 21-23 mainly 
hydrophobic amino acids, which is typical for secreted 
proteins, and consecutively the sequence encoding the 
mature IFN protein, followed by the 3' flanking 
noncoding region, which can vary in length up to 450 
base pairs (bp) (Figure 25.1) (Derynck etal. ,  1980, 1981; 
Nagata et al., 1980; Streuli et al., 1980; Taniguchi et al., 
1980; Degrave etal . ,  1981; Goeddel etal. ,  1981; Gross et 
al., 1981; Lawn et al., 1981a,b; Gren et al., 1984; Capon 
et al., 1985; Henco et al., 1985). The 5' flanking region 
contains a TATA or Hogness box, which delineates the 
boundary of the upstream promoter, approximately 30 
bp from the cap site. Farther upstream are found a 
number ofhexameric repeat sequences GAAANN, where 
N can be any base, which in their dimeric or multimeric 
forms act as binding sites for nuclear transcription factors 
and repressor molecules (Fujita et al., 1985; Ryals et al., 
1985). (This area is covered in more detail in Section 2.2, 

Inducers and Transcriptional Control). The 3' flanking 
regions vary in length and contain several polyadenylation 
sites and thus can give rise to mRNAs of different lengths 
(Mantei and Weissmann, 1982; Henco et al., 1985). They 
contain above-average numbers of the sequence motifs 
ATTA or TTATTTAT. Such sequences are common, 
however, in many other cytokine genes and other genes, 
such as protooncogenes, that are inducibly and 
transiently expressed. It has been proposed that these 
sequences contribute to the relative instability and short 
half-lives of IFN and cytokine mRNAs (Caput et al., 
1986; Shaw and Kamen, 1986). 

2.2 INDUCERS AND TRANSCRIPTIONAL 

C O N T R O L  

All IFN genes are normally silent and thus require some 
sort of stimulus to induce expression. A wide range of 
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(a) 

(b) 

Figure 25.1 (a) Nucleotide sequence of the chromosomal IFN-~ 1 coding segment and its flanking regions. The 
coding sequence including the signal sequence is highlighted. The TATA box in the 5' flanking region is marked by 
asterisks. (b) A comparison of the promoter regions for IFN-~I, IFN-13, and IFN-co genes. The sequences upstream of 

the TATA box (underlined) of the IFN-~, IFN-I3, and IFN-0~ promoters are aligned. The positions of GAAANN hexamers 
are indicated by hatched boxes. The regions of the IF N-13 promoter thought to be required for binding of transcription 

factors are indicated by named shaded boxes. 

inducers, including viruses, bacteria, mycoplasma, 
endotoxins, double-stranded polynucleotides or RNA 
(dsRNA), and some cytokines, have been shown to 

efficiently activate transcription of IFN genes (Stewart, 
1979; De Maeyer and De Maeyer-Guignard, 1988). 
Such inducers have in general the potential to induce 
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expression of all IFNA, IFNB, and IFNW genes; 
however, there appears to be cell- and inducer-specific 
selectivity that governs the type and numbers of IFN 
genes expressed. For instance, virally induced human 
diploid fibroblasts produce mainly IFN-13 and only a 
minor amount of IFN-~ (Havell et al., 1978), whereas 
virally induced PBMC produce mainly IFN-a plus IFN- 
o3 and only a minor amount of IFN-~ (Cantell and 
Hirvonen, 1977; Adolf et al., 1990). This has to some 
extent been confirmed at the mRNA level (Shuttleworth 
et al., 1983; Hiscott et al., 1984). Differences have also 
been reported in the proportions of individual IFN-0~ 
subtypes produced by different cell types (Goren et al., 
1986; Finter, 1991; Greenway et al., 1992), suggesting 
that IFNA genes may be differentially expressed. 
However, the way in which such differential expression is 
regulated is presently not understood. 

Transcriptional control of IFNA genes resides in their 
5' flanking region, upstream from the cap site. 
Nucleotide deletions outside of position-117 from the 
cap site have little impact on transcriptional control, but 
deletions farther in eliminated induction, indicating that 
this region,-117 t o - 1 ,  contained promoter regulatory 
elements (Ragg and Weissmann, 1983; Weidle and 
Weissmann, 1983). These have been further delineated 
as a purine-rich nucleotide tract between-109 and-64,  
containing hexameric repeats of GAAANN (GAAA G/C 
T/C),  which appears to be necessary for inducible 
transcription and which has been termed the "virus- 
regulating element" (VRE) (Ryals et al., 1985). 

Similar studies involving 5' deletions have been carried 
out with the IFNB gene, and it has been found that 5' 
sequences within-110 to -1 contain regulatory elements 
that are required for induction by viruses and dsRNA. 
The minimum VRE has been localized t o - 7 4  t o - 3 7  
with respect to the cap site (Goodbourn et al., 1986; 
Goodbourn and Maniatis, 1988) and contains two 
positive virus-inducible elements, termed positive 
regulatory domains (PRDI,-77 to -64 ;  PRDII , -66 to 
-55), and a negative regulatory domain (NRD,-57  to 
-37) (Figure 25.1) (Fujita et al., 1985; Fan and Maniatis, 
1989; Whittemore and Maniatis, 1990; Nourbakhsh et 
al., 1993). In addition, the hexameric repeat sequences 
GAAANN (also present in IFNA genes) spanning from 
-110 to -65  contain variants of the PRDI sequence and 
two further regulatory elements, PRDIII (-90 t o - 7 8 )  
and PRDW (-104 to -91)  have been identified that are 
required for a functional VRE in IFNB gene expression 
in mouse L cells (Dinter and Hauser, 1987; Du and 
Maniatis, 1992). PRDI and PRDIII act as binding sites 
for a nuclear transcription factor, designated "interferon 
regulatory factor-l" (IRF-1) (Miyamoto et al., 1988), 
whose expression is transiently increased by virus 
infection and which appears to mediate the activation of 
transcription of the IFNB gene (Fujita et al., 1988; 
Harada et al., 1989; Xanthoudakis et al., 1989). A second 
virus-inducible factor, designated "interferon regulatory 

factor-2" (IRF-2), also binds to PRDI but suppresses, 
rather than activates, transcription (Harada et al., 1989, 
1990). PRDII is a binding site for the nuclear 
transcription factor NFrA3 (Clark and Hay, 1989; Fujita 
et al., 1989a; Hiscott et al., 1989; Lenardo et al., 1989; 
Visvanathan and Goodbourn, 1989), which interacts 
with the major groove of the DNA (Thanos and 
Maniatis, 1992). Additionally, another protein, high- 
mobility group Y/ l ,  also binds to PRDII, interacting 
with the minor groove of the DNA (Thanos and 
Maniatis, 1992). Both factors appear to be necessary for 
virus induction of the IFNB gene promoter. PRDIV 
contains a binding site for a protein of the cAMP 
response element binding protein (ATF/CREB) family 
of transcription factors (Du and Maniatis, 1992). 

Viral induction of the IFNB gene is thought to occur 
following activation of pre-existing NFtcB and by de novo 
synthesis of IRF-1; these nuclear transcription factors 
bind to the tandemly arranged PRDI and PRDII and act 
cooperatively to initiate/activate transcription (Leblanc 
et al., 1990; Lenardo et al., 1989; Visvanathan and 
Goodbourn, 1989; Fujita et al., 1989b; Watanabe et al., 
1991). Reporter constructs containing PRDI supported 
by a simian virus 40 (SV40) enhancer, or (GAAAGT)4 , 
which contains the functional equivalent of dimeric 
PRDI (N~if et al., 1991) are activated not only by virus 
but also by overexpression of IRF-1 (N~if et al., 1991; 
MacDonald et al., 1990). However, in most cell lines, 
overexpression of IRF-1 has led to poor induction of 
IFNB (and IFNA) genes (Harada et al., 1990; Fujita et 
al., 1989b) or none at all (MacDonald et al., 1990; Reis 
et al., 1992). This has been attributed to the repressive 
effect of IRF-2, a homologue oflRF-1, which also binds 
to PRDI (Harada et al., 1989). In the undifferentiated 
murine embryonal carcinoma (stem) cell line P19, which 
is refractory to viral induction oflFNB (and IFNA) genes 
and which expresses neither IRF-1 nor IRF-2, 
overexpression of an introduced IRF-1 construct leads to 
activation of endogenous IFN genes and to activation of 
reporter plasmids with the IFNB promoter (Harada et 
al., 1990). In addition, ce l l  lines permanently 
transformed with an antisense IRF-1 expression plasmid 
exhibited strongly reduced IFNB gene inducibility that 
nevertheless could be restored by transient 
transformation with an IRF-l-overproducing expression 
plasmid (Reis et al., 1992). However, the role oflRF-1 in 
virus-induced activation of the IFNB promoter remains 
controversial (Whiteside et al., 1992; Pine et al., 1990) 
and Ruffner and colleagues (1993) have shown that in 
murine embryonal stem cells devoid of both IRF-1 gene 
alleles (IRF-1 ~ ) viral induction of IFNB was only 
slightly higher in control IRF-1 0/+ differentiated stem 
cells than that in IRF-1 ~ differentiated cells. This 
suggests that while IRF-1 at high levels may elicit or 
enhance induction of IFNB under certain circumstances, 
it is not essential for viral induction. In cultured mouse 
fibroblasts devoid of IRF-1, IFNB induction by the 
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synthetic dsRNA molecule poly(I):poly(C) was absent, 
whereas induction by Newcastle disease virus (NDV) was 
normal (Matsuyama et al., 1993). However, IFN 
induction in vivo by either virus or dsRNA has been 
found to be unimpaired in IRF-1 ~ mice, indicating 
that IRF-1 is not essential (Reis et al., 1994). It has also 
become clear recently that the PRDI site can bind factors 
other than IRF-1 and IRF-2, and these may be more 
important for regulating IFNB gene activation 
(Whiteside et al., 1992; Keller and Maniatis, 1991). 

In contrast, targeted disruption of the IRF-2 gene to 
yield mouse fibroblasts deficient in the repressor IRF-2 
has been found to lead to upregulated induction of IFNB 
following NDV infection (Matsuyama et al.,  1993). This 
suggests that IRF-2 negatively regulates or represses 
IFNB gene induction. 

The induction of the IFNA1 gene appears to be 
regulated differently from that of the IFNB gene. IRF-1 
is bound poorly by the equivalent PRDI site in the 
IFNA1 promoter and this promoter also lacks an NF~cB 
site (Figure 25.1) (Miyamoto et al., 1988; MacDonald et 
al., 1990). The IFNA1 gene VRE does contain a 
hexameric repeat nucleotide sequence (GAAATG)4, 
designated a "TG-sequence" (MacDonald et al., 1990), 
which appears to mediate virus inducibility when 
supported by an SV40 enhancer, but which does not 
respond to IRF-1 (N~if et al., 1991). It has, however, 
been reported that overexpression of IRF-1 can induce 
IFNA genes, at least under special circumstances (Harada 
et al., 1990; Au et al., 1992). 

The IFNW gene, like IFNA and IFNB genes, is virus 
inducible and has structural features in its 5' promoter 
region similar to those in IFNA/B promoters (Figure 
25.1). In particular, hexameric repeat units are present, 
but are organized differently from those present in 
IFNA/B genes (Hansen et al., 1991; Roberts et al., 
1992). However, the regulation of transcription of the 
IFNW gene has not been studied in detail. 

3. IFNProteins 
3.1 STRUCTURAL FEATURES 
3.1.1 I F N - a  Subtypes  

The 14 IFN-(X subtypes are secreted proteins and as such 
are transcribed from mRNAs as precursor proteins, pre- 
IFN-(X, containing N-terminal signal polypeptides of 23 
mainly hydrophobic amino acids (Figure 25.2). The 
signal polypeptide is cleaved off before "mature" IFN-(X 
molecules are secreted from the cell. From their cErNA 
sequences, mature IFN-(X subtypes have been predicted 
to contain 166 amino acids (except IFN-%, 165 amino 
acids) (Mantei et al., 1980; Nagata et al., 1980; Streuli et 
al., 1980; Goeddel et al., 1981; Lawn et al., 1981a,b; 
Gren et al., 1984). The calculated molecular mass of 

recombinant IFN-(x subtypes is approximately 18.5 kDa, 
although apparent molecular masses of leukocyte-derived 
IFN-(X subtypes in sodium dodecyl sulphate 
(SDS)-polyacrylamide gels vary between 17 and 26 kDa, 
possibly owing to variable processing of C-terminal 
amino acids (Le W et aL, 1981) and post-translational 
modifications. The amino acid sequences of IFN-(x 
subtypes are highly related, with complete identity at 85 
of the 166 amino acid positions (Langer and Pestka, 
1985; De Maeyer and De Maeyer-Guignard, 1988). This 
is illustrated in Figure 25.2, where the amino acid 
sequences of the subtypes are compared to an idealized 
consensus sequence. Many of the positions where amino 
acids differ from subtype to subtype are conservative 
substitutions. Interestingly, IFN-(X subtypes contain four 
cysteine residues whose positions (1, 29, 99, and 139) are 
highly conserved (Figure 25.2). These four cysteines 
form disulfide bridges (1-99, 29-139) which induce 
folding of the IFN-(X molecule (Figure 25.3) and whose 
integrity is essential for biological activity (Morehead et 
al., 1984). IFN-(X subtypes are predicted to contain a 
high proportion (-60%) of (x-helical regions and are 
folded to form globular proteins (Zoon and Wetzel, 
1984). It has not yet proved possible to apply x-ray 
crystallographic techniques to IFN-(X subtypes, or to 
human IFN-~3, but the three-dimensional crystal 
structure of recombinant mouse IFN-[3, which is 
approximately 60% related in amino acid sequences to its 
human counterpart, has been solved (Senda et al., 1992). 
This has revealed that mouse IFN-[3 has a structure which 
consists of five (x-helices folded into a compact (x-helical 
bundle (Figure 25.4). From comparative sequence 
analysis it is predicted that in all mammalian IFN-(X and 
IFN-]3 proteins these five (x-helical domains are conserved 
(Korn et aL, 1994; Horisberger and Di Marco, 1995) and 
thus show similarities with many other cytokines, which 
also have (x-helical bundle structures (Bazan, 1990). 

With one exception, IFN-(X subtypes do not contain 
recognition sites (Asn-X-Ser/Thr) for N-linked 
glycosylation (Henco et aL, 1985); only IFN-(X14 
contains two of these sites (Figure 25.2). Nevertheless, 
O-linked glycosylation may be possible in other IFN-(X 
subtypes. For example, it has been found that natural 
IFN-%, purified from human leukocyte IFN, contains 
the disaccharide galactosyl-N-acetylgalactosamine in O- 
linkage to Thr-106 (Adolf et aL, 1991a). However, since 
IFN-% is the only IFN-(X subtype with a theonine at 
position 106, it may represent the only O-glycosylated 
IFN-(X protein (Figure 25.2). (N.B. Recombinant IFN-(X 
subtypes produced by E. coli are nonglycosylated since 
bacteria lack the biosynthetic machinery to add sugar 
residues to polypeptides; all recombinant IFN-% 
products used clinically are nonglycosylated.) 

3 .1 .2  IFN-~  

Pre-IFN-[3 contains 187 amino acids, of which 21 
comprise the N-terminal signal polypeptide and 166 
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Figure 25.2 Amino acid sequence comparison of human IFN-~ subtypes, IFN-~, and IFN-c0. All sequences are 
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sequences. Signal sequences are marked S. Sites of N-linked glycosylation are underlined. 

comprise the mature IFN-]3 protein (Derynck et al., 
1980, 1981; Taniguchi et al., 1980; Houghton et al., 
1981). Although IFN-]3 is the same length as the 
majority of IFN-a subtypes, it shows only approximately 
30% amino acid sequence relatedness with them (Figure 
25.2) and is antigenically distinct. The IFN-~ protein 
lacks the N-terminal Cys-1 residue present in IFN-a 
subtypes, but contains three other cysteines at positions 
17, 31, and 141, the latter two corresponding to the 

disulfide bond pairing 29-139 in IFN-a subtypes. 
Replacement of Cys-17 by serine does not result in any 
loss of biological activity, whereas serine substitution of 
Cys-141 does (Mark et al., 1981; Shepard et al., 1981). 
As mentioned previously, on the basis of the three- 
dimensional structure of recombinant mouse IFN-~ 
(Figure 25.4), human IFN-[3 is predicted to contain five 
a-helices and to fold up into an a-helical bundle 
structure (Senda et al., 1992). 
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Figure 25.3 Consensus amino acid sequence of human IFN-(x. Residues in squares are common to all known 
IFN-cx subtypes. 

Human IFN-[3 has one potential N-glycosylation site 
at Asn-80 (Taniguchi et al., 1980) and N-linked 
oligosaccharides, primarily of the biantennary complex- 
type, are known to be attached to this site in natural IFN- 
13 (Hosoi et aL, 1988). However, these may vary 
considerably depending on the producer cell type 
(Utsumi et al., 1989). 

3 .1 .3  I F N - m  

From cDNA sequence data, it was predicted that pre- 
IFN-m contains 195 amino acids, the N-terminal 23 
comprising the signal sequence and the remaining 172 
the mature IFN-m protein (Capon et al., 1985; 
Hauptmann and Swetly, 1985). The amino acid sequence 
of IFN-m is therefore six residues longer at the C- 
terminus than IFN-R or IFN-[3 proteins. However, it has 
been found that natural IFN-m is heterogeneous at the 
N-terminus owing to variable cleavage of pre-IFN-m; 
about 60% of mature IFN-m molecules carry two 
additional N-terminal amino acids (Adolf, 1990; Shirono 
et al., 1990). It is approximately 60% related to IFN-cx 
subtype sequences, but only 30% related to that of 
IFN-[3 (Figure 25.2), and is antigenically distinct from 
both IFN-~ and IFN-[3 (Adolf, 1990). Nevertheless, the 
four cysteines occur in the same notional positions, 1, 29, 

99, and 139, as they do in IFN-~ subtypes and it is likely 
that IFN-m will have a similar cx-helical bundle structure 
to those predicted for both IFN-cx and IFN-[3 proteins 
(Senda et al., 1992). IFN-m has one potential site at 
Asn-78 for N-linked glycosylation and natural IFN-m 
has been demonstrated to be a glycoprotein with 
biantennary complex oligosaccharides (containing 
neuraminic acid) attached at this site (Adolf, 1990; Adolf 
et al., 1991 b). 

4. Cellular Sources and Production 
Type I IFNs (IFN-0t,-[3, and-m)  are produced by a 
variety of normal cell types responding to extracellular or 
intracellular stimuli (Stewart, 1979). IFN-~, as a mixture 
of subtypes, and IFN-m may be produced together 
following viral infection of null lymphocytes or 
monocytes/macrophages (Cantell and Hirvonen, 1977; 
Adolf, 1990). The proportions of IFN-0t subtypes may 
vary according to the type of virus used as inducer 
(Hiscott, 1984; Finter, 1991). However, production of 
IFN-[3 is usually restricted to double-stranded 
polynucleotide, e.g., poly-inosinic, poly-cytidylic acid, or 
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5. Biological Activities Associated with 

It is well established that the biological activities of IFNs 
are mostly dependent upon protein synthesis with 
selective subsets of proteins mediating individual 
activities. Antiviral, antiproliferative and immuno- 
modulatory activities have been ascribed to IFN-~/[3/c0 
(reviewed in Pestka et al., 1987; De Maeyer and De 
Maeyer-Guignard, 1988). The proteins and mechanisms 
involved in these activities are described below. 

Figure 25.4 Ribbon drawing of the Ca structure of 
mlFN-13 (Senda et aL, 1992). The view is perpendicular to 

the helical axes. Helices A, B, C, D, and E, as well as 
NH 2- and COOH-termini, are labeled. The arrows indicate 
the direction of the helices. (Reprinted with permission 
of Horisberger and Di Marco (1995) Pharmac. Ther. 66, 
535. Copyright Elsevier Science Ltd., Amsterdam, The 

Netherlands.) 

virally-induced normal fibroblasts and other tissue cell 
types, e.g., epithelial cells (Meager et al., 1979; Stewart, 
1979). In all the above cases, the amount of IFN secreted 
is dependent on the dose of the inducer. 

Besides normal cells, a range of transformed and 
tumor-derived cell lines are known IFN producers, e.g., 
MG63 human osteosarcoma cell line (Meager et al., 
1982), and the Namalwa B-lymphoblastoid cell line 
(Phillips et al., 1986). Generally speaking, adherent 
fibroblastic cell lines produce mainly IFN-[3 and only a 
minor quantity of IFN-~ (Havell et al., 1978), whereas 
nonadherent myeloid or lymphoid cell lines produce 
mainly IFN-c~ and only a small amount of IFN-I3 (Cantell 
and Hirvonen, 1977; Shuttleworth et al., 1983; Zoon et 
al., 1992). 

Actual production of IFNs lasts only a matter of a 
few hours following induction. This is due to IFN 
mRNA instability and the rapid shut-off of IFN gene 
transcription (Caput et al., 1986; Shaw and Kamen, 
1986). Under conditions where IFN mRNA stability is 
increased, e.g., by blocking protein and RNA synthesis 
following induction, IFN production has been shown 
to be "superinduced" once the block on protein 
synthesis is removed (Meager et al., 1979; Stewart, 
1979). 

5.1 ANTIVIRAL ACTIVITY 
5.1.1 Molecular  Mechanisms 

Despite there being vast numbers of viruses with 
different replication strategies, it appears that many 
viruses can be countered by relatively few IFN-inducible 
"antiviral" proteins (Samuel, 1987). One of the best- 
characterized of these is a family of enzymes collectively 
known as "2-5A synthetase" which, in the presence of 
dsRNA (often an intermediate of viral RNA synthesis) 
catalyses the formation of an unusual oligonucleotide, 
ppp (A2'p) nA (2-5A), which in turn activates an IFN- 
induced latent endonuclease, RNase L (Williams and 
Kerr, 1978; Wreschner et al., 1981; Ghosh et al., 1991; 
Hovanessian, 1991; Lengyel, 1982; Zhou et al., 1993). 
When activated, the RNase L degrades viral (and cellular 
mRNA) and therefore inhibits viral protein synthesis. 
Small RNA viruses (picornaviridae), e.g., Mengo virus 
and murine encephalomyocarditis virus (EMCV), whose 
replication is cytoplasmic are most inhibited by the 
induction of2-5A synthetase (Lengyel, 1982; Rice et al., 
1985; Chebath et al., 1987; Kumar et al., 1988). A 
further important IFN-induced "antiviral" protein is a 
dsRNA-dependent protein kinase, now designated PKR, 
which in the active form phosphorylates the peptide 
initiation factor, eIF2, involved in polyribosomal 
translation of mRNA (Miyamoto and Samuel, 1980; 
Gupta et al., 1982; Samuel, 1987). Phosphorylated eIF2 
is inactive and thus viral protein synthesis is inhibited. 
This inhibition has been associated with the loss of 
replicating capacity of reoviruses and rhabdoviruses such 
as vesicular stomatitis virus (VSV). 

The 2-5A synthetase and PKR antiviral mechanisms 
are rather general and potentially could affect a wide 
range of viruses. However, IFN can induce certain 
proteins that inhibit specifically one class of virus. For 
example, the IFN-inducible Mx proteins block the 
replication of influenza virus, probably by inhibiting the 
nuclear phase of viral transcription (mouse cells) or later 
cytoplasmic phases (human cells), without affecting the 
replication of many other viruses (Staeheli, 1990; Mel6n 
et al., 1992; Ronni et al., 1993). 

In addition, since IFNs can impair various steps of viral 
replication, including penetration, uncoating and 



INTERFERONS ALPHA, BETA, AND OMEGA 371 

assembly of progeny virions as well as transcription and 
translation, there are likely to be several other antiviral 
proteins and mechanisms (De Maeyer and De 
Maeyer-Guignard, 1988). For instance, some viruses, 
e.g., herpes virus and certain retroviruses, appear to be 
inhibited at the relatively late stage of virus particle 
maturation and budding (Aboud and Hassan, 1983). 

5.1.2 Defense Mechanisms of  Viruses 

In the course of evolution, many viruses have developed 
countermechanisms by which they can disrupt the 
antiviral mechanisms induced by IFN. Such 
countermechanisms often point to the significance of 
particular "antiviral" proteins. One of the main "targets" 
for several different viruses is the IFN-inducible PKR. 
The action of this kinase is overcome in adenovirus or 
Epstein-Barr virus (a member of the herpes virus family) 
by the production of small viral RNA molecules, VAI- 
and EBER-RNAs, respectively, which bind to PKR and 
block its activation by dsRNA (Clarke et al., 1991; 
Ghadge et al., 1991; Mathews and Shenk, 1991). 
Reoviruses and vaccinia virus (a member of the pox virus 
family) produce viral proteins (sigma3 and SKI, 
respectively), that bind to dsRNA and thus reduce 
activation of PKR (Sen and Lengyel, 1992). 
Interestingly, if IFN-treated VSV-infected cells are co- 
infected by vaccinia virus, VSV replication is rescued, 
presumably partly by the inhibitory effect of SKI on PKR 
(Whitaker-Dowling and Youngner, 1983). Vaccinia virus 
also produces a nonfunctional protein analog of elF2 
which competes with the real eIF2 for phosphorylation 
by PKR and thus dilutes out the antiviral effect of 
activated PKR (Beattie et al., 1991). Other viruses, such 
as influenza, may activate latent cellular inhibitors of PKR 
activity, e.g., a 58 kDa protein (p58) (Lee et al., 1992). 

The 2-5A synthetase-RNase L system can also be 
subverted. For example, EMCV, a picornavirus, can 
inactivate RNase L in several cell lines, but this 
inactivation is usually blocked by IFN treatment 
(Lengyel, 1982). Herpes viruses, in contrast, appear to 
inhibit RNase L activation by producing competing 
analogs of2-5A (Cayley et al., 1984). 

Some viruses even .have the ability to block the 
transcription of IFN-inducible genes. The "early" Ela 
regulatory proteins of adenoviruses prevent the activation 
of ISGF3 by IFN, probably by inhibiting the transcription 
of the ISGF37 subunit (Ackrill et al., 1991; Gutch and 
Reich, 1991; Kalvakolanu et at., 1991; Nevins, 1991). In 
the case of hepatitis B virus-infected cells, the so-called 
virus-specified "terminal protein" inhibits IFN-inducible 
gene expression (Foster et al., 1991). 

5.2 ANTIPROLIFERATIVE ACTIVITY 
The antiviral mechanisms induced by IFN are mediated 
by enzymes, e.g., 2-5A synthetase and PICR, whose 

activities have broad implications for cell growth and 
proliferation. Viral replication may be regarded as a form 
of pathological growth of a foreign, "cell-like", entity at 
the expense of a living cell. In the presence of IFN, 
enzymes are activated which curtail protein synthesis in 
general, but because viral protein synthesis is normally 
rapid, the inhibitory effect on viral replication appears 
more dramatic than on the slower and more complex 
cellular growth. Possibly, the "IFN system" was evolved 
more as a part of a complex, interactive network of 
intercellular mediators of cell growth and proliferation 
than as one for antiviral mechanisms. Recent 
investigations tend to support the role of IFNs in 
regulating cell growth. For example, if a mutant form of 
PKR that is unable to phosphorylate eIF2 is introduced 
into cells, they undergo neoplastic transformation 
(Koromilas et al., 1992; Lengyel, 1993; Meurs et al., 
1993). This suggests that PKR normally acts as a "tumor- 
suppressor"' gene product. Therefore, one of the 
mechanisms by which IFN inhibits cell proliferation 
could be through its capacity to induce enhanced 
expression/activity of PKR. IFN-~ has also been 
reported to inhibit cyclin-dependent CDK-2 kinase, 
which is responsible for phosphorylation of 
retinoblastoma (RB) protein, and this could contribute 
to antiproliferative activity (Kumar and Atlas, 1992; 
Resnitzky et al., 1992; Zhang and Kumar, 1994). 

The 2-5A synthetase-RNase L system may also have 
antiproliferative and tumor suppressor activities. For 
instance, the levels of these two enzymes are high in 
growth-arrested cells: introduction of 2-5A-like 
oligoadenylates into proliferating cells also causes growth 
impairment (Sen and Lengyel, 1992; Lengyel, 1993; 
Zhou et al., 1993). 

The IFN-stimulated increases in synthesis of PKR and 
2-5A synthetase are dependent on IFN-inducible 
transcription factors, such as IRF-1 (ISGF2) (Miyamoto 
et al., 1988; Pine et al., 1990; Williams, 1991; Reis et al., 
1992). The latter has a short half-life and thus 
transcription of IFN-inducible genes is rapidly repressed 
by the longer-lasting, inhibitory IRF-2 (Harada et al., 
1989). If IRF-2 is overexpressed, cells become 
transformed as even low level constitutive production of 
PKR and 2-5A synthetase, which can regulate normal cell 
growth, is abrogated. This transformation was reversed 
by overexpressing IRF-1 (Harada et al., 1993), 
indicating that IRF-1 can be viewed as a pivotal player in 
the growth, regulatory, and tumor suppressor machinery. 
A variety of other IFN-induced mechanisms, including 
suppression of oncogenes (Contente et al., 1990), 
depletion of essential metabolites (Sekar et al., 1983), 
and increased cell rigidity (E. Wang et al., 1981), could 
also contribute to its antiproliferative activity. 

The antiproliferative effects of IFNs in different tumor 
cell lines cultured in vitro is highly variable. Besides 
tumor cell lines, IFN-0t/[3 have antiproliferative activity 
in hematopoietic precursor cells, e.g., of the myeloid 
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lineage (Rigby et al., 1985; De Maeyer and De 
Maeyer-Guignard, 1988, for review). They are also 
potent inhibitors of angiogenesis, the process whereby 
blood capillaries are formed to envasculate tissues (Sidky 
and Borden, 1987). 

5.3 IMMUNOREGULATORY ACTMTY 

Besides activating intracellular processes, IFNs can also 
activate intercellular activities, especially within the 
immune system, which are an essential part of host 
defense against infectious and invasive diseases. Thus, 
IFNs can stimulate indirect antiviral and antitumor 
mechanisms, which in the main rest upon cellular 
differentiation and the induction of cytotoxic activity. 
For example, in the presence of antigen-specific 
antibodies, macrophages can effect cell-mediated 
cytotoxicity. Such antibody-dependent cell-mediated 
cytotoxicity (ADCC) is enhanced by IFN, possibly 
through an augmentation of immunoglobulin G (IgG)- 
Fc receptor (FcR) expression (Hokland and Berg, 1981; 
Vogel et al., 1983; De Maeyer and De Maeyer-Guignard, 
1988). In addition, another category of leukocytes 
comprising large granular lymphocytes and known as 
natural killer (NK) cells are activated, by unknown 
mechanisms, to kill virally-infected or tumor cell targets 
independently of major histocompatibility complex 
(MHC) antigen expression (Trinchieri and Perussia, 
1984; Rager-Zisman and Bloom, 1985; De Maeyer and 
De Maeyer-Guignard, 1988). 

IFNs can stimulate increased expression of class I 
MHC antigens, i.e., HLA-A, -B, -C, which are crucial for 
recognition of foreign antigen by cytotoxic T 
lymphocytes (CTL, CD8+); recognition of virally 
infected cells by CTL depends on class I MHC antigen 
presentation of viral antigens at the cell membrane 
(Heron et al., 1978; Fellous et al., 1979). IFN-(x/[3 have 
sometimes been observed to increase class II MHC 
antigen expression, which is necessary to trigger both 
humoral and cell-mediated immunity, but probably play 
a lesser role than IFN-y, which is the major class II MHC 
antigen inducer (Baldini et al., 1986; Rhodes et al., 
1986; De Maeyer and De Maeyer-Guignard, 1988). 

5.4 B I O L O G I C A L  ACTIVITIES I N  V I V O  

All of the biological activities so far described (see above) 
for IFNs have followed from in vitro experimentation. 
Here it is possible to pick and choose conditions that 
favor particular outcomes, e.g., the antiviral response, by 
adjusting doses of IFN, times of incubation, levels of 
virus challenge, and so on. Such experiments illustrate 
the range of biological activities of IFNs but cannot 
define their physiological roles. That IFNs have the 
potential for inducing antiviral and antitumor activity 
suggests their main role in vivo is to act as regulators of 

host defense mechanisms, and to prevent patho- 
physiological events occurring. Investigations in 
experimental animals have supported this likelihood. For 
example, injection of mice with anti-IFN-~/]3 antibody 
has been shown to increase their susceptibility to a range 
of virus infections (Virelizier and Gresser, 1978; Gresser, 
1984). The earliest evidence for an antitumor effect of 
IFN-tx/13 came from inoculation of murine L1210 cells 
into mice. L1210 cells are sensitive to the 
antiproliferative action of IFN-~/13 in vitro and in vivo, 
IFN~/[3 prevented tumor growth by these cells. 
However, when a clone of L1210 was isolated that was 
resistant to the antiproliferative action of lFN-~/[3, there 
occurred a similar retardation of tumor growth upon 
IFN-c~/]3 treatment to that observed with "sensitive" 
L1210 cells, suggesting that IFN was acting indirectly in 
vivo by a host-mediated mechanism (Gresser et al., 1970, 
1972). A similar conclusion was reached more recently 
using IFN-resistant B-cell lymphoma cells (Reid et al., 
1989). In the intervening years, many studies have been 
conducted confirming that IFN can act directly (e.g., 
human IFN-a 2 against a range of human tumor 
xenografts in nude mice where human IFN-0~ 2 has no 
activity on the murine immune system) and indirectly 
(reviewed by Balkwill, 1989). Although antitumor 
activity has been clearly demonstrated by the application 
of exogenous IFNs, it is not certain that endogenously 
produced IFNs are involved in countering tumor 
growth. However, some experimental evidence that 
endogenous IFN could play a role in host resistance to 
cancer or its spread has been obtained by treating mice 
with anti-IFN antibodies. Under these conditions, the 
intraperitoneal transplantability of six different 
experimental murine tumors was observed (Gresser, 
1984). 

IFN-a/~ can inhibit the growth of hematopoietic 
progenitor cells in vitro (Rigby et al., 1985) and this is 
also likely to occur in vivo. Such an occurrence is 
undesirable in most instances, but suppression of 
proliferation of bone marrow hematopoietic cell 
precursors has been turned to advantage in protecting 
tumor-bearing mice against the cytotoxicity of 
chemotherapeutic agents such as 5-fluorouracil (5-FU) 
(Stolfi et al., 1983). 

6. Receptors 
6.1 CHARACTERIZATION 
6.1 .1  General Features 

IFNs exercise their actions in cells via IFN-specific cell 
surface receptors. These receptors bind IFNs with high 
affinity (Aguet, 1980) and transduce the signal 
occasioned by ligand (IFN) binding across the cell 
membrane into the cytoplasm. IFN-cq IFN-[3 and IFN- 
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co share the same binding sites (Aguet et al., 1984; Flores 
et al., 1991), but IFN-y binds to different sites (Branca 
and Baglioni, 1981; Aguet et al., 1988). The binding of 
IFN-c~ and IFN-~ to lymphoid cells and fibroblasts has 
been studied extensively and has been reviewed 
(Rubinstein and Orchansky, 1986; Branca, 1988; Langer 
and Pestka, 1988; Grossberg et al., 1989), and results 
have generally demonstrated the presence of up to a few 
thousand complex, high-affinity receptors per cell. 
Chemical cross-linking studies with ~2SI-labeled IFN-~ 
or IFN-[3 to receptor-bearing cells have led to the 
identification of various IFN-receptor complexes, their 
molecular masses ranging from 80 to 300 kDa (Joshi et 
al., 1982; Eid and Mogensen, 1983; Faltynek et al., 
1983; Raziuddin and Gupta, 1985; Thompson et al., 
1985; Hannigan et al., 1986; Vanden Broecke and 
Pfeffer, 1988; Colamonici et al., 1992). Such results 
have suggested that there are either multiple binding 
sites for IFN-cx, IFN-[3, and IFN-m or that there are 
complex multichain receptors (Colamonici et al., 1992; 
Hu et al., 1993). 

Although on human cells all the IFN-c~, IFN-~, and 
IFN-m proteins compete for common binding sites, 
individual IFN-c~ subtypes show different levels of 
activities on cells (Streuli et al., 1981; Week et al., 1981; 
Rehberg et al., 1982) which appear to correlate with 
their binding behavior to the cell surface (Uzd et al., 
1985). In particular, IFN-% shows a much lower 
binding for human membrane receptors than either 

"IFN-0~ 2 or IFN-% (Uz6 et al., 1988). Interestingly, this 
differential binding of human IFN-~ subtypes is not 
manifested in bovine cells, and all of the subtypes exhibit 
high specific activities (Yonehara et al., 1983; Shafferman 
et al., 1987). IFN-I3 and IFN-m are also active in bovine 
cells (Capon et al., 1985; Adolf et al., 1990), but this 
cross-reactivity does not extend to mouse cells, a feature 
that has provided experimental systems in which to 
characterize IFN-receptors. Thus, somatic cell genetic 
studies with human • rodent hybrid cells containing 
various combinations of human chromosomes have 
provided evidence that the presence of human 
chromosome 21 confers sensitivity of such hybrid 
"rodent" cells to human IFN-~, IFN-I3 and IFN-m (Tan 
et al., 1973; Slate et al., 1978; Epstein et al., 1982; 
Raziuddin et al., 1984). Further, it was demonstrated 
that antibodies raised against human chromosome 21- 
encoded cell surface proteins were able to block the 
binding and action of human IFN-~ to human cells, 
indicating that this chromosome contained a gene(s) 
specifying the human IFN cell surface receptor (Shulman 
et al., 1984). 

6.1.2 Molecular Cloning of IFN Receptor 
Components 

The elucidation of the full complement of components of 
the IFN-~/[3/m receptor has long been sought. One 
methodology used to isolate receptor cDNAs involves 

transfecting mouse cells with total human DNA and then 
selecting for cells sensitive to human IFN-cz. After several 
attempts, this approach led successfully to the isolation of 
a 2.7 kb eDNA from a library constructed from human 
lymphoblastoid (Daudi) cells, which encoded an IFN-cz 
binding protein (Uzd et al., 1990) containing 557 amino 
acids (molecular mass 63485 Da) including a signal 
sequence of 27 mainly hydrophobic amino acids. This 
protein has a structure typical of a transmembrane 
glycoprotein: a large N-terminal extracellular domain, 
which potentially could be highly glycosylated owing to a 
preponderance of N-linked glycosylation sites, a short 
hydrophobic transmembrane domain, and an 
intracellular or cytoplasmic tail (Figure 25.5). Its amino 
acid sequence shows little homology with any currently 
available sequences of proteins, including the sequence of 
the human IFN-7 receptor (Aguet et al., 1988); however, 
the extracellular domain has been predicted to show 
structural similarities with the latter receptor and to a 
lesser extent with the so-called hematopoietin receptor 
supergroup (Bazan, 1990a,b). The gene coding for this 
putative IFN-cz receptor has been mapped to 
chromosome 21.q22 (Lutfalla et al., 1992), in 
confirmation of the earlier rodent x human hybrid cell 
data (Tan et al., 1973; Slate et al., 1978; Epstein et M., 
1982; Raziuddin et al., 1984). 

Although the cloned "IFN-cz receptor" could be 
shown to confer sensitivity to human IFN-% in 
transfected mouse cells (Uzd et al., 1990), such cells were 
relatively insensitive to human IFN-% and human 
IFN-[3. These findings, together with those from anti- 
IFN-cz receptor antibody blocking studies (Colamonici et 
al., 1990; Revel et al., 1991; Uz~ et al., 1991) and 
affinity cross-linking studies with IFN-% (Colamonici et 
al., 1992), have suggested that a second IFN-cz receptor 
exists or another component is required besides the 
cloned IFN-cz 8 binding protein, to complete the receptor 
complex. This hypothesis is further supported by a study 
(Soh et al., 1994) in which introduction of a yeast 
artificial chromosome (YAC) containing a segment of 
human chromosome 21 into chinese hamster ovary 
(CHO) cells conferred a greatly increased response to 
both IFN-0~ 2 and IFN-0~8, as well as an increased response 
to IFN-I3 and IFN-m, whereas the expression of the 
IFN-~ 8 binding protein alone did not confer sensitivity 
(Revel et al., 1991). However, these increased responses 
can be "knocked out" by disruption of the IFN-~ 8 
binding protein gene in the YAC, and then reconstituted 
by expression of the cDNA encoding the IFN-% binding 
protein (Cleary et al., 1994), suggesting that cell surface 
expression of this protein is required for a fully functional 
receptor (see also Hertzog et al., 1994; Constantinescu 
et al., 1994). 

A second human IFN-~/I3 receptor, which is probably 
the additional component of the receptor complex 
referred to above, has been cloned (Novick et al., 1994). 
The 1.5 kb cDNA encodes a 331-amino-acid protein, 
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Figure 25.5 Schematic drawing of the domain organization of the clonal IFN-~ 8- and IFN-~/13 binding proteins. 

including a signal sequence, which has the predicted 
structure of a transmembrane glycoprotein. The N- 
terminal ectodomain (217 amino acids) corresponds in 
sequence to a soluble 40 kDa IFN-(x/[3 binding protein, 
p40, isolated from urine. This domain is linked to a 
transmembrane segment (21 amino acids) and a 
relatively small cytoplasmic domain of 67 amino acids 
(Figure 25.5)i Overall, the primary sequence shows little 

IFN-a/]3 binding protein bind IFN-a 2 but are 
insensitive to its effects, suggesting that an accessory 
protein, possibly the cloned IFN-c~ 8 binding protein, is 
required for signaling (Novick et al., 1994; 
Constantinescu et al., 1994). The findings that anti-p40 
antiserum and a particular monoclonal antibody to the 
IFN-cx 8 binding protein (Benoit et al., 1993) both block 
the biological activity of IFN-0q3co indicate that the IFN- 

homology with that of the previously cloned IFN-a 8 . c~/13 and IFN-a 8 binding proteins are in close proximity, 
binding protein (Uzd et al., 1990), but when the 
extracellular domains are compared, 23.4% relatedness is 
found (Novick et al., 1994), suggesting that both of 
these IFN binding proteins belong to the same so-called 
class II cytokine receptor family (Uz6 et al., 1995). Two 
classes of cytokine receptor (class I and class II) have 
been proposed by Bazan (1990a,b), these being 
distinguished by the positions of cysteine pairs in the 
extracellular domain. The latter is comprised of 
fibronectin type III-like units containing around 200 
amino acids and designated D200 (Uzd et al., 1995). A 
schematic drawing of both IFN-a/[5 receptor chains is 
shown in Figure 25.5. Subsequently, it has been found 
that alternative splicing of the IFN-a/13 receptor gene 
can produce a transcript encoding a long form of the 
receptor protein containing a larger cytoplasmic domain 
of 251 amino acids (Domanski et al., 1995; Lutfalla et 
al., 1995). 

Mouse cells transfected with the cDNA encoding the 

and thus probably interact to form a high-affinity IFN- 
a/]3/co receptor complex. The most likely scenario on 
present evidence is for a two-chain IFN-c~/13/co receptor, 
comprising the cloned IFN-c~ 8 binding protein (Uz6 et 
al., 1990) and the long form of the IFN-c~/[3 binding 
protein (Domanski et al., 1995; Lutfalla et al., 1995), 
each of which binds to some extent particular IFN types 
or IFN-(x subtypes but which together more strongly 
bind all IFN-~, -13, and -co species and function to 
transmit signals across the cell membrane. However, it is 
not completely ruled out that other cell surface 
components, e.g., membrane glycosphingolipids, are 
required for fully functional receptors (Colamonici et al., 
1992; Platanias et al., 1994; Ghislain et al., 1995; Uz4 et 
al., 1995) or, possibly, that there are alternative IFN 
receptors, e.g., the Epstein-Barr virus/complement C3d 
receptor as an IFN-c~ receptor on B-lymphocytes 
(Delcayre et al., 1991). Vaccinia virus and other 
orthopoxviruses contain a gene B 18R encoding a soluble 
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type I IFN receptor which, unlike the class II cytokine 
type receptors, belongs to the immunoglobulin 
superfamily (Symons et al., 1995; Colamonici et al., 

1995). 

7. 
7.1 

Signal Transduction 
SIGNAL T R A N S D U C T I O N  

7.1.1 Molecular  Mechanisms 

The intracellular domains of the two cloned IFN-binding 
proteins are unrelated to the tyrosine kinase class of 
receptors, e.g., epidermal growth factor receptor (EGF- 
R) and platelet-derived growth factor-receptor (PDGF- 
R), and are not predicted to have kinase activity of any 
sort (Uzd et al., 1990; Novick et al., 1994). However, it 
appears that the cytoplasmic domain of the IFN-0~ 8 and 
a/13 binding proteins associate with nonreceptor tyrosine 
kinases TYK2 and Janus kinase 1 (JAK1), respectively, 
known to be involved in the signal transduction pathway 
of IFN-a/[3 and other cytokines (Novick et al., 1994; 
Ghislain et al., 1995; Ihle, 1995; Ihle and Kerr, 1995; 
Velasquez et al., 1995). The current understanding of 
this pathway is as follows. After binding of IFN-a/[3/c0 
to their cognate receptors, the intracellular domains are 
phosphorylated by TYK2 and JAK1. These phos- 
phorylated domains act as docking sites for the 
cytoplasmic STAT (signal transducers and activators of 
transcrilStion ) proteins p84/p91 (STATla/b) and p113 
(STAT 2) (Ihle, 1996). The latter undergo tyrosine 
phosphorylation mediated by receptor-associated 
TYK2/JAK1, dimerize, translocate to the nucleus, and 
combine with a DNA binding protein, p48, to form the 
IFN-stimulated gene factor-3 (ISGF3) transcription 
factor complex (Schindler et al., 1992; Velasquez et al., 
1992; Mtiller et al., 1993; Platanias et al., 1994; Shuai et 
al., 1994; Gupta et al., 1996; Yan et al., 1996). Both 
TYK2 and JAK1 need to be reciprocally activated for 
signal transduction to occur, since cell mutants lacking 
either TYK2 or JAK1 are unresponsive to IFN-0~ (Ihle, 
1995; Ihle and Kerr, 1995). ISGF3 binds to cis-acting 
IFN-stimulated response elements (ISRE), present in the 
promoter regions of IFN-inducible genes, to initiate 
their transcription (Williams, 1991). Targeted disruption 
of the STAT 1 gene in mice has shown that STAT 1 has 
an obligatory role in IFN-cx and IFN-y signaling (Durbin 
et al., 1996; Meraz et al., 1996). 

The JAK1/TYK2- ISGF3 pathway may not be the 
only "receptor-to-cell nucleus" signaling mechanism 
activated in IFN-stimulated cells. There has been some 
evidence to implicate protein kinase C (PKC) pathways as 
well (Reich and Pfeffer, 1990; Pfeffer et al., 1991; C. 
Wang et al., 1993). However, this remains controversial 
owing to the lack of specificity of kinase inhibitors used 
(Kessler and Levy, 1991; James et al., 1992). 

7.2 IFN-INDUCIBLE GENES 

7.2.1 IFN-response Gene Sequences 
IFN-inducible genes have a common regulatory 
nucleotide sequence (G/A)GGAAAN(N)GAAACT in 
their 5' flanking region and this type of sequence, which 
resembles the VRE sequences (Ryals et al., 1985; Reid et 
al., 1989) present in IFN genes, is designated interferon- 
stimulated response element (ISRE) (Williams, 1991). 
The resemblance between ISRE and VRE sequences 
probably accounts for the finding that many IFN- 
inducible genes are transcriptionally activated by virus 
infection or dsRNA, which also activate the transcription 
of IFN genes (Hug et al., 1988; Wathelet et al., 1988). As 
mentioned previously (see Section 5.1.3), IFN-receptor 
occupation activates cytoplasmic ISGF-3 and this complex 
is translocated to the nucleus and binds to ISRE of IFN- 
inducible genes as a transcriptional activator. In addition, 
a second factor, ISGF2, forms complexes with ISRE 
in IFN-stimulated cells. ISGF2 is a single, inducible 
phosphoprotein that has been shown to be identical to 
IRF-1 (Miyamoto et al., 1988; Pine et al., 1990; Williams, 
1991; Reis et al., 1992). The role of a third transcription 
factor, ISGF1, which is constitutively produced and 
requires only the central 9 bp core of ISRE for binding, 
remains to be fully defined (Kessler et al., 1988 ). A number 
of other negative regulatory factors, including IRF2 
(Harada et al., 1989) and the ISGF2 (IRF1)/ISGF3y- 
related "human interferon consensus sequence binding 
protein" (ICSBP) (Weisz et al., 1992; Bovolenta et al., 
1994), which also bind to ISRE, are also probably involved 
in the regulation of transcription of IFN-inducible genes. 

7 .2 .2  Prote ins  Induced  by I F N  

It is clear that the regulation of expression of IFN- 
inducible genes is complex and that the mechanisms that 
control their selective expression are not fully understood 
(see Taylor and Grossberg, 1990, for review). IFN- 
inducible proteins, whose number probably exceeds 20, 
include both those proteins induced early after IFN 
stimulation and those proteins that may be produced at 
later times, often in response to the actions of "early" 
IFN-inducible proteins (Sen and Lengyel, 1992). The 
full set of IFN-inducible proteins is probably not known, 
but several have been identified and characterized. Table 
25.2 shows an incomplete list of IFN-inducible proteins 
together with their likely functions. Some of these 
proteins are not exclusively induced by IFN-0~/[3/c0; 
IFN-y and certain other cytokines, e.g., tumor necrosis 
factor-~ (TNF-~) often induce spectra of proteins that 
overlap with the set induced by IFN-~/13/~ (Revel and 
Chebath, 1986; Rubin et al., 1988; Wathelet et al., 
1992). It should be noted that IFN-inducible proteins 
tend also to be cell type-specific and thus not all proteins 
listed in Table 25.2 will be expressed in all cell types. In 
some cases, IFN-inducible proteins are completely absent 
from a cell before IFN stimulation, but in other cases 



3 7 6  . A. MEAGER 

Table 25.2 IFN-inducible proteins 

Protein Function Reference 

2-5A synthetase 

dsRNA-activatable protein 
kinase (PKR) 

Class I MHC antigens (HLA-A, 
B, C) and [~-microglobulin 

Guanylate-binding proteins 
(GBP; ~7) 

MxA 

Metallothionein 

Protein kinase C-~ 
(PKC- ~) 

Retinoblastoma (RB) gene product 

15 kDa Ubiquitin cross-reactive 
protein 

Vimentin 

Tubulin 

IRF1/ISGF2 

IRF2 

Interferon-inducible protein 35 
(IFP35) 

Interferon-inducible protein 56 
(IFP56) 

Gene 200 cluster products 

1-8U, 1-8D and 9-27 gene products 

6-16 gene product 

Immunoglobulin Fc-receptor (FcR) 

Intracellular 50 kDa Fcy- 
binding protein 

Thymosin B4 

dsRNA-dependent synthesis 
of ppp(A2p)n-A [2-5A]; 
activator of RNase L 

Phosphorylation of peptide 
initiation factor elF-2o~ 

Antigen presentation to cytotoxic 
T lymphocytes (CTL) 

GTP, GDP binding 

Specific inhibition of 
influenza virus replication 

Metal detoxification 

Serine/threonine protein 
phosphorylation 

Tumor suppressor protein 

Targeting of structurally 
abnormal proteins for 

degradation 

Intermediate filament network 

Cellular structural filaments 

Nuclear transcription factor 

Nuclear repressor factor 

Leucine-zipper type 
transcription factor 

Unknown 

204 protein is nucleolar 
phosphoprotein 

9-27 product is an RNA binding 
protein 

13 kDa hydrophobic protein of 
unknown function 

Binding of immunoglobulins 

Unknown; binds IgG but not IgM, 
IgA or IgE 

Induction of terminal transferase in 
B lymphocytes 

Revel and Chebath, 1986; Sen and 
Lengyel, 1992; Samuel, 1987; 

Staeheli, 1990. 

Revel and Chebath, 1986; Sen and 
Lengyel, 1992. 

De Maeyer and De Maeyer 
Guignard, 1988; Heron et aL, 1978. 

Schwemmle and Staeheli, 1994. 

Ronni et aL, 1993. 

Revel and Chebath, 1986. 

C. Wang et al., 1993. 

Kumar and Atlas, 1992. 

Loeb and Haas, 1992. 

AIIdridge et aL, 1989. 

Fellous et aL, 1982. 

Sen and Lengyel, 1992. 

Sen and Lengyel, 1992. 

Bange et al., 1994. 

Chebath et aL, 1983. 

Choubey and Lengyel, 1992. 

Lawn et aL, 1981a,b; 
Constantoulakis et aL, 1993. 

Porter and Itzhaki, 1993. 

Hokland and Berg, 1981. 

Thomas and Linch, 1991. 

Revel and Chebath, 1986. 

they are being constitutively produced, their synthesis 
augmented by IFN. 

8. Mouse IFN  and IFN-  
The genes for mouse IFN-~ subtypes and mouse IFN-[3 
(no functional mouse IFN-c0 gene has been found) are 
located on mouse chromosome 4 (Dandoy et al., 1984, 

1985; De Maeyer and De Maeyer-Guignard, 1988, for 
review). These genes are, like their human counterparts, 
intronless and of comparable structure. Twelve mouse 
IFN-~ genes or pseudogenes have been identified, of 
which the cDNAs for 10 different genes have been cloned 
and expressed (Langer and Pestka, 1985; De Maeyer and 
De Maeyer-Guignard, 1988). Mouse IFN-~ subtype 
proteins contain 166 or 167 amino acids, or exceptionally 
162 (mouse IFN-~8) , and the four cysteines at positions 
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Figure 25.6 Schematic drawing depicting signal transduction pathways from the IFN receptors at the cell 
membrane to the cell nucleus. ISGF3 = interferon-stimulated gene factor-3. The ISGF3~ complex contains three 

structurally related proteins p84, p91, and p113, and the ISGF3y subunit is comprised of a single protein, p48. ISRE = 
interferon-stimulated response element, present in IFN-inducible genes. JAK1, JAK2 and TYK2, nonreceptor protein 
tyrosine kinases involved in the phosphorylation of ISGF3~ proteins, p91 and p113. PKC = protein kinase C involved 

in the phosphorylation of nuclear transcription factor NF•B. 

1, 29, 99, and 139, which are responsible for disulfide 
bond (Cysl-Cys 99, Cys29-eys 139) formation in human 
IFN-(x subtypes, are perfectly conserved. Most of the 
mouse IFN-cz subtypes contain an N-linked glycosylation 
site at position 78 and thus are glycoproteins. In amino 
acid sequences, mouse IFN-cz subtypes are about 40% 
homologous with their respective human counterparts 
(Langer and Pestka, 1985). 

There is only a single-copy mouse IFN-[3 gene and this 
encodes the 16I-amino-acid mature mouse IFN-[3 
protein (Higashi et al., 1983; De Maeyer and De 
Maeyer-Guignard, 1988). Mouse IFN-13 contains only 
one cysteine and thus cannot form intramolecular 
disulfide bonds. It has three potential N-linked 
glycosylation sites and is heavily glycosylated when 
secreted from mouse fibroblasts; the molecular mass of 
the native glycoprotein is approximately 34 kDa com- 
pared to the predicted 17 kDa for the nonglycosylated 
counterpart (De Maeyer and De Maeyer-Guignard, 

1988). The amino acid sequence of mouse IFN-I3 is 
about 4:8% related to that of human IFN-I3. The three- 
dimcnsional structure of mouse IFN-I3 has been solved 
(Senda et aL, 1992) (see Section 3.1.1 ) and the protein 
has been shown to comprise five s-helices folded into a 
compact s-helical bundle (Figure 25.4). 

Induction of transcription of mouse IFN-0~ subtype 
genes and the mouse IFN-I3 gene is probably regulated 
by transcription factor-binding nucleotide sequences 
present in the 5' noncoding promoter region, in a similar 
way to that of human IFN-~ and IFN-[3 genes (see 
Section 2.2). For. example, repeated GAAA-rich 
sequences are present in the 5' flanking regions of most 
mouse IFN-cz subtype genes and these are likely to be 
important for virus-inducible transcription (Shaw et M., 
1983; Zwarthoff et al., 1985). Inducers of mouse IFN-~ 
and IFN-I3 synthesis, which include a number of viruses 
and double-stranded polynucleotides, are similar to those 
which induce human IFN-c~, IFN-[3, and IFN-60 
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production (Stewart, 1979; De Maeyer and De Maeyer- 
Guignard, 1988). Similarly, the type of IFN produced 
follows the pattern found among different human cell 
types: fibroblastic and epithelial cell lines produce mainly 
IFN-~, whereas leukocytes produce mainly IFN-0~ 
subtypes (De Maeyer and De Maeyer-Guignard, 1988). 

The biological properties of mouse IFN-0~ and IFN-~ 
are similar to those of human IFN-0~, IFN-J3 and IFN-03 
(see Section 5). Since mouse and human IFN-~ subtypes 
are only 40% homologous, there is considerable species 
preference in biological activity, i.e., mouse IFN-cx is 
weakly active in human cells and vice versa. Mouse IFN- 
13 is also not active in human cells (Stewart, 1979). 

Rather less is known regarding receptors for mouse 
IFN-~ and IFN-13, than for the human counterparts, but 
it is probable that they comprise two or more chains, as is 
the case for the human IFN-~/J3/00 receptors (Uzd et al., 
1995). The mouse equivalent receptor chain to the IFN- 
0~ 8 binding protein (Uzd et al., 1990) has been cloned 
(Uz~ et al., 1992). The gene for this mouse IFN-~/13 
receptor has been located to mouse chromosome 16 
(Cheng et al., 1993). The mouse IFN-~/13 receptor is 
564 amino acids long and is divided into a large N- 
terminal extracellular domain (403 amino acids), a short 
hydrophobic transmembrane segment (20 amino acids), 
and a cytoplasmic domain (141 amino acids) (Uz~ et al., 
1992). The extracellular domain contains eight potential 
N-linked glycosylation sites and is predicted to exhibit 
the two-D200 domain structure of the human IFN-~ 8 
binding protein extracellular domain (Figure 25.5) (Uzd 
et al., 1995). Further mouse IFN-0~/]3 rceptors or 
components thereof await identification and 
characterization. Signal transduction via mouse IFN-~/]3 
receptors is expected to involve the JAK1/TYK2- 
ISGF3 (STAT 1/2)  pathway as outlined for human IFN- 
0~/]3/60 receptors (see Section 7.1). In STAT 1 gene- 
deleted mice there are no overt developmental 
abnormalities, but they display a complete lack of 
responsiveness to mouse IFN-0~ and IFN-~, (Durbin et 
al., 1996; Meraz et al., 1996). As a consequence, 
STAT 1 - / - m i c e  are highly susceptible to infection by 
viruses and microbial pathogens. STAT 1 is therefore an 
obligatory mediator in the signal transduction pathway 
triggered by IFNs. Targeted disruption of the cloned 
mouse IFN-0~/]3 receptor gave rise to a knockout with a 
similar phenotype (Miiller et al., 1994). Such mice, 
lacking the IFN-cx/13 receptor, developed normally but 
were unable to respond to mouse IFN-0~/]3 and thus 
unable to cope with viral infections. 

9. Clinical Uses of IFNs 
9.1 GENERAL CONSIDERATIONS 

The potent antiviral activity of IFN-~/]3/c0 together 
with their potential antitumor actions provided the 

impetus for large-scale manufacture of IFNs for the 
purpose of clinical evaluation in a variety of viral and 
malignant diseases. In the early 1970s, IFN production 
depended on pooled, human buffy coats (leukocytes) 
and thus only limited quantities could be made (Cantell 
and Hirvonen, 1977). Later in that decade, human 
lymphoblastoid cells (e.g., Namalwa), which could be 
grown to large culture volumes, became available for 
IFN production. By the 1980s, following the cloning of 
IFN-~ and IFN-J3, these IFN species were mass- 
produced by recombinant rDNA technology, leading to 
abundant availability of certain IFN-0~ subtypes, e.g., 
IFN-0~ 2 and "stabilized" IFN-]3 ser 17. There followed 
production of IFN-7 and IFN-c0 by this means. Clinical 
usage of IFN-~ preparations far exceeds that of IFN-[3 
and IFN-c0 because of early production difficulties with 
the latter types, though these are now solved. 

At the beginning of the 1980s there was tremendous 
enthusiasm, both from manufacturers of IFNs and from 
clinicians, to evaluate the therapeutic potential of IFNs. 
However, early clinical trials had been poorly devised, 
were not "blinded", and often yielded only anecdotal 
evidence of success. It was only after many controlled, 
randomized studies had been conducted that it became 
apparent that IFNs in general, administered as a single 
agent, were not beneficial for the treatment of the 
majority of malignant diseases, including the major 
cancers (lung, breast, colon) of the developed world. The 
initial optimism all but vanished and was replaced in the 
mid-to-late 1980s by a more sober and realistic 
appreciation of the potential therapeutic value ofIFNs. A 
number of general conclusions have been drawn, as 
follows. (i) IFN-0~ and IFN-]3, and to a lesser extent IFN- 
3', have antitumor activity in a small number of cancers, 
particularly in those that are relatively slow-growing and 
well-differentiated. (ii) There is no indication that 
heterogeneous IFN-~ preparations containing mixtures 
of IFN-0~ subtypes (e.g., leukocyte IFN, lymphoblastoid 
IFN) have different clinical effects from those of 
homogenous, recombinant IFN-0~ subtype or IFN-]3 
preparations. (iii) Continuous or intermittent high 
dosing appears to be required for antitumor efficacy. 
(iv) IFNs probably work best in patients with a minimal 
tumor burden (Balkwill, 1989). 

A major concern that has emerged from clinical studies 
is that IFNs all generate a considerable number of 
undesirable, clinically observable, side-effects, including 
fever, chills, malaise, myalgia, headache, fatigue, and 
weight loss, and in certain cases these have been severe 
enough for treatment to be halted (Bottomly and Toy, 
1985; Rohatiner et al., 1985; Goldstein and Laszlo, 
1986). In addition, a variable proportion (1-40%) of 
patients treated with IFN-0~ or IFN-]3, especially 
recombinant IFN-~ 2 and recombinant IFN-]3 ser 17, 
develop neutralizing antibodies to the IFN species used 
(Rinehart et al., 1986; Antonelli et al., 1991), that in 
some instances have been associated with clinical 
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"resistance" to IFN (Steis et al., 1988; Oberg et al., 
1989; Freund et al., 1989; Fossa et al., 1992). A further 
important, but generally unrecognized, side-effect of 
IFN-~ treatment is the possible induction of certain 
types of autoimmune disease (Feldmann et al., 1989; 
Gutterman, 1994), probably mediated via IFN-induced 
upregulation of MHC antigen expression and 
generalized immunosuppression. 

9 . 2  I F N  T R E A T M E N T  OF M A L I G N A N T  

DISEASES 

The most responsive cancer to IFN-a therapy is a very 
rare form of B-cell leukemia, known as "hairy cell" 
leukemia (HCL), in which a response rate up to 80% has 
been reported (Gutterman, 1994; Baron et al., 1991; 
Vedantham et al., 1992). In HCL patients, the "hairy 
cells" invade the spleen and bone marrow and the disease 
takes an indolent course. It has been shown convincingly 
that IFN-~ therapy continued over several months leads 
to a clearance of "hairy cells" and in some patients a 
long-term remission is achieved. IFN-~ ser 17 or IFN-y 
were less effective against HCL (Saven and Piro, 1992). 
The IFN-~-induced mechanisms whereby clearance of 
"hairy cells" is achieved are not fully understood, but it is 
believed that a direct action of IFN-~ leading to 
differentiation of "hairy cells" to a nonproliferating 
phenotype is involved (Vedantham et al., 1992; 
Gutterman, 1994). Not all patients benefit greatly from 
IFN-~ treatment and some develop neutralizing 
antibodies, particularly when IFN-0~ 2 is used (Steis et al., 
1988). When such neutralizing antibodies cause 
resistance to further IFN-~ 2 treatment, clinical responses 
can be "rescued" by switching to a heterogeneous IFN- 
0~ preparation, e.g., leukocyte IFN-c~ (von Wussow et al., 
1991). However, on the whole, IFN-~ therapy of HCL 
appears at least as effective and durable as chemotherapy 
with the drug pentostatin (2-deoxycoformycin) (Saven 
and Piro, 1992). 

IFN-0~ therapy has also been shown to slow down the 
progression of chronic myelogenous leukemia (CML) 
(Baron et al., 1991; Gutterman, 1994). In this malignant 
disease, leukemic cells grow slowly in the initial chronic, 
but benign, phase and persist for 2-4 years, but there 
follows a dramatic "blast crisis" producing rapidly 
proliferating myeloid leukemia cells and a fatal outcome. 
CML patients treated with IFN-~ in the chronic phase 
often achieve durable remissions, associated with the 
elimination of leukemic cells bearing the so-called 
"Philadephia chromosome", sometimes lasting up to 8 
years. 

Other malignancies in which IFN-a therapy seems to 
work, although with generally a lower percentage of 
patients responding than in HCL and CML, include low- 
grade non-Hodgkin lymphoma, cutaneous T cell 
lymphoma, carcinoid tumors, renal cell carcinoma, 

squamous epithelial tumors of the head and neck, 
multiple myeloma, and malignant melanoma. In most of 
these cancers, complete responses are low compared to 
partial responses, but IFN-~ may help with maintenance 
therapy of diseases in some cases, e.g., multiple myeloma 
(Mandelli et al., 1990; Johnson and Selby, 1994). 

The neovascularization of primary tumors is a crucial 
step in their development and thus the anti-angiogenic 
activity of IFN-~/I3 (Sidky and Borden, 1987) may have 
therapeutic value in certain early malignancies, e.g., 
primary melanoma (Gutterman, 1994). Kaposi sarcoma, 
often found in AIDS patients, has been regarded as an 
angiogenic tumor or angioproliferative disease, which 
may explain why IFN-c~ treatment can lead to regression 
of lesions in up to 40% of patients with this condition (De 
Wit et al., 1988; Groopman and Scadden, 1989). 

In preclinical systems, the combination of lFN therapy 
and conventional chemotherapy has appeared to offer 
greater chances of producing effective treatment of many 
cancers, but in clinical trials this strategy has produced 
mostly disappointing results (see Wadler and Schwartz, 
1990, for review). This may be due to (i) the inability of 
preclinical models accurately to predict the clinical 
situation; (ii) the lack of understanding of the 
biochemical interactions and biological consequences of 
combining IFNs and chemotoxic agents; (iii) a failure to 
incorporate information on dose, scheduling, and 
sequence of administration of IFNs and chemotoxic 
agents into clinical trials. 

9 . 3  I F N  T R E A T M E N T  OF V I R A L  

DISEASES 

Despite having proven antiviral activity in vitro, IFNs 
have not proved the hoped-for panacea for most 
common viral infections in man. IFN-0~/~ prevent the 
replication of common cold viruses (rhinoviruses and 
coronaviruses) in the test tube and when administered to 
volunteers in the form of a nasal spray, but cannot "cure" 
colds once they are established (Scott r al., 1982; R.M. 
Douglas et al., 1986; Turner et al., 1986). IFN-ix is only 
partially effective in preventing influenza virus infections 
(Treanor et al., 1987). 

Topical applications of IFN-~/~  in the form of creams 
or ointments to herpes virus lesions, e.g., in herpes 
zoster (chickenpox), and genital warts (Condy loma  
a c u m i n a t u m )  caused by papilloma viruses have been 
investigated, but have given limited beneficial effects. 
However, when administered parenterally, i.e., by 
intramuscular or intravenous injection, greater beneficial 
effects of IFN-(x/6 on virally caused lesions and warts 
have been found, although not to an extent that IFN 
therapy has become the treatment of choice (Schneider et 
al., 1987; J.M. Douglas et al., 1990; Baron et al., 1991; 
Gutterman, 1994). Another wart-like disease, juvenile 
laryngeal papilloma (JLP), which can severely obstruct 
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the airways of young children, caused by the same 
papilloma virus types (6 and 11) as cause genital warts, 
has also been found to respond beneficially to IFN-~ 
therapy. Disappointingly, IFN-cz therapy appears neither 
curative nor of substantial value as an adjunctive agent in 
the long-term management ofJLP (Healy et al., 1988). 

Probably the most successful application of IFN-~ 
therapy to viral disease is in the treatment of chronic 
active hepatitis, caused by either hepatitis B or C viruses 
(Baron et al., 1991; Gutterman, 1994). Up to about 40% 
of chronic active hepatitis B patients respond to IFN-~ 
therapy; viral infectivity markers disappear and 
seroconversion and cure follow. It is interesting in the 
case of hepatitis B virus that viral activity is responsible 
for inhibiting the endogenous IFN system (Foster et al., 
1991), and thus the administration of exogenous IFN-cz 
constitutes a replacement therapy. In hepatitis C virus 
infection, some serotypes of the virus are apparently 
more sensitive to IFN-~ therapy than others and 
prolonged treatment may be necessary (>6 months) to 
prevent relapses occurring (Gutterman, 1994). 

Both IFN-~ and IFN-[3 have been shown to inhibit 
human immunodeficiency virus-1 (HIV-1) replication in 
vitro (Hartshorn et al., 1987). However, in vivo, there is 
little evidence showing that IFN-c~ therapy has any long- 
term beneficial effect in asymptomatic HIV-l-positive 
individuals or MDS patients (Friedland et al., 1988; Lane 
et al., 1990), except for limited regressions in Kaposi 
sarcoma lesions (De Wit et al., 1988; Groopman and 
Scadden, 1989). Combination therapies for HIV-1- 
infected individuals involving IFN-~ and antiviral drugs 
such as zidovudine (AZT) have also proved to be 
ineffective (Berglund, 1991 ). 

9 . 4  I F N  T R E A T M E N T  OF O T H E R  

H U M A N  DISEASES 

As mentioned earlier, IFN-0~/~ inhibits hematopoiesis 
and therefore induces leukopenia in patients. This effect 
has generally been thought to be undesirable and it can 
lead to immunosuppression; however, it has proved 
useful for the treatment of diseases in which there 
is uncontrolled leukocytosis, e.g., thrombocytosis 
(markedly elevated platelet numbers), associated with 
various myeloproliferative diseases (Gisslinger et al., 
1989). Resistance to IFN-~ 2 therapy has occurred in 
such patients when neutralizing antibodies to IFN-~ 2 
have developed, but successful retreatment with a 
heterogeneous IFN-~ preparation, lymphoblastoid IFN 
(IFN-0~N1) has been reported (Brand et al., 1993). 

The findings that production of IFN-~ and IFN- 7 was 
deficient in multiple sclerosis (MS) patients (Neighbor 
and Bloom, 1979) stimulated clinical trials to evaluate 
IFNs in MS. Rather unexpectedly, it has repeatedly been 
found that IFN-]3, either natural fibroblast-derived or the 
later recombinant IFN-J3 ser 17 (IFN-J3-1b), injected 

intrathecally, subcutaneously, or intramuscularly in 
patients with relapsing/remitting disease leads to a 
reduced rate of exacerbations of the disease and thus is 
possibly of clinical benefit in some patients (Jacobs et al., 
1981, 1987, 1993; The IFNB Multiple Sclerosis Study 
Group, 1993; Paty et al., 1993). The IFN-[3-induced 
mechanisms that contribute to this beneficial outcome 
are not known, but probably immunomodulatory actions 
are involved, e.g., suppression of growth and activity of 
autoreactive T lymphocytes in the central nervous system 
(Goodkin, 1994). It is unclear whether IFN-c~ would 
have a similar effect. However, the results with IFN-[3 
treatment have been encouraging so far, although more 
follow-up of patients will be necessary to monitor any 
effects on the clinical progression of MS (Ebers, 1994). 
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