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This study investigated the hypoglycemic and renal protective effects of scutellarin (SCU) in db/db mice and elucidated the
underlying mechanisms. The oral administration of metformin hydrochloride (Met) at 120mg/kg and SCU at 25, 50, and
100mg/kg over an eight-week period had hypoglycemic effects, demonstrated by decreases in body weight, blood glucose, food
and water intake, and glycated hemoglobin activity and by augmented insulin levels and pyruvate kinase activity in the serum of
db/db mice. SCU alleviated dyslipidemia by decreasing the levels of triglycerides and total cholesterol and enhancing the levels of
high-density lipoprotein cholesterol in the serum of db/db mice. SCU reversed the overexpression of mRNA of renal damage
markers (receptor for advanced glycation end products, neutrophil gelatinase-associated lipocalin, and kidney injury molecule
1), macrophage marker CD11b, and T cell marker CD3 in kidney of db/db mice. Pathological examination confirmed that SCU
improved the organ structures of hyperglycemia-damaged livers, kidneys, and pancreas islets. Antibody array assay and enzyme-
linked immunosorbent assay were combined to screen and analyze the regulatory effects of SCU on inflammatory factors and
oxidative enzymes. SCU exerted anti-inflammatory effects by inhibiting the levels of proinflammatory cytokines (glycogen
synthase kinase, intercellular adhesion molecule 2, and interleukin 1β and 2) and promoting anti-inflammatory cytokines
(interleukin 4). SCU decreased the reactive oxygen species and malondialdehyde concentrations and increased the activity levels
of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) in serum and kidneys. Furthermore, SCU
upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which in turn improved heme oxygenase 1 (HO-1),
superoxide dismutase 1 and 2, and catalase expression levels in kidneys. The study showed that SCU has at least partial
hypoglycemic and renal protective effects in db/dbmice, and themechanism is themodulation of the Nrf2/HO-1 signaling pathway.

1. Introduction

As a chronic metabolic disorder, diabetes mellitus (DM) is a
major threat worldwide [1]. The impaired homeostasis of the
carbohydrate and lipid metabolism is a universal feature of
DM, which ultimately results in impaired glucose tolerance,
insulin resistance, and hyperglycemia [2]. Type 2 diabetes
mellitus is the most common type, accounting for 90% of
the cases; the remaining 10% are primarily gestational diabe-
tes and type 1 diabetes mellitus [3]. Prolonged hyperglycemia
leads to a series of complications for type 2 patients. Diabetic

nephropathy (DN), which is a leading cause of end-stage
renal disease, is the most common diabetic microvascular
complication, and it is associated with high mortality and
morbidity [4].

As DM progresses, the amount of inflammation is closely
related to the exorbitant cytokine concentrations secreted by
the activated immune cells [5]. In a vicious cycle, the inflam-
matory molecules recruit lots of mononuclear cells to the
injury site, which further exacerbates DM [6] and leads to
tubulointerstitial fibrosis and renal hypertrophy [7]. Under
hyperglycemic conditions, the abnormal accumulation of
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reactive oxygen species (ROS) leads to cellular damage by
disrupting DNA and hampering normal mitochondrial func-
tion, which triggers the occurrence of oxidative stress [8].
The overproduction of ROS enhances inflammatory
responses in diabetic patients [9]. Nuclear factor erythroid
2-related factor 2 (Nrf2) is a master regulator of cellular anti-
oxidant activity that activates the expression of various
genes involved in antioxidative defenses [10]. Sodium
butyrate, a known activator of Nrf2, ameliorates diabetes-
induced renal oxidative damage, pathological changes,
and dysfunction [11], which suggests that Nrf2 has a key
role in the pathogenesis of DN. The overexpressions of
catalase (CAT), heme oxygenase 1 (HO-1), and superoxide
dismutase (SOD) have been found to protect β-cells from
deleterious combinations of cytokines, indicating the
important role of oxidative stress in inflammation-
associated demise under DM, and even DN [12].

Metformin (Met), the commonly used drug for DM,
could promote pancreatic β-cell functions and decrease
hepatic glucose production and intestinal glucose absorption
[13]. Multiple natural compounds with various biological
activities have become a treasure trove for researchers devel-
oping new drugs. In our group, we have successfully con-
firmed the hypoglycemic and renal protective effects of
Inonotus obliquus polysaccharides and Paecilomyces hepiali
mycelium through the modulation of oxidative stress and
inflammatory factors [14, 15].

Scutellarin (SCU, 4,5,6-trihydroxyflavone-7-glucuro-
nide), a flavone mainly obtained from Erigeron breviscapus
(vant.) Hand. Mazz., possesses pharmacological properties
such as anti-inflammation [16], antioxidant effects [17],
and the inhibition of adipogenesis [18]. SCU exerts antioxi-
dant effects via Nrf2 nuclear translocation and has been
found to enhance the expression levels of heme oxygenase 1
(HO-1) [19]. SCU-loaded Chit-DC-VB12 nanoparticles have
been found to downregulate the central retinal artery resis-
tivity index and angiogenesis-related proteins’ expressions
of retinas in type 2 diabetic rats [20]. Additionally, SCU
significantly inhibits hyperglycemia-induced apoptotic cells
and morphologic impairments in testes of rats [21].
Although SCU has been used to treat some type 2 diabetes
mellitus-induced complications, the hypoglycemic and
renal protective effects of SCU in DM have not been sys-
tematically studied.

BKS.Cg-Dock7m +/+ Leprdb/JNju mice (db/db mice)
carry a gene mutation in the leptin receptor and have been
widely used for studies of type 2 diabetes mellitus [22, 23].
At 12-14 weeks of age, the db/db mice had glomerular hyper-
trophy and mesangial cell proliferation, which can be used as
an animal model of diabetic nephropathy [24]. This study
investigated the hypoglycemic and renal protective effects
of SCU in db/db mice, which may be related to its modula-
tion of the Nrf2/HO-1 signaling pathway.

2. Methods and Materials

2.1. Animal Experiment Design. The experimental protocols
were approved by the Institution Animal Ethics Committee
of Jilin University (Reference No. 20160302). The process of

model development and drug treatment processes were simi-
lar to those used in previous studies with some modifications
[23, 25, 26]. Forty male BKS.Cg-Dock7m +/+ Leprdb/JNju
mice (db/db mice, 7 weeks) and eight nondiabetic
C57BLKS/J-LepRdb/+ mice (db/m+ mice, 7 weeks) were pur-
chased from the Model Animal Research Center of Nanjing
University (Nanjing, China). All of the mice were housed
in an environmentally controlled room (temperatures
maintained at 23± 1°C, relative humidity of 55%± 5%,
12 h dark/12 h light cycle). After 1 week of adaptive feed-
ing, the db/db mice were randomly divided into five
groups (n = 8/group) and orally treated with 10mL/kg of
normal saline (model group), metformin hydrochloride at
120mg/kg (positive control group), and SCU at doses of
25, 50, and 100mg/kg (SCU-treated groups) for 8 consec-
utive weeks. The db/m+ mice (control group) were orally
treated with 10mL/kg of normal saline for eight consecu-
tive weeks. Body weight and fasting blood glucose were
monitored weekly during the experiments. The details of
the experimental protocol and drug administration are
shown in Figure 1(a). Animals were individually housed
in metabolic cages for 24h, and the volumes of food and
water intake were measured.

2.2. Oral Glucose Tolerance Test. After the 8-week adminis-
tration period, all of the mice were fasted for 12 h (20:00 to
8:00) and their blood glucose was measured in blood samples
taken from the tail vein. Then, the mice were orally treated
with 2.0 g/kg of glucose, and their blood glucose levels were
measured at 0.5 h, 1.0 h, 2.0 h, and 4.0 h. The glucose area
under the curve at the baseline was calculated using the fol-
lowing formula:

AUC = 0 h blood glucose + 0 5 h blood glucose × 0 25
+ 0 5 h blood glucose + 1 0 h blood glucose × 0 25
+ 1 0 h blood glucose + 2 0 h blood glucose × 0 5

1

2.3. Sample Collection and Organ Index Test. After the oral
glucose tolerance test, all mice were fasted (except for water)
for 8 h and blood samples were collected from the caudal vein.
At the end of the experiment, all of the mice were sacrificed,
and their organs including heart, liver, pancreas, and kidney
were harvested, weighed, and partially preserved at −80°C.
The organ index was calculated using the following formula:

Organ index% = mean organweight
mean body weight 2

2.4. Histology Assay. The pancreas, liver, and kidney tissues
were fixed in 4% phosphate-buffered formaldehyde, dehy-
drated in a gradient of ethanol, and then embedded in paraf-
fin. 5μm sections were consecutively cut, deparaffinized in
xylene, rehydrated in graded concentrations of ethanol, and
stained by hematoxylin and eosin (H&E) for histological eval-
uation. All stained sections were visualized with a lightmicro-
scope at ×400 magnification (IX73 inverted microscope,
Olympus, Japan).
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2.5. Antibody Array Assay. The L-series Mouse Antibody
Array Kit, purchased from RayBiotech Inc. (AAM-BLG-1-
2, USA), was used to detect the 308 cytokines in the kidney
tissues collected from all of the groups. Each kidney sample’s
total protein was extracted with ice-cold Cell & Tissue Pro-
tein Extraction Reagent (KC-415, KangChen, China), which
contains inhibitors for protein degradation (5μL PMSF,
5μL protease inhibitor cocktail, and 5μL phosphatase cock-
tail added to 1mL protein extraction reagent). The protein
concentration of each sample was measured using a BCA
protein assay kit (KC-430, KangChen, China). Protein array
membranes were blocked for 30min in a blocking buffer,
then incubated with samples at 4°C overnight. After washing,

the membranes were incubated with diluted biotin-
conjugated antibodies for 2 h at room temperature and then
reacted with streptavidin-conjugated fluorescein at room
temperature. Membranes were then scanned (GenePix
4300A, Axon, US).

2.6. Biochemical Index Measurement. The levels of triglycer-
ide (TG), total cholesterol (TCHO), high-density lipoprotein
cholesterol (HDL-C), glycogen synthase kinase (GSK), inter-
leukin- (IL-) 1β, IL-2, IL-4, IL-6, IL-8, intercellular adhesion
molecule- (ICAM-) 1, ICAM-2, monocyte chemotactic
protein-5 (MCP-5), matrix metalloproteinase-9 (MMP-9),
tumor necrosis factor-α (TNF-α), transforming growth
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Figure 1: (a) Schematic of the animal experimental protocol and drug administration. Eight weeks of SCU and Met treatment regulated (b)
body weight, (c) blood glucose, (d) glucose tolerance, and the levels of (e) glycated hemoglobin, (f) insulin, and (g) pyruvate kinase in serum of
db/db mice. Results are represented as means ± SEM (n = 8). ##P < 0 01 and ###P < 0 001 in a comparison with the db/m+ mice, ∗P < 0 05,
∗∗P < 0 01, and ∗∗∗ P < 0 001 in a comparison with the vehicle-treated db/db mice. SCU: scutellarin; Met: metformin.
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factor-β1/2 (TGF-β1/2), interferon-β (IFN-β), CAT, gluta-
thione peroxidase (GSH-Px), SOD, ROS, and malondialde-
hyde (MDA) in the serum and/or kidney were measured
using enzyme-linked immunosorbent assay kits (Shanghai
Yuanye Bio-Technology Co. Ltd., China) according to the
manufacturer’s instructions.

2.7. Reverse Transcription-Polymerase Chain Reaction (RT-
PCR). RT-PCR was performed according to a method
described previously with some modifications [27]. Briefly,
the RNA was isolated from the kidney using TRIzol (Invitro-
gen, USA) and then synthesized by QuantScript RT Kit
(Tiangen Biotech (Beijing) Co. Ltd., China). GAPDH
primers were used as an internal control. The conditions of
PCR amplification was shown as follows: denaturation at
95°C for 5min, followed by 36 cycles at 95°C for 45 s, 57°C
for 45 s, and 72°C for 45 s. The primer sequences are listed
in Table 1s.

2.8. Western Blot Analysis. Partial kidney tissues were
thoroughly homogenized in a lysis buffer (0.97% protease
inhibitor cocktail, 0.94% 50mM phenylmethylsulfonyl fluo-
ride, and 97.09% 1x RIPA) on ice. The protein concentra-
tions of the homogenates were measured using the BCA
Protein Assay Kit (Merck Millipore, USA); 50μg of protein
was electrophoresed on 12% SDS-PAGE, transferred onto
polyvinylidene difluoride (PVDF) membrane (Merck Milli-
pore, USA), and blocked in 5% bovine serum albumin
(BSA) in Tris-buffered saline. Then, the bands were incu-
bated overnight at 4°C in a corresponding primary antibody
solution containing Nrf2 (ab137550), HO-1 (ab13248),
SOD1 (ab13498), SOD2 (ab13533), and CAT (ab16731)
(1 : 2000; Abcam, UK) or glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH, ABS16, 1 : 2000, Merck Millipore, USA)
and then incubated with horseradish peroxidase-conjugated
goat anti-rabbit secondary antibodies (bs-0295G, 1 : 2000,
Beijing Biosynthesis Biotechnology Co. Ltd., China) for 4
hours at 4°C. Specific signals were visualized with ECL
detection on a gel imaging system (UVP, California, USA).
The average optical density of the bands was quantified
using ImageJ (National Institutes of Health, Bethesda, USA).

2.9. Statistical Analysis. All the experimental data are
expressed as mean ± SEM. A one-way ANOVA followed by
post hoc multiple comparisons (Dunn’s test) was used to
evaluate significant differences between groups using SPSS

16.0 software (IBM Corporation, Armonk, USA), and P <
0 05 was interpreted as statistically significant.

3. Results

3.1. Hypoglycemic Effects of SCU in db/db Mice. Organ index
changes can partially reflect physical conditions [28]. Com-
pared with db/m+ mice, significant changes in the heart,
spleen, and kidney indexes were noted in the 16-week-old
db/db mice (P < 0 001; Table 1), but there were no significant
changes in the liver index (Table 1). The only index enhanced
in the Met and SCU groups was the heart index (P < 0 05;
Table 1).

After the 8-week administration period, the high levels of
food and water intake observed in the db/db mice were all
strongly reversed in the Met and SCU groups at all of the
tested doses (P < 0 001; Table 1).

Increased body weight and blood glucose were noted fol-
lowing the onset of diabetes [29]. 100mg/kg SCU signifi-
cantly lowered the body weight of db/db mice from the
third week (P < 0 01; Figure 1(b)). Both Met and SCU sup-
pressed the blood glucose of db/db mice after the 8-week
administration period (P < 0 05; Figure 1(c)). Glucose toler-
ance is a body’s capacity to mediate blood glucose concentra-
tion [30]. After oral doses of glucose, the blood glucose levels
and glucose area under the curve (AUC) after 2 hours were
significantly lower in the SCU- and Met-treated db/db mice
than in the nontreated group (P < 0 05; Figure 1(d)), suggest-
ing that these substances ameliorated glucose intolerance.

The concentrations of GHbA1c, insulin, and pyruvate
kinase are correlated with glucose levels and therefore are
viewed as dependable indexes for the diagnosis of diabetes
[31]. Compared with db/m+ mice, enhanced levels of
GHbA1c (P < 0 001, Figure 1(e)) and decreased insulin levels
and pyruvate kinase activity (P < 0 01, Figures 1(f) and 1(g))
were observed in db/db mice; these levels were all strongly
normalized by SCU and Met (P < 0 05, Figures 1(e)–1(g)).

3.2. Effects of SCU on Lipid Profiles in db/db Mice. Dyslipid-
emia is frequently present in diabetic patients, particularly
due to the poor control of blood glucose [32]. Compared with
db/m+ mice, db/db mice had abnormally high levels of TG
(P < 0 01, Figure 2(a)) and TCHO (P < 0 01, Figure 2(b))
and low levels of HDL-C (P < 0 001, Figure 2(c)) in serum.
As in the Met group, the SCU group showed hypolipidaemic
effects in the db/db mice such as the suppression of TG and

Table 1: The effect of SCU and Met on organ indexes, food intake, and water intake in db/db mice.

db/m+ db/db
db/db +Met (mg/kg) db/db + SCU (mg/kg)

120 25 50 100

Organ index %

Liver 4.5± 0.8 5.5± 0.2 5.1± 0.3 4.5± 0.6 5.4± 0.3 5.3± 0.3
Heart 0.58± 0.04 0.28± 0.009### 0.31± 0.01∗ 0.31± 0.02 0.32± 0.02∗ 0.34± 0.02∗∗

Spleen 0.31± 0.008 0.15± 0.02### 0.15± 0.03 0.14± 0.01 0.14± 0.007 0.15± 0.01
Kidney 1.42± 0.04 0.75± 0.02### 0.84± 0.06 0.76± 0.01 0.74± 0.02 0.78± 0.04

Food intake (g/100 g) 8.7± 1.3 22.1± 0.8### 13.4± 0.6∗∗∗ 10.9± 1.1∗∗∗ 12.8± 1.4∗∗∗ 14.0± 1.8∗∗∗

Water intake (g/100 g) 27.9± 1.6 65.4± 4.1### 37.6± 3.3∗∗∗ 32.7± 2.7∗∗∗ 36.0± 2.5∗∗∗ 34.0± 5.0∗∗∗
###P < 0 001 versus db/m+ mice, ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus vehicle-treated db/db mice.
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TCHO levels and the enhancement of HDL-C levels
(P < 0 05, Figure 2).

3.3. The Protection of SCU on the Liver, Kidney, and Pancreas
in db/db Mice. Lipid accumulation in the vesicles of hepato-
cytes and the fatty degeneration of hepatocytes was detected
in the liver of db/db mice, but this was attenuated in the SCU
and Met groups, as suggested by the extreme reduction in the
formation of fat vacuoles (Figure 3(a)). A glomerular hyper-
trophy, that is, a thickening of the basement membrane and
a narrowing of the capsular space of the kidney, and irregu-
larly shaped pancreatic islets were noted in db/db mice
compared to db/m+ mice (Figures 3(b) and 3(c)). All of these
pathological changes were strongly relieved by SCU and Met
(Figures 3(b) and 3(c)).

Hyperglycemia induces serious diabetic microvascular
complications such as nephropathy. Neutrophil gelatinase-
associated lipocalin (NGAL), kidney injury molecule 1
(KIM-1), and the receptor for advanced glycation end prod-
ucts (RAGE) are biomarkers of renal injury that can predict
early diabetic nephropathy [33, 34]. The elevated NGAL,
KIM-1, and RAGE mRNA levels in db/db mice were reduced
in the SCU-treated group, especially at 100mg/kg (P < 0 05,
Figure 3(d)).

Macrophages and T cells play an important role in
inflammation [35]. The gene expressions of CD11b, a charac-
teristic macrophage marker, and CD3, a characteristic T cell
marker, were significantly upregulated in db/db mice com-
pared with db/m+ mice (P < 0 05, Figure 3(d)). Treatment
with SCU inhibited the decrease in CD11b and CD3 gene
expression in db/db mice compared to the vehicle-treated
db/db mice (P < 0 05, Figure 3(d)).

3.4. Renal Protection of SCU via Regulation of Inflammatory
Factors in db/db Mice. Fluorescent images performed using
a comprehensive biotin label-based cytokine tip assay
suggested that 28 of the 308 target cytokines related to
inflammation were strongly enhanced, and 1 was decreased
over 50% in the vehicle-treated db/db mice compared with
the db/m+ mice (Figure 4 and Table 2s). Compared with
vehicle-treated db/db mice, 50mg/kg doses of SCU

increased by over 50% the levels of 15 types of cytokines
and reduced the levels of 4 types of cytokines in db/db
mice. Doses of 100mg/kg of SCU strongly regulated 24
types of cytokines (Figure 4 and Table 2s).

Based on the results of the cytokine array assay, 13 pro-
and anti-inflammation cytokines were further analyzed using
the ELISA method. Hyper-levels of GSK (P < 0 01) and
ICAM-2 (P < 0 05) in serum and of IL-1β (P < 0 05) and
IL-2 (P < 0 05) in kidneys and hypo-levels of IL-4 in kidneys
(P < 0 05) were found in db/db mice compared with db/m+

mice (Table 2). Compared with vehicle-treated db/db mice,
db/db mice after eight weeks of SCU administration had a
12% reduction in the serum levels of GSK (P < 0 05), 8.1%
(P < 0 05) and 13.6% (P < 0 05) reductions in the levels of
IL-1β and IL-2 in kidneys, and a 33.5% (P < 0 01) increase
in the renal levels of IL-4 (Table 2). Additionally, SCU signif-
icantly decreased the serum levels of ICAM-2 by up to 26.7%,
but failed to influence its renal levels (Tables 2 and 2s). SCU
and Met treatment failed to influence the levels of MMP-9,
TNF-α, IL-6, IL-8, ICAM-1, MCP-5, TGF-β1/2, and IFN-β
in the serum and/or kidneys of db/db mice (Table 3s).

3.5. SCU Displayed an Antioxidative Effect by Regulating
Nrf2/HO-1 Signaling. Compared with db/m+ mice, the
extremely low levels of CAT, GSH-Px, and SOD in serum
and kidney of db/db mice (P < 0 05; Table 3) were markedly
prevented by an 8-week administration of SCU, especially at
a dose of 100mg/kg (P < 0 05; Table 3). Compared with db/
m+mice, db/db mice exhibited a 10.8% enhancement of renal
ROS levels (P < 0 05; Table 3); however, no significant
changes in levels of MDA were observed. The administration
of SCU over an 8-week period resulted in a >19.6% reduction
in ROS levels in the kidneys (P < 0 05) and a >11.1% reduc-
tion in MDA levels in the serum (P < 0 01) and kidneys
(P < 0 05) of db/db mice (Table 3).

Concurrent with the 39.7% decrease in Nrf2 expression
levels (P < 0 05), the expression levels of HO-1 (P < 0 01),
SOD1 (P < 0 05), SOD2 (P < 0 05), and CAT (P < 0 05) were
significantly depressed in the kidneys of db/db mice by up to
66%, 29.2%, 47%, and 48.5%, respectively, compared with the
db/m+ mice (Figure 5). The SCU administration enhanced
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Figure 2: Eight weeks of SCU and Met treatment regulated the levels of (a) triglyceride, (b) total cholesterol, and (c) high-density lipoprotein
cholesterol in serum of db/db mice. Results are represented as means ± SEM (n = 8). ##P < 0 01 and ###P < 0 001 in a comparison with the
db/m+ mice, ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 in a comparison with the vehicle-treated db/db mice. SCU: scutellarin; Met: metformin.
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the expression levels of Nrf2 (P < 0 01) and further led to the
increased activation of HO-1 (P < 0 01), SOD1 (P < 0 01),
SOD2 (P < 0 05), and CAT (P < 0 05) in db/db mice
(Figure 5). Met only enhanced the expression levels of
SOD1 (P < 0 01) and SOD2 (P < 0 05) (Figure 5).

4. Discussion

In db/db mice, SCU increases hypoglycemic activities such as
alleviating food and water intake, effectively reducing body
weight and fasting blood glucose, raising glucose tolerance,
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Figure 3: Histopathological analysis in the (a) liver, (b) kidney, and (c) pancreas by H&E staining (scale bar: 100μm; magnification: 400x).
(d) mRNA expression of the renal damage markers RAGE, NGAL, and KIM-1, macrophage marker CD11b, and T cell marker CD3 in the
kidneys of db/db mice measured using RT-PCR. Marker size from top to bottom: 2000 bp, 1000 bp, 750 bp, 500 bp, 250 bp, and 100 bp.
H&E: hematoxylin and eosin; RAGE: receptor for advanced glycation end products; NGAL: neutrophil gelatinase-associated lipocalin;
KIM-1: kidney injury molecule 1; RT-PCR: reverse transcription-polymerase chain reaction. #P < 0 05 in comparison with db/m+

mice, ∗P < 0 05 and ∗∗P < 0 01 in comparison with vehicle-treated db/db mice.
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and inhibiting the level of GHbA1c. GHbA1c is the product
of the un-reversible combination of hemoglobin and blood
glucose in red blood cells, which is positively correlated with
blood glucose concentration [36]. Insulin, produced by β-
cells, regulates blood glucose levels by converting glucose into
glycogen [37]. Dysfunction of the pancreatic islets and low
secretion of insulin are major indicators of DM. Insulin pro-
motes the synthesis of PK, one of the main rate-limiting
enzymes in glycolysis, which can catalyze enolphosphopyru-
vate and ADP to ATP and pyruvate [38]. This study found
that SCU effectively reduces the irregular shape of pancreatic
islets and enhances the levels of insulin and PK activity, fur-
ther confirming its capacity to mitigate the hyperglycemia
burden in db/db mice. Hyperglycemia promotes the synthe-
sis of TG and TCHO and reduces the HDL-C level in the
liver, which results in lipid metabolism disorders in diabetic
patients [39]. The excess free fatty acids in the blood pro-
duced by the irregular lipid metabolism accumulate in the
liver [40]. Encouragingly, our results confirmed the beneficial
effects of SCU in attenuating dyslipidemia in db/db mice.

Hyperglycemia causes renal hemodynamic changes and
metabolic abnormalities that lead to renal injury through
the upregulation of the production of proinflammatory

cytokines [41]. The renal protection of SCU has been further
confirmed by its suppression on the mRNA levels of NGAL,
KIM-1, and RAGE in the kidney. NGAL and KIM-1 reflect
the tubular damage associated with the collateral tubulointer-
stitial inflammation in glomerulonephritis/vasculitis [33].
Advanced glycation-end products (AGEs) form a regulatory
network by binding to and activating its specific receptor
for AGEs (RAGE), which boost intracellular signaling trans-
ductions, inducing renal cell proliferation and eventually
accelerating the pathological progression of diabetic renal
fibrosis [34]. This inflammatory activation leads to impaired
insulin secretion and function [42], which further exacerbate
diabetes. Adipose tissue inflammation and islet inflammation
are associated with increased macrophage numbers [43, 44],
which trigger immune response [45]. G-CSF stimulates the
maturation of granular and mononuclear macrophages and
is closely related to inflammation response. ICAM-2 influ-
ences NK cell-mediated clearance, adhesive interactions for
antigen-specific immune response, and lymphocyte recircu-
lation [46]. IL-1β helps to increase the secretion of G-CSF
[47] and ICAM-1 [48], which is responsible for β-cell dam-
age and death in islets, and further aggravates DM symptoms
in rodents and humans [5, 49]. On the other hand, TGF-β
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Figure 4: The effects of SCU on the 308 cytokines in kidney of db/db mice were detected by the Mouse Cytokine Array Kit (n = 3). (a) The
fluorescent graphical representation of cytokine expressions. (b, c and d) Scatter diagram of the 308 cytokines. The relative density is the ratio
of the absolute value and the reference spot value. The red dots indicate the factors with a change of >50% (db/db mice vs. db/m+ mice and
SCU-treated db/db mice vs. vehicle-treated-db/db mice).
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suppresses the synthesis of proinflammatory molecules, such
as IL-2, alleviates renal fibrosis [50], and prevents the IL-1β-
dependent proliferation of activated T cells [51]. The activa-
tion of T cell results in secretion of proinflammatory effector
interleukins such as IL-1β and IL-2 [52]. This imbalance of
IL-1β leads to pancreatic islet inflammation [53], aggravating
diabetes mellitus. Similarly, lipopolysaccharide stimulates the
secretion of inflammatory factors, such as TNF-α and IL-1β,
in the macrophage [54], which causes the development of
inflammatory responses. Additionally, the significant eleva-
tion in IL-2 level was also noted in patients with nephropathy
[55]. IL-4 could inhibit IL-2-induced activation of NK and
show anti-inflammatory roles based on its protective effects
in diabetes [56]. SCU affected the function of T cell and mac-
rophage to ameliorate hyperglycemia-induced inflammation
in the kidney of db/db mice.

Hyperglycemia and fatty acid oxidation-mediated oxida-
tive stress are the foundation for the development of DM,
which occurs when there is an overaccumulation of ROS
due to low levels of antioxidant genes [57]. Excessive produc-
tion of ROS promotes progressive metabolic and mitochon-
drial dysfunction leading to oxidative stress, which can
reduce insulin secretion from β-cells [58]. Furthermore, the
overexpression of ROS has been found to increase with pro-
inflammatory cytokines, which act as signaling molecules
and mediators for inflammatory responses [59]. Nrf2 regu-
lates redox homeostasis, plays a critical role in preventing
oxidative stress, and exhibits the potential to be a prospective

target for diabetes. Nrf2 helps to activate specific genes
including HO-1 and SOD [57]. Of these genes, SOD, an
important enzymatic cellular antioxidant, contains three
main variants located in specific cellular sites including the
cytosol (Cu–Zn-SOD, SOD1), mitochondria (Mn-SOD,
SOD2), and extracellular space [60]. SOD converts O2

− into
the less reactive H2O2 radical. Although H2O2 is known to
be harmful, CAT and peroxidase immediately break H2O2
down into H2O. HO-1, a widespread antioxidative enzyme,
catalyzes free heme into carbon monoxide, biliverdin, and
ferrous iron and is helpful in suppressing inflammation
[61]. The antioxidative enzymes are responsible for scaveng-
ing free radicals, maintaining redox homeostasis, and
decreasing increases in ROS, which depresses inflammatory
responses and thus DM [62]. The antioxidative effects of
SCU were confirmed by cytokine detection and protein anal-
ysis, which controlled the hyperglycemia and inflammatory
response in db/db mice.

5. Conclusion

Compared with previous research, this study first systemati-
cally investigates the hypoglycemic and renal protective
effects of SCU in db/db mice and confirms that SCU have
effective actions against DM by controlling blood glucose
concentration and insulin secretion and mitigating abnormal
lipid accumulation and renal inflammation at least partially
via modulation of the Nrf2/HO-1 signaling pathway.

Table 2: The regulatory effects of SCU and Met on the levels of inflammatory cytokines.

db/m+ db/db
db/db +Met (mg/kg) db/db + SCU (mg/kg)

120 25 50 100

Serum
GSK (pmol/L) 490.9± 13.6 570.5± 17.8## 446.4± 10.7∗∗ 510.4± 15.6 496.1± 23.1∗ 502.1± 12.8∗

ICAM-2 (nmol/mL) 29.4± 0.6 35.2± 1.4# 26.6± 1.6∗ 19.3± 1.6∗∗∗ 23.3± 0.9∗∗ 25.8± 1.2∗

Kidney

IL-1β (pg/mgprot) 34.1± 2.1 37.2± 2# 34.5± 1.6 31.8± 2.4∗ 34.2± 2.1∗ 35.1± 0.5
IL-2 (pg/mgprot) 74.4± 3 84.8± 4.4# 85.8± 2.6 72.8± 5∗ 73.3± 1.1∗ 65.3± 2.3∗∗

IL-4 (pg/mgprot) 37.9± 1.6 32.5± 2.1# 40.5± 0.6∗ 43.4± 4.2∗∗ 33.8± 1.3 37.7± 1.2
#P < 0 05 and ##P < 0 01 versus db/m+ mice, ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 versus vehicle-treated db/db mice.

Table 3: The regulatory effects of SCU and Met on the levels of oxidative cytokines.

db/m+ db/db
db/db +Met (mg/kg) db/db + SCU (mg/kg)

120 25 50 100

Serum

CAT (U/mL) 71.8± 0.5 52.5± 1.5## 54.2± 1.4 56.2± 2.2 54.4± 0.7 59.3± 1.3∗

GSH-Px (U/mL) 293.7± 10.2 249.3± 5.1# 265.5± 6.8 267.5± 10.3 267.9± 3.9 310.5± 13.8∗∗

SOD (U/mL) 250.8± 12 137.5± 21.5### 206.8± 6.9∗∗ 196.2± 16.4∗ 200.4± 12.6∗ 206.9± 15.6∗∗

MDA (nmol/mL) 21.2± 0.4 20.1± 0.6 17.2± 0.6∗ 16.1± 0.5∗∗ 15.3± 0.5∗∗ 16.2± 0.5∗∗

Kidney

CAT (U/mgprot) 22.4± 0.8 18.9± 0.9# 24.8± 0.9∗∗ 23.5± 1.5∗ 21± 0.9 22± 0.5∗

GSH-Px (U/mgprot) 110.5± 4.2 98.5± 4.3# 136.5± 8.8∗∗ 133.4± 9.1∗∗ 114.2± 9.8∗ 114.9± 2.1∗

SOD (U/mgprot) 180.4± 6.6 135.7± 9.6# 168.1± 11.3∗ 203± 6.8∗∗ 206± 11.6∗∗ 206± 12∗∗

ROS (U/mgprot) 136.6± 3.7 151.4± 5.1# 151± 4.7 150.6± 8.8 134.3± 13.1 121.8± 13.5∗

MDA (nmol/mgprot) 8.3± 0.2 8.1± 0.1 7± 0.3∗ 7.2± 0.3∗ 7.1± 0.3∗ 7.1± 0.3∗
#P < 0 05, ##P < 0 01, and ###P < 0 001 versus db/m+ mice, ∗P < 0 05 and ∗∗P < 0 01 versus vehicle-treated db/db mice.
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Figure 5: Four weeks of SCU treatment increased the expression levels of Nrf2, HO-1, SOD1, SOD2, and CAT in the kidney of db/db mice.
The data on quantified protein expressions were normalized by related glyceraldehyde-3-phosphate dehydrogenase. The results are
represented as means ± SEM (n = 4). #P < 0 05 and ##P < 0 01 in a comparison with the db/m+ mice, ∗P < 0 05, ∗∗P < 0 01, and
∗∗∗P < 0 001 in a comparison with the vehicle-treated db/db mice. SCU: scutellarin; Met: metformin.
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Table 1s: the primer sequences used in RT-PCR. Table 2s: the
detailed parameters of target cytokines decreased or
increased over 50% fold among experimental groups, which
were measured using the L-series mouse antibody array kit.
Among 308 target cytokines related to inflammation, 28 of
them were strongly upregulated, and one of them was
decreased over 50% fold in vehicle-treated db/db mice com-
pared with db/m+ mice. The 50 and 100mg/kg of SCU for
19 and 24 types of cytokines changed, respectively, compared
with vehicle-treated db/db mice. Table 3s: the regulatory
effects of SCU and Met on the levels of inflammatory
cytokines. The levels of inflammatory cytokines in the serum
and/or kidney were measured using enzyme-linked immu-
nosorbent assay kits according to the manufacturer’s instruc-
tions. Compared with db/m+ mice, no significant alterations
of several cytokine levels occurred in db/db mice, including
MMP-9, TNF-α, IL-6, IL-8, ICAM-1, MCP-5, TGF-β1/2,
and IFN-β. Also, SCU treatment for 8 weeks had no
influences on those cytokines levels in db/db mice.
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