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Abstract

Background In pediatric neuroblastoma (NBL), high ana-
plastic lymphoma kinase (ALK) levels appear to be
correlated with an unfavorable prognosis, regardless of
ALK mutation status. This suggests a therapeutic role for
ALK inhibitors in NBL patients. We examined the
correlation between levels of ALK, phosphorylated ALK
(pALK) and downstream signaling proteins and response to
ALK inhibition in a large panel of both ALK mutated and
wild type (WT) NBL cell lines.

Methods We measured protein levels by western blot and
ALK inhibitor sensitivity (TAE684) by viability assays in
19 NBL cell lines of which 6 had a point mutation and 4 an
amplification of the ALK gene.

Results ALK 220 kDa (p=0.01) and ALK 140 kDa (p=
0.03) protein levels were higher in ALK mutant than WT
cell lines. Response to ALK inhibition was significantly
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correlated with ALK protein levels (p<0.01). ALK mutant
cell lines (n=4) were 14,9 fold (p<0,01) more sensitive to
ALK inhibition than eight WT cell lines.

Conclusion NBL cell lines often express ALK at high
levels and are responsive to ALK inhibitors. Mutated cell
lines express ALK at higher levels, which may define their
superior response to ALK inhibition.

Keywords ALK - Kinase inhibitor- Neuroblastoma -
PHOX2B - TAE684

1 Introduction

In neuroblastoma (NBL), few genetic alterations have been
described including MYCN amplification (20-25%),
PHOX2B mutation (6.4% of familial NBL) and CCND1
amplification (2.4%). Recently, mutations have been found
in the anaplastic lymphoma kinase (ALK) gene in NBL
patients [1-5]. The discovery of new gene aberrations may
improve risk stratifications and could lead to new therapies
for NBL patients.

ALK is a tyrosine kinase receptor mainly expressed in
the neonatal brain, but expression levels sharply decline
after birth [6, 7]. In general, ALK expression is restricted
to neural tissues. Expression of ALK in cell lines is mainly
seen in neuro-ectodermal cell lines, such as neuroblastoma
cell lines [8, 9]. The ALK receptor is activated through
autophosphorylation upon ligand binding. Signaling of
phosphorylated ALK (pALK) protein occurs through
SHC3, AKT and MAPK pathways [2, 3, 10]. Through
these pathways ALK influences both proliferation and
differentiation. At the protein level, two main isoforms can
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be identified: the 220 kDa full length receptor and the
truncated 140 kDa protein that is the result of extracellular
cleavage. Kinase activity of both isoforms has been
described although in nociceptive neurons only the
220 kDa was observed. [11] ALK gene translocations,
and mainly the t(2;5), have been described in anaplastic
large cell lymphoma, and result in the fusion protein
NPM-ALK. These fusion proteins induce the downstream
pathways AKT, JAK-STAT and MAPK, which become
constitutively active [12—14].

In 2008, ALK point mutations were described in 3—11%
of sporadic NBL and found to be one of the most important
mutations in hereditary NBL (33-40% of the families) [4,
5]. In 20-35% of the NBL cell lines a point mutation of the
ALK gene was identified [2-5, 15]. Amplification of the
ALK gene has also been described in 1.2-4.4% of NBL
patients and 12% of NBL cell lines [1, 4, 5, 16]. Mutations
in the ALK gene have been correlated with higher
proliferation and increased expression of pALK and
downstream targets. Aberrations of the ALK gene have
been correlated with inferior prognosis, although results
have been inconclusive [1-5, 17, 18]. In NBL cell lines,
higher pALK is associated with resistance to apoptosis and
enhanced DNA synthesis and mitosis [2—4, 19]. Recently,
Passoni et al. (2009) described NBL patients with high
ALK levels without a mutation of the ALK gene. They
showed that high ALK levels irrespective of mutation status
were strongly correlated with prognosis [18]. This correla-
tion between high ALK levels and unfavorable prognosis
was confirmed by de Brouwer et al. [20].

In addition, ALK inhibitors may be of therapeutic value
in NBL patients [1-4, 17, 18]. Since the survival rates for
high risk NBL are still unsatisfactory despite intensive
multimodal treatment, the potential of including ALK
inhibitor treatment in the therapeutic strategy is promising
[21]. ALK mutation status and ALK protein levels have
been implied to increase in vitro sensitivity to ALK
inhibitors [3, 18, 22]. Furthermore, ALK inhibitor treatment
was shown to result in decreased proliferation and
decreased protein levels of pALK and downstream targets
(pAKT, pERKI1, pERK2 and pSTAT3) in ALK mutated
NBL cell lines [3, 22]. The silencing of high ALK
expression with siRNA’s seemed to have similar effects
[2, 4, 16, 18]. The results for ALK wild type and amplified
neuroblastoma cell lines have been contradictory. Clarifi-
cation of the biological mechanism that results in sensitivity
to ALK inhibition is important to correctly identify patients
that might respond to ALK inhibitor treatment [23].

Here, we further examined the correlation between ALK,
pALK and downstream signaling protein levels and
response to ALK inhibitor treatment in a large panel of
both ALK mutated (MUT) and wild type (WT) NBL cell
lines.
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2 Methods
2.1 Cell lines

A panel of 19 NBL cell lines (AMC-106¢, SK-N-FI, GI-
ME-N, IMR-32, KCNR, Lan-5, SK-N-AS, N206, NGP-C4,
NMB, SINB-1, SINB-6, SINB-8, SINB-10, SINB-12, SK-
N-BE, TR-14, UGH-NP, SK-N-SH) was cultured in
DMEM (Invitrogen, Breda, The Netherlands) containing
10% heat inactivated fetal calf serum (Integro, Zaandam,
The Netherlands), 0.05% fungizone (Invitrogen), 0.1 U/ml
penicillin (Invitrogen), 0.1 pg/ml streptomycine (Invitro-
gen), 1% 100x glutamax (Invitrogen) and 1% 100x Non-
essential amino acids (MEM, Invitrogen). Two derivatives
of the SK-N-SH cell lines, SHEP-2/tet2 and SHEP-21N/
tet2/N were cultered in RPMI medium (Invitrogen), con-
taining 10% heat inactivated fetal calf serum, 0.05%
fungizone, 0.1 U/ml penicillin, 0.1 ug/ml streptomycine,
0.15% NaBic (Invitrogen) and 1% 1 M HEPES (Invitro-
gen). Cells were maintained at 37°C under 5% CO,.

2.2 DNA and RNA isolation

Total DNA and RNA was extracted using TRIzol reagent
(Invitrogen) according to manufacturer’s protocol. The
quality of the extracted RNA was assessed on an Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and the
quality of the extracted DNA was checked by gel
electrophoresis.

2.3 Sequencing

PCR primers for the genomic region, corresponding to ALK
exon 20 and exon 22 to 25 were designed. (ALK 20 F:
GATTTGCCCAGACTCAGCTC, ALK20 R: TACACTG
CACCCCTCTCCTC, ALK22 F: TTCTCAGCTCACAGC
CTCCT, ALK22 R: AAACCTCTCCAGGTTCTTTGG,
ALK23 F: GATTTGCCCAGACTCAGCTC, ALK23 R:
CACTCTTGCTCCTTCCATCC, ALK24 F: GGAAGCCA
GCATTTCAGATT, ALK24 R: AGCACACAGATCAGC
GACAG, ALK25 F: AATCCTAGTGATGGCCGTTG,
ALK25 R: CCACACCCCATTCTTGAGG). PCR was
performed in 96-well formats in 15 pl reaction volumes
containing 7.6 ul H,O, 3.0 ul 5X colorless Gotaq flexi
buffer, 0.9 ul 25 mM MgCl,, 1 ul each of forward and
reverse primer, 0.3 ul deoxynucleotide triphosphates and
0.2 pl Sunit/ul Gotaq (Promega, Leiden, The Netherlands).
To this 50 ng of DNA was added. PCR conditions were as
follows: 35 cycles of 95°C for 30 s, 58° for 45 s and 72°C
for 45 s and ending with 72°C for 10 min. Cycle
sequencing was performed using the BigDye Terminator
v3.1 sequencing kit (Applied Biosystems, Foster City,
USA) according to the manufacturers’ protocol. Sequencing
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products were analyzed on the 3130XL Genetic analyzer
(Applied Biosystems). Sequence traces were analyzed using
Mutation Surveyor software (SoftGenetics LLC, State
College PA, USA).

2.4 Multiplex ligation-dependent probe amplification

The neuroblastoma Salsa 251-B mix (MRC Holland,
Amsterdam, The Netherlands) was used with standard
conditions and fragment separation was performed on an
ABI3100 (Applied Biosystems). Data analysis was per-
formed with Genemarker software (SoftGenetics) using
internal control probe normalization. Amplification was
defined as 5 gene copies or more (ratio sample to normal
control =1, amplification =/>2.5). Copy number gains
larger than 20 copies were not quantifiable, but these will
be mentioned as having an amplification.

2.5 Gene expression profiles

For gene expression arrays high quality RNA (RIN>8.5)
was selected. This RNA was reverse transcribed using
T7-linked oligo-dT primers to create cDNA and this was
used as a template to synthesize biotinylated cRNA.
Labeled cRNA was then fragmented and hybridized to
HU133plus2.0 arrays (Affymetrix, Santa Clara, CA,
USA). The gene expression data is deposited as
GSE22771 (NCBI GEO) and will be made publicly
available upon publication. No microarrays were per-
formed for SINB-12, SINB-6, N206, UHG-NP. Two
probe sets showing similar expression covered the ALK
gene (r=0.948) (Supplementary Figure 1). The mean of
these two probes has been used for analysis in this article.
For PHOX2B only one probe set was available
(207009 at) and for S100A6 the 217728 at probe set
was used.

2.6 Western blot

Cells were harvested and put in lysis buffer containing
protease inhibitors and aproptinin (Sigma-Aldrich, Moer-
dijk, The Netherlands). Phosphatase inhibitors were added
for studying phosphorylated proteins. Western blots were
carried out with 25 or 50 pug of denatured protein using
standard blotting procedures. The primary antibodies used
are x-pALK Y1604 (Epitomics, Burlingame, USA), o-
ALK (Thermo Fisher Scientific,Fremont, USA), «-AKT, «-
pAKT Serd73, «-p44/42 MAPK, o-phospho-p44/42
MAPK, «-GAPDH and the secondary antibodies used
were x-mouse and o-rabbit HRP linked. Antibodies were
purchased from Cell Signaling (Bioke, Leiden, The Nether-
lands) unless otherwise stated. Imaging and quantification
of the blots was performed with GeneSnap and GeneTools

software (Syngene, Cambridge, UK). For comparison of
samples between various blots, a reference sample was
included in each experiment. Ratios of the protein of
interest and GAPDH were normalized to this reference
sample.

2.7 Cell viability assay

NBL cells were seeded in flat-bottomed 96 well plates
(Greiner, Alphen a/d Rijn, The Netherlands) at 5,000—
50,000 cells per well in a volume of 100 ul DMEM. After
24 h TAE684 (Axon Medchem, Groningen, The Nether-
lands) was added for 72 h, hereafter MTS/PMS ((3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2 H-tetrazolium inner salt), Promega, Leiden,
The Netherlands and phenazine methosulfate, Sigma-
Aldrich, Zwijndrecht, The Netherlands) solution was added
to each well followed by a 3 h incubation at 37°C. The
absorbance was read at 490 nm and corrected for the
720 nm read out. We calculated the median lethal
concentration (LC50).

2.8 Statistics

The data from the expression array was VSN normalized
in the R environment. Spearman correlations were
calculated in SPSS 15.0. A linear regression model was
used to test the influence of MYCN amplification on these
correlations. Differences between groups were calculated
with the Mann—Whitney U test. Graphs were made in
GraphPad Prism version 4 (GraphPad Software, Inc, La
Jolla, USA). ALK amplified samples showed similar
sensitivity to ALK inhibition and similar ALK levels as
WT samples. They were therefore co-analyzed, unless
otherwise stated.

3 Results
3.1 Characterization of cell lines

To study ALK levels and ALK inhibitor response in both
ALK mutant and wild type (WT) cell lines, ALK mutation
status was determined. Point mutations of the ALK gene
were found in six of the 19 NBL cell lines (31.6%). We
identified the F1174L mutation in four cell lines and the
R1275Q mutation in two cell lines (Table 1). Amplifica-
tions (>/=5 copies) of the ALK gene were identified by
multiple ligand probe amplification and ALK was amplified
in four of the 19 cell lines (21.1%). These amplifications
were always part of a larger region of copy number gain
including the NMYC gene. NMYC was amplified in 14 of
the 19 NBL cell lines (73.7%).
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Table 1 Copy number status of

the MYCN and ALK gene, as Cell line NMYC amplified (+/-) ALK amplified (+/-) ALK mutated (type of mutation)

well as mutation status of the

ALK gene in NBL cell lines AMC106C + - F1174L
SK-N-FI + - R1275Q
GI-ME-N - — -
IMR-32 + - -
KCNR + - F1174L
LAN-5 + - R1275Q
N206 + - F1174L
SK-N-AS - - -
NGP-C4 + - -
NMB + + -
SINB-1 - - -
SINB-6 + - —
SINB-8 + - -
SINB-10 + - -
SINB-12 - — -
SK-N-BE + + -

* Amplification was identified as SK-N-SH - - F1174L

having =/>5 gene copies; TR-14 + -

F1174L, p.Phell74Leu; UHG-NP + _

R1275Q, p.Argl275GIn

3.2 Measurement of ALK and downstream signaling
protein levels

To study the consequences of ALK point mutations and
amplifications, we investigated ALK mRNA, ALK protein
and activation of downstream signaling proteins. ALK point
mutated cell lines have significantly higher ALK mRNA
levels compared with amplified and WT cell lines (p<0.01)

(Fig. 1a, Supplementary Figure 1-2). Also, ALK 220 kDa
(p<0.01) and ALK 140 kDa (p<0.01) protein levels
measured by Western blot were significantly higher ALK
in ALK mutated cell lines. The ALK amplified cell lines had
similar ALK levels as wild type cell lines. ALK amplified
cell lines were therefore co-analyzed with the wild type cell
lines, unless otherwise stated. In contrast to total ALK
220 kDa protein levels, phosphorylation of the 220 kDa

Fig. 1 ALK levels are higher in 9.5 1 a 81 b
ALK mutant than wild type NBL 3 o" o 7 .
cell lines. Higher a ALK mRNA £ 9.0 1 K] - .
(p<0.01) b ALK 220 kDa £ — z
protein (p<0.01) and ¢ ALK 2 85 % 57
140 kDa protein (p<0.01) levels 3 : 9 4 .
in ALK mutant than WT NBL < a0 . N g | "~ e
cell lines. d No significant z — gt — 8 . ¢
difference of Y1604 pALK E ;5| v 2] et .
levels between mutant (squares) u A, < 11 aa
and wild type (dots) cell lines < 70 i f o ; .
(p=0.70). MUT, ALK point ALK MUT ALK WT ALK MUT ALK WT
mutation; WT, ALK wild type
gene, including copy number 81 c . 357 d
gains (amplified lines are indi- g 71 - 2 30+ ®e
cated as dots). Western blots S 64 . ° 2 A
displayed in Supplementary a é 251
Figure 2 and 3 % ° " ° < 20 - 4
[0} o n A
T 4 - 3 .
g L] . I £ 151 °®
,9! A@a ﬁ 1.0
« 27 ) x " Aa
o] r e -
< 1 g_ 0.5 . N
0 T y 0.0 T r
ALK MUT ALK WT ALK MUT ALK WT
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Fig. 2 ERK1 and ERK2 correlate with ALK expression. a ERK1
protein expression correlates with ALK 220 kDa protein expression
(Spearman’s rho r=0.55, p=0.02) and ALK 140 kDa protein
expression (Spearman’s rtho r=0.56, p=0.01, graph not shown). b
ERK2 protein expression correlates with ALK 220 kDa protein

ALK protein at Y1604 was not significantly different
between mutant and WT cell lines (Fig. 1d, Supplementary
Figure 2C). Phosphorylation of the 140 kDa ALK product
was very low as measured with the anti-Y1604 pALK
antibody (Epitomics, Burlingame, U.S.A.) (Supplementary
Figure 3). To understand the effect of increased ALK
expression on the activation of downstream signaling
molecules, we measured total protein levels and phosphory-
lation status of downstream signaling proteins of the MAPK
and AKT pathway. ERK1 and ERK?2 protein expression was
significantly correlated with ALK 220 and 140 kDa expres-
sion in mutated and WT NBL cell lines (Fig. 2a-b,
Supplementary Figure 2). The levels of total AKT and
phosphorylated intermediates ERK1, ERK2 and AKT were
not significantly different between four mutated and eight
wild type NBL cell lines (Supplementary Figure 2 and 3).

3.3 Cell viability assay after treatment with ALK inhibitor
TAE684

As ALK point mutations were associated with higher ALK
expression levels and increased levels of downstream
proteins ERK1 and ERK2, we investigated whether ALK
mutant cell lines would demonstrate a better response to the
ALK inhibitor TAE684. ALK mutant cell lines (n=4)
displayed a significantly higher sensitivity towards the
ALK inhibitor TAE684 than WT cell lines (n=8) with 14.9
fold lower LC50 values (»p<0.01) (Fig. 3, Table 2). ALK
amplified cell lines showed similar sensitivity to ALK
inhibition as WT cell lines without an amplification
(Supplementary Figure 4). The LC50 of TAE684 was
highly correlated with ALK mRNA (»=-0.75, p=0.01),
ALK 220 (r=-0.81, p<0.01) and 140 kDa (r=—0.84, p<
0.01) protein levels in all NBL cell lines (Fig. 4a-b) and
remained significant after adjustment for MYCN status
(Supplementary Table 1). This correlation tends to be
present in both ALK mutated (n=4) and wild type cell

7.517
7.0
6.5

5.5
5.0
4.5
4.0 1
3.5
3.0
2.5+
2.0
1.54
1.01
0.5
0.0 T T T

2 4 6 8

ERK2/GAPDH ratio

ALK 220 kDa/GAPDH ratio

expression (spearman’s rho r=0.60, p<0.01) and ALK 140 kDa
protein expression (spearman’s rho r=0.60, p<0.01, graph not
shown). ALK point mutated cell lines are indicated as black squares,
ALK WT cell lines as black triangles (including amplified cell lines as
black dots). Western blots displayed in Supplementary Figure 2

lines (n=8) independently. A significant correlation was
present between 140 kDa ALK protein levels and TAE684
response in only WT cell lines (»=0.71, p=0.05) (Fig. 4b).
The correlation between pALK levels and responsiveness
to TAE684 was not significant (r=0.55, p=0.08).

3.4 Effect of ALK inhibition on ALK, pALK
and downstream signaling proteins

Four mutated and eight wild type NBL cell lines were treated
for 72 h with ALK inhibitors, according to their
corresponding LC50. ALK inhibitor treatment induced a
significant decrease of phosphorylated AKT (p=0.01,
Fig. 5a-b). Interestingly, this decrease was only observed in
ALK amplified and WT cell lines. ALK inhibitor treatment

100 A

(3, -4
o o
1 1

% proliferation compared with
[ =]
o
1

normal controls (mean +/- SE)

o T ) L L) )
10 100 1000

72 hours TAE684 (nM)

10000 100000

Fig. 3 Responsiveness to ALK inhibitor TAE684 is correlated with
ALK mutation status. Effect of ALK inhibitor treatment on prolifer-
ation of 12 NBL cell lines measured by MTS/PMS based viability
assay. ALK mutant cell lines (black solid line, n=4) show higher
sensitivity to TAE684 than WT cell lines (grey solid line (n=38)).
Experiments were performed with triplicate measurements. The Y-axis
displays the mean and standard error of all measurements in all
mutated versus all wild type cell lines
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Table 2 Overview of ALK mutated and wild type NBL cell lines, displaying ALK levels and sensitivity to TAE684

Cell line ALK mutation ALK mRNA? ALK (220 kDa)/ ALK (140 kDa)/ PALK (220 kda)/ LC50 TAE684
status GAPDH GAPDH GAPDH
SK-N-SH MUT 8.7 44 7.0 0.9 9.4
LAN-5 MUT 9.1 35 3.1 1.6 9.4
KCNR MUT 9.2 6.1 6.1 1.8 275
AMC106¢ MUT 8 2.1 3.8 2.2 66.6
SK-N-BE AMP 7.8 1.8 1.8 1.4 3489
NMB AMP 7.9 1.4 2.4 3.2 591.2
SINB10 WT 7.6 1.6 3.1 1.6 239.9
SINB12 WT NAP 1.3 3.2 0.8 268.4
SINBI1 WT 8.2 1.4 2.9 0.7 282.7
SK-N-AS WT 7.2 1.4 2.3 2.6 496.8
SINB6 WT NA® 0.9 15 2.1 552.6
SINBS WT 73 0.9 1.4 1.9 587.7

2 ALK mRNA from array, average two probesets 208211 s_at and 208212 s_at; °NA, not available.

did not significant alter the expression of ALK, pALK or
downstream target proteins. (Supplementary Figure 3A-B)

3.5 Correlation of ALK expression with differentiation
stage

The phenotypical differences between NBL cell lines is
apparent in the NBL cell line SK-N-SH which contains
mainly neuronal, but also some schwannian-type cells. We
studied ALK inhibitor response in SK-N-SH and its
schwannian derivatives SHEP-2 and SHEP-21N. Remark-
ably, these derivates carry the same mutation of the ALK
gene (F1174L), however they do not have high ALK levels
and did not show high ALK inhibitor sensitivity. This was

in contrast with the biphenotypical cell line SK-N-SH that
showed high ALK levels and ALK inhibitor response
(Supplementary Table 2). This suggests that ALK mutations
may have a specific function in neural-type cells (SK-N-
SH) and not in schwannian-type cells (SHEP-2, SHEP-
21N). Furthermore, these data confirm the specificity of the
ALK inhibitor TAE684. We next examined if an early
neural or schwannian phenotype correlated with ALK
expression in WT cell lines. There was a strong positive
correlation between ALK expression and expression of early
neural differentiation marker PHOX2B in WT cell lines (r=
0.95, p<0.01) (Fig. 6a). An inverse correlation tends to
exist between schwannian marker S70046 and ALK
expression in WT cell lines (r=—0.48, p=0.16) (Fig. 6b).

9.5
= 74
T - a I b
% 9.0 6 &
£ 2
<) f
c 854 T
= o
2 %
= 891 o
Z ¥
x =
£
7.5
X
=
7.0 . . : . . r ) 0 . . r . : . .
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

LC50 TAEG84 (nM)

Fig. 4 Responsiveness to ALK inhibitor TAE684 is correlated with
ALK mRNA and ALK protein levels. a ALK mRNA levels relate to
in-vitro sensitivity towards the ALK inhibitor TAE684 (Spearman’s tho
r==0.75, p=0.01), the black line is a linear fit. ALK mRNA levels in
mutated (black squares, Spearman’s rho r=—0.32, p=0.68) and WT cell
lines (black triangles are WT; dots are AMP, spearman’s rho »=-0.14,
p=0.79) independently tend to correlate with ALK inhibitor response. b
ALK 220 kDa (black symbols, spearman’s rtho r=—0.81, p<0.01) and
140 kDa (grey symbols, spearman’s tho r=—0.84, p<0.01) protein
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LC 50 TAE684 (nM)

levels relate to the in vitro sensitivity towards the ALK inhibitor
TAEG684. A linear line was fitted (black for 220 kDa protein, grey for
140 kDa protein). ALK 220 kDa protein levels of mutants are displayed
by black squares (spearman’s rho r=—0.32, p=0.68) and WTs by black
triangles (WT) and black dots (AMP) (spearman’s tho r=—0.43, p=
0.29). ALK 140 kDa protein levels mutants by grey squares (spear-
man’s tho r=—0.11, p=0.90) and WTs by grey triangles (WT) and grey
circles (AMP) (spearman’s rho r=—0.71, p=0.05)
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a
MUT AMP WT
LAN5 AMC NMB SINB10 SJNB1 SINB6
UTUTUTUTUTUT
: — PAKT
.__- - - - ser473
I o
b
MUT AMP WT
KCNR SK-N-SH SK-N-BE SK-N-NA SJNB8 REF
UTUTUTUTUT *
; ~ pAKT
| iaftad gt serd73

w GAPDH

Fig. 5 Treatment of NBL cell lines with TAE684 resulted in pAKT
downregulation. Phosphorylation of AKT at ser473 was significantly
downregulated in TAE684 treated (T) versus untreated (U) NBL cell
lines (p=0.01). SINB-12 cell line was not included on western blot,
due to a limited amount of protein that was available

4 Discussion

ALK gene mutations and high levels of ALK protein are
characteristics of a subgroup of neuroblastoma. Here, we
show that ALK mutated cell lines express ALK mRNA and
ALK protein at significantly higher levels and also show
higher responsiveness to ALK inhibition. ALK expression
was further positively correlated with levels of downstream
targets ERK1 and ERK2 and expression of neural differen-
tiation marker PHOX2B. In addition, we show that response
to ALK inhibitor TAE684 strongly correlates with ALK
mutation status and ALK protein levels. These data may help
to clarify the biological mechanism leading to high ALK
expression and ALK inhibitor sensitivity in NBL patients.
A prognostic value for high ALK levels independent of
mutation status was recently shown in NBL patients [18]. In
accordance with others, our data show high ALK levels and

14 4

a
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I
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[ ]

normalized)
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PHOX2B mRNA (VSN
o
|

70 7:5 8:0 8.5
ALK mRNA (VSN normalized)

Fig. 6 ALK and neuronal and schwannian markers in WT cell lines. a
ALK mRNA expression correlates highly with PHOX2B mRNA
expression in WT (triangles) and AMP (circles) NBL cell lines
(spearman’s tho »=0.95, p<0.01). b ALK mRNA expression tends to

ALK inhibitor response, especially in ALK point mutated
NBL cell lines. These data may not be conflicting. Since high
ALK levels are characteristic of fetal neural tissue it may be
that high ALK expression in primary NBL is a characteristic
of the early neural crest origin. Our data show that neural
crest differentiation of the cell lines seems to be correlated
with ALK levels and responsiveness to ALK inhibition. High
ALK levels in WT NBL tumors and cell lines may therefore
be explained by predominance of the neural-type versus
schwannian-type of cells in poorly differentiated tumors.

Reduced levels of pAKT were observed upon treatment
with the ALK inhibitor TAE684. This was most probably
caused by reduced kinase activity of ALK. In contrast to
others, who identified differential phosphorylation of ALK
between ALK mutant and WT cell lines or between TAE684
treated and non-treated NBL cell lines, we did not observe
differential phosphorylation of ALK at Y1604 [4, 5, 16, 18,
20, 22]. One possible explanation for this discrepancy
could be that Y1604 is not regulated by ALK autophos-
phorylation but by another kinase. Another explanation
could be that the anti-pALK y1604 antibody is directed at
another epitope. Alternatively, the decrease of pALK was
too transient to be detected in our assays. One important
consideration is that TAE684 could also be targeting a
different kinase than ALK, leading to the observed decrease
of pAKT [24]. Although, in this study we observed an ALK
inhibitor response that appeared ALK specific, as demon-
strated by SK-N-SH and its schwannian derivatives.
(Supplementary Table 1)

ALK gains, amplifications and mutations in NBL
patients have previously been associated with inferior
survival [1]. However, others did not identify an indepen-
dent influence of ALK mutations on survival when
correcting for MYCN status and stage of disease [2].
Similarly, high ALK levels irrespective of ALK mutation
status have been associated with inferior prognosis by
Passoni et al. (2009) in a univariate analysis [18, 20]. In our
study, we were able to identify a similar correlation
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show an inverse correlation with S70046 mRNA expression in WT

(triangles) and AMP (circles) NBL cell lines (spearman’s tho
r=-0.48, p=0.16)
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between high ALK levels and good response to ALK
inhibition. This correlation did not seem to be influenced by
MYCN status. In summary, both ALK mutation status and
ALK levels seem to be important in ALK inhibitor
response.

In our study, five of the six cell mutant cell lines showed
amplification of the MYCN gene, which is in accordance
with others [2, 20]. We further could not identify differ-
ences in ALK levels or ALK inhibitor response between
R1275Q and F1174L ALK mutated cell lines, although
numbers are low. MYCN amplification has been shown to
be correlated with positive ALK mutation status and
specifically with the F1174L mutation in NBL patients [2,
20]. De Brouwer et al. identified a positive association
between the F1174L mutation and higher transforming
capacity, higher frequency of MYCN amplification and
advanced stage compared with R1275Q mutations and WT
tumors [20]. In hereditary NBL, ALK mutations are very
common and found in almost half of the families. The most
common germline mutation is R1275Q, which is identified
in approximately 45% of the familial cases. The F1174L
has not yet been identified as germline mutation. It is the
most common mutation in NBL cell lines and possibly
carries a more aggressive phenotype. This led de Brouwer
et al.,, to postulate that this might suggest embryonic
lethality of the F1174L mutation in germ line mutated
individuals. This could explain the absence of this mutation
in hereditary neuroblastoma.

In conclusion, NBL cell lines and patients often express
ALK at high levels, especially in ALK mutant cases. ALK
mRNA and protein levels, ALK mutation status and
differentiation status were strongly correlated with ALK
inhibitor response. The most defining factor for the
response to ALK inhibitors remains elusive. These data
will be important in understanding ALK inhibitor response
in ongoing patient trials with ALK inhibitors.
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