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The dynamic geometry of neuronal development is an essential concept in theoretical neuroscience. We aimed 
to design a mathematical model which outlines stepwise in an innovative form and designed to model neuronal 
development geometrically and modelling spatially the neuronal-electrical field interaction. We demonstrated 
flexibility in forming the cell and its nucleus to show neuronal growth from inside to outside that uses a 
fractal cylinder to generate neurons (pyramidal/sphere) in form of mathematically called ‘surface of revolution’. 
Furthermore, we verified the effect of the adjacent neurons on a free branch from one-side, by modelling a 
‘normal vector surface’ that represented a group of neurons. Our model also indicated how the geometrical 
shapes and clustering of the neurons can be transformed mathematically in the form of vector field that is 
equivalent to the neuronal electromagnetic activity/electric flux. We further simulated neuronal-electrical field 
interaction that was implemented spatially using Van der Pol oscillator and taking Laplacian vector field as 
it reflects biophysical mechanism of neuronal activity and geometrical change. In brief, our study would be 
considered a proper platform and inspiring modelling for next more complicated geometrical and electrical 
constructions.
1. Introduction

Neuronal connectivity and their distribution are pivotal for deter-

mining normal brain structural and functional development [1, 2]. The 
geometrical modelling of the neurons is a mathematically challenging 
issue but may help map details of neuronal shape differences seen in 
excitatory and inhibitory neurons [3, 4]. The neuronal geometry differs 
based on shape; either they can become pyramidal/spindle that are ex-

citatory neurons while inhibitory neurons show more sphere-like shape 
[5]. The field could benefit from viewing how neurons form their con-

nectivity and shape from a mathematical perspective, including broad 
neurite formation, overall neuronal shape formation, and parts of the 
neuronal development process. Understanding neuronal development 
in relation to excitatory and inhibitory synaptic plasticity seems un-

realistic to implement a mathematical approximation model, and it is 
challenging to show reliable simulations. Therefore, characterising the 
pieces of this puzzle mathematically to provide a general algorithm [6] 
for approximate most of the process, would be very helpful in terms of 
Computational [7], Geometrical Learning and Cognitive neuroscience 
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[4, 7]. The prerequisite for understanding brain function is to char-

acterise the geometrical shape of cellular structure [8]. This approach 
would benefit understanding neural networks by building a simulation

of the brain function based on the real geometrical shape [9]. There-

fore, it will require considering how the brain chemical synapses work 
in multilayers [10, 11] and that needs to improve simulations in con-

nection with geometrical characteristics of neurons that lead us to a 
stronger simulation of brain function. In this study, we have clarified 
at this step how geometrical shape of neurons in terms of neuronal-

electrical interaction works in 3D as it is very important at biophysical 
scale [12].

Neuronal developmental modelling may generally be categorised 
into four steps: Part_1. Suggestive Mathematical Model of the Neural 
Branch Connectivity that models the complexity of neurites mathemat-

ically; Part_2. Suggestive Mathematical Model for Neuronal Shape and 
Development, provides a model for neuronal shape characterisation that 
can grow continuously to take the final shape of the neurons; Part_3. 
Assumed Model for Neuronal Clustering and its Vector Field to model 
a simple 3D_simulated neuronal clusters and neuronal electrical vector 
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Fig. 1. Left, the schematic illustration of the neurons obtained from the hippocampus of mouse at the age of postnatal day (P) 12 indicates regular neuronal 
connections either straight or curved oriented between neurons. The 3D reconstructed basal neurons and neurites using Golgi staining are illustrated below. Right, 
there is a mathematical plot to investigate how neurites can orient theoretically based on the connection shown by Lagrange interpolation (1-B), two orange arrows 
indicate two points on position (X), indicating the ending with different connecting points on (Y) axis.

Fig. 2. Clarification of the idea of the “effect” of neighbouring neurons on one-side connected neurite (in Brown). In A, B, C and D, there are apparent changes in 
the shape and orientation of neurite, that either becomes convoluted C or distorted D, which depends on the type of calculation we use (see text).
field interaction; Part_4. Mathematical Model for Neuronal Organisation 
and Development, a mathematical model of 3D neuronal organisation 
and development. Here, we show how neurons, and their branches are 
complex and develop differently on a geometric scale according to the 
suggestive formula, for neuronal shape and growth modelling. Finally, 
we complement this discussion in detail using illustrations.

2. Results

2.1. The suggestive mathematical model of the neural branch connectivity

The distribution of neurons and their connectivity can be viewed 
from different angles. Here we aimed to clarify more about neurites 
spatial orientation followed by a mathematical model (see formula 
(1)–(2)). We hypothesised that generally, the distribution of neurites 
per se, either considering straight-line or curved-oriented form, can fit 
a model by Lagrange equation of a scalar function (the Lagrangian), 
Lagrange Interpolation Polynomial Fig. 1.B:

𝑓 (𝑥) = 𝑝𝑛(𝑥) =
𝑛∑
𝑘=0

𝑙𝑘(𝑥)
𝑙𝑘(𝑥𝑘)

𝑓(𝑘); (1)

𝑙𝑘(𝑥) = (𝑥− 𝑥0)(𝑥− 𝑥𝑘−1)(𝑥− 𝑥𝑘+1)…(𝑥− 𝑥𝑛) (0 < 𝑘 < 𝑛) (2)

Furthermore, to prove how they might develop naturally, we hypoth-

esised that when the neurites typically stretch from the beginning of 
neuronal development, they make proper connections with adjacent 
neurons/cells. However, suppose the neurites are dissociated from the 
other side, growing like a free branch of a neuron. In that case, the 
2

neurites fail to develop and stretch naturally and may even be mal-

formed substantially by showing retraction in a 3D geometric scale in 
the R3, (see formula (3)–(9)), (Fig. 2, Fig. 3). We aimed to verify the 
‘effect’ of the adjacent neurons on a free branch (tangent vector line) 
from one side, by modelling two components, a ‘normal vector surface’ 
that represented a group of neurons that for example, have electromag-

netic/pressure ‘effect’ on a “neighbouring neurite” (tangent vector line) 
(Fig. 2, Fig. 3). We show the verification point in a schematic illustra-

tion Fig. 2, The mathematically equivalent plots are found in Fig. 3.

We measured the neuronal interaction by using the eigenvalues as 
the following formula was used in the first step to generate the ‘Surface’, 
which is indicated as “S” in the R3:

𝑆 = cos(𝑋) cos(𝑌 ) − cos(𝑋) sin(𝑌 ); −2𝜋 <𝑋 < 2𝜋, 𝑋 = 𝑌 (3)

While to generate the ‘Line’ and the ‘Tangent Vector line’ (Fig. 3),

0.3 < 𝑟 < 6; 0 < 𝑡 < 2𝜋; 0 < 𝑝ℎ𝑖 < 2𝜋

𝑋 = 𝑟 cos(𝑡) sin(𝜙) (4)

𝑌 = 𝑟 sin(𝜙) sin(𝑡) (5)

𝑍 = 𝑟 cos(𝜙) (6)

In the next step, the vector field that is the direction of the normals on 
a surface was found and used eigenvalues of the surface; Av = 𝜆v and 
multiplied to X, Y, Z respectively. So, the line change is a function of 
the mentioned formula. That shows a substantial change in the line, and 
distorted “Blue Line” in comparison with “Red Line”, Fig. 3.C.
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Fig. 3. The generated plots from A to D indicate the possible effect of neighbouring neurons (Black Normal Vector Surface) on the assumed spiral line, which 
represents neurite (Red Line and tangent Vector Line) in the 𝑅3 . The change in the shape of the line secondary to the normal surface vector field is detected like a 
Blue Line. Distortion in shape and orientation from one side is observable in C and D. The C and D were calculated differently. The surface in D is removed to show 
the red and blue lines clearly.
In addition, we used another mathematical equation, Fig. 3.D. and 
the equation Av = 𝜆v with the following parameters (formulas (7), (8), 
(9)), which included the first and second order partial differential equa-

tions arranged like “Jacobian matrix”, and then solved by decomposi-

tion for V1, V2, V3 that reflects itself in Fig. 3.D like “Blue Vectors”.

𝑆′ = cos(𝑌 ) sin(𝑋) + sin(𝑋) sin(𝑌 ); −2𝜋 <𝑋 < 2𝜋, 𝑋 = 𝑌 (7)

𝑆′′ = cos(𝑋) cos(𝑌 ) − cos(𝑋) sin(𝑌 ); −2𝜋 <𝑋 < 2𝜋, 𝑋 = 𝑌 (8)⎡⎢⎢⎢⎣
𝑋 ⋯ 𝑍

⋮ ⋱ ⋮
𝜕2𝑋

𝜕2𝑟𝜕2𝑡𝜕2𝜑
⋯ 𝜕2𝑍

𝜕2𝑟𝜕2𝑡𝜕2𝜑

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝑉 1
𝑉 2
𝑉 3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

𝑆
𝜕𝑆

𝜕𝑋𝜕𝑌

𝜕2𝑆
𝜕2𝑋𝜕2𝑌

⎤⎥⎥⎥⎦ (9)

Here, we postulated that the existence of a connected network of neu-

rites before it begins to fully develop is a prerequisite for a normal 
neurite network development, otherwise based on our model, it appears 
that if the neurites grow with only one connected side, they became 
more spiral or even distorted than normally stretching and that will 
be resulted in abnormality in neuronal synaptic (excitatory/inhibitory) 
plasticity.

2.2. The suggestive mathematical model for neuronal shape and 
development

This part aimed to introduce a mathematical model that generates a 
cellular model that behaves naturally like a neuronal cell which means 
it can grow, changes in shape and take effects from its centre as a “nu-

cleus” that is indeed a ‘Fractal Cylinder’, mathematically called ‘surface 
of revolution’ to generate the manifolds around the axis which is a ‘Frac-

tal Cylinder’. The schematic illustration of the geometrical changing of 
neurons is shown in Fig. 4. We generated corresponding mathematical 
models that follow these criteria summarised in Fig. 5 and Fig. 6.
3

Next, to generate a cell that can grow mathematically and change in 
shape, we made a ‘Fractal Cylinder’ that is transformable to a 3D object 
(formula (4)–(6)).

Next, we used the ‘Riemann Zeta function’ (formula (10));

{
𝜁 (𝑧) if 1 < real(𝑧);

∞∑
𝑘=1

1
𝑘𝑧

(10)

Then took the ‘Taylor’ (5th order) (formula, (11)–(13)); If we use the 
following ‘Taylor Expansion’ of formulas (4), (5), (6) placed for ‘z’, then 
the formulas (11), (12), (13) are obtained, and the ‘imaginary numbers’ 
are ignored:

T(X) = 𝑟 cos(𝑠)𝑡5

120
− 𝑟 cos(𝑠)𝑡3

6
+ 𝑟 cos(𝑠)𝑡 (11)

T(Y) = 𝑟 sin(𝑠)𝑡5

120
− 𝑟 sin(𝑠)𝑡3

6
+ 𝑟 sin(𝑠)𝑡 (12)

T(Z) = 𝑟𝑡4

24
− 𝑟𝑡2

2
= 𝑟 (13)

In the next step, we generated the “Cone” and the “Fractal Cylinder”, 
if we generate a plot out of ‘Taylor expansion’ we get a simple “Cone” 
(see Fig. 5), however, if we apply the ‘Riemann Zeta function’ on them, 
then we obtain a “Fractal Cylinder” (see Fig. 5). Additionally, the whole 
shape and sizes are controllable simply by the value of ‘r’.

Further, when we changed the ‘Riemann Zeta function’ applied ‘Tay-

lor expansion’ in formulas (10)–(13) and converted them to formulas 
(14), (15), (16), the following plots were generated in Fig. 6. Plots 
showed that based on the value ‘r’, the shapes changed from “Fractal 
Cylinder” to “Pyramidal” or “Sphere-like” (Fig. 6: A, B). But in case ap-

plying the ‘Riemann Zeta function’ on the sphere formula without using 
‘Taylor expansion’, we generated simply Fig. 6.D, which was based on 
the ‘r’ value. It also gave us the “Pyramidal Shape”, with outpouching 
like neurites. The importance of this model is that in neurobiology, two 
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Fig. 4. The neuronal cells can change from neuronal progenitor cells to branched mature neurons. It represents the relation between shape and function. (A) The 
pyramidal and spindle cells originate from progenitor cells located at the bottom. (B) The progenitor cell on the right side differentiates to interneurons that looks 
more sphere-like.

Fig. 5. Two series of plots are generated that bottom “Cone” is related to Taylor expansion while the top “Fractal cylinder “is related to applied Riemann Zeta 
function on the “Taylor expansions”. As evident in ‘D’, the fractal cylinder is inside the generated figures shown in full views in Fig. 6.A to Fig. 6.C. In D, the 
sectioned cell is shown, the red arrow indicates the “Fractal Cylinder” that looks like a “Neuronal Nucleus” while the yellow arrow indicates the neuronal cell 
surface.
4
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Fig. 6. The generated plots A to C are based on the “Fractal Cylinder” that acts like a “Nucleus” in cell to grow cells or change their shape from the centre to 
outward. This is comparable with D that doesn’t contain the Cylinder but still shows some type of “branched pyramidal neuron”. However, the “Sphere-like” figure 
in ‘C’ was generated with the “r = −ecos(𝑝)2 sin(𝑝)2 ” and represented ‘Sphere-like’, non-pyramidal cells compared to Figures A, B, D that represents ‘Pyramidal Neurons’.
different mathematical models may regulate independently, the “Cell 
Shape” and the “Neuronal branching patterns”. In contrast, to generate 
the “Sphere-like neurons” that reflects the non-pyramidal, inhibitory 
neurons, we used ‘r’ value that was controlled by r = −ecos(𝑝)2 sin(𝑝)2 , 
−2𝜋 < p < 2𝜋, Fig. 6.

Z(X) = 𝑟 cos(𝑠) sin(𝑡)(
𝜁
(
e
𝑟 cos(𝑠)𝑡5

120 − 𝑟 cos(𝑠)𝑡3
6 +𝑟 cos(𝑠)𝑡)2) (14)

Z(Y) = 𝑟 sin(𝑠) sin(𝑡)(
𝜁
(
e
𝑟 sin(𝑠)𝑡5

120 − 𝑟 sin(𝑠)𝑡3
6 +𝑟 sin(𝑠)𝑡)2) (15)

Z(Z) = 𝑟 cos(𝑠)(𝑡)(
𝜁
(
e
𝑟𝑡4
24 − 𝑟𝑡2

2 +𝑟)2) (16)

2.3. The assumed model for neuronal clustering and its vector field

This model represented as an example of a mathematically devel-

oped 3D model of neuronal clustering, Fig. 7. First, a schematic illus-

tration in Fig. 7.A represented two ensembles of neurons (Fig. 7.A.1) 
which were projected on a plane Fig. 7.A.2.

Further, we showed in Fig. 7.B, an ensemble of neurons generated 
mathematically to mimic neuronal clustering in two rows. The next step 
was to explore the vector field of those neurons that may reflect their 
electromagnetic activity projected in 2D by using the gradient of on the 
differentiable manifolds for more details and for Laplacian vector field, 
see below [13] Fig. 7.C.

This model indicated how the geometrical shapes and clustering 
of the neurons can be transformed mathematically into the form of a 
vector field equivalent to the neuronal electromagnetic activity. The 
mathematical details are found below.

We used formula (4), (5), (6) that were replaced with the parame-

ters [𝑥, 𝑦, 𝑧] in formula (17) to generate a symmetric surface orthogonal 
5

to z_axis, Fig. 7.B, however the gradient (formula (18)) of the same sur-

face provided us with formulas (19), (20) and (21) that was seen as a 
vector field, (Fig. 7.C). Therefore, that made it possible to design and 
approximate the electric flux among the neurons.

𝐹 = 𝑥2𝑦2𝑧e−2𝑥2 e−2𝑦2 e−2𝑧2 − 1 (17)

So, as we had 𝐹 (𝑥, 𝑦, 𝑧), then the gradient was written as:

∇𝐹 = 𝜕𝐹

𝜕𝑥
𝜄+ 𝜕𝐹

𝜕𝑦
𝐽 + 𝜕𝐹

𝜕𝑧
�̂� (18)

Then it came out depending on the parameters three equations of gra-

dient (𝐺) of F as below:

𝐺(𝑥) = 2𝑥𝑦2𝑧e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 − 4𝑥3𝑦2𝑧e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 (19)

𝐺(𝑦) = 2𝑥2𝑦𝑧e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 − 4𝑥2𝑦3𝑧e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 (20)

𝐺(𝑧) = 𝑥2𝑦2e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 − 4𝑥2𝑦2𝑧2e−𝑥2−𝑦2−𝑧2 e−𝑥2 e−𝑦2 e−𝑧2 (21)

Which was plotted in Fig. 7.C.

2.4. Neuronal-electrical field interaction

We expand this section to provide a better understanding of the 
cellular shapes and the relation with electrical field. We designed the 
following simulation that clarifies the effect of electrical field on the 
cells and whether the shape of the electrical flux (Van der Pol) can 
change the primary shape of the cells? in which direction can change 
the shapes? And to try detection and showing the cellular and electrical 
field changes by an equation similar with gradient. This will indicate 
the combined geometrical and electrical alterations which is important 
in terms of their interaction including the excitatory and inhibitory neu-

ronal shape alteration. The morphology and function of neuronal cells 
play an important role in neuronal network characterization and func-

tion [14]. Here we provide an example of shape change by showing the 
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Fig. 7. The plot depicts both schematic illustration (𝐀) which shows two ensembles of neurons A1, and its possible connections projected on a plane of the 3D form 
of neurons, A2, which means ‘gradient’ in mathematics. Furthermore, the mathematical simulation of the ensemble of neurons is shown in B, and its corresponding 
gradient comes next to it in C, which is dense in two sides as a “Vector Field”.
Fig. 8.1 that is an illustration of the tensor exterior product of three vec-

tors in three directions on the left and the result is shown on the right 
in two different 3D shapes depending on their eigenvalues and eigen-

vectors. Having this notion in mind, we decided to provide a model for 
our study, so we used the Van der Pol equation [15] and it has been 
used to show how the neuronal activity is modulated by considering 
this equation for the purpose of learning process of Non-linear dynam-

ics that evolves the presynaptic and postsynaptic neuronal activity [16]. 
Van der Pol equation as shown in Fig. 8.2 and its equations below have 
two phases that are strictly controlled by ‘m’ value. The similarity of 
Fig. 8.1 and Fig. 8.2 is that we can produce 3D shape changes using the 
Van der Pol equation. So, we aimed to simulate different shape change 
either spherical or pyramidal neuronal cells that generated in this study 
and explore what happens after applying the Van der Pol equation as 
described below in formula (22) as equation that plotted as lines in a 
limit cycle. But the vector field was generated by Van der Pol oscilla-

tor, formula (23), (we used ‘for formula (22) and ‘x’ for formula (23) 
to show the difference), both of the formulas are controlled by ‘m’ that 
changes the phase from circle m = 0.1 to non-circle m = 1.

𝑦′′ −𝑚
(
1 − 𝑦2

)
𝑦′ + 𝑦 = 0;

if 𝑦1 = 𝑦; 𝑦2 = 𝑦′; 𝑦′′ =
(
𝑑𝑦2
𝑑𝑦1

)
𝑦2;

𝑑𝑦2
𝑑𝑦1

= 𝑘… ,

𝑭 𝟏 = 𝑦2 =
𝑦1

𝑚(1 − 𝑦21) − 𝑘
; 𝑘 = Constant

(22)

𝑥′′ −𝑚
(
1 − 𝑥2

)
𝑥′ + 𝑥 = 0; if 𝑥1 = 𝑥; 𝑥2 = 𝑥′;

(
𝑑𝑥1
𝑑𝑡

)
= 𝑥2… ,

𝑭 𝟐 =
(
𝑑𝑥2
𝑑𝑡

)
= −𝑥1 −𝑚

(
𝑥21 − 1

)
𝑥2;

(23)

To generate the ‘vector field’ of Van der Pol oscillation as we have 
shown in Fig. 8.2, we needed to replace the ‘dt’ with r =

√
(dx1)2 + (dx2)2, 

so we rewrote ( 𝑑𝑥1 ); ( 𝑑𝑥2 ).

𝑟 𝑟

6

The next step, we needed to explore the effect of Van der Pol on 
the generated figures in Fig. 6, so we divided them into two groups 
either spherical or pyramidal and then examined the combined effect. 
Therefore, we set 𝑦1 respectively equal to formulas of (10), (14), (15), 
(16). However, to make the neuron more spherical compared to Fig. 6, 
in order to test the Van der Pol equation; we did change on the ‘r’ 
and changed the formulas of (14), (15), (16) into below, as r2, (14)2, 
(15)2, (16)2 then we got the following results depicted in Fig. 8.3.1 and 
Fig. 8.3.2. The variable 𝑟2 is defined by r = e−cos(𝑝)2 sin(𝑝)2 ecos(𝑝)2+sin(𝑝)2 , 
−2𝜋 < 𝑝 < 2𝜋, so comes up equations (𝟏𝟒)2 to (𝟏𝟔)2 as follows:

(𝟏𝟒)2 = −𝑟 cos(𝑠) sin

(
1

real
(
𝜁
(
e
𝑟 cos(𝑠)𝑡5

120 − 𝑟 cos(𝑠)𝑡3
6 +𝑟 cos(𝑠)𝑡)2)

)
sin(𝑡)2

(𝟏𝟓)2 = −𝑟 sin

(
1

real
(
𝜁
(
e
𝑟 sin(𝑠)𝑡5

120 − 𝑟 sin(𝑠)𝑡3
6 +𝑟 sin(𝑠)𝑡)2)

)
sin(𝑠) sin(𝑡)2

(𝟏𝟔)2 = −𝑟 sin

(
1

real
(
𝜁
(
e
𝑟𝑡4
24 − 𝑟𝑡2

2 +𝑟)2)
)
cos(𝑡) sin(𝑡)

Furthermore, we calculated the effect of this interaction on the gen-

erated 3D manifolds (Spherical or Pyramidal) that is a potentially a 
differentiable manifold that possess the vector field, so by using the 
Laplacian vector field (Lvf) that is defined in formula (24). We mea-

sured the change of vector field on the generated neurons following 
applying the Van der Pol oscillator, which depending on the ‘m’ values 
they would differ substantially. Then we could find the mean of the dif-

ference of Lvf between two phases, before and after applying the Van 
der Pol oscillator.

∇2𝑓 =∇(∇.𝑓 ) − ∇ × (∇ × 𝑓 ) (24)
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Fig. 8.1. The schematic illustration indicates how an object like a cube can be mathematically transformed into a different shape based on the applied tensor vectors 
and their exterior product in three directions and their orientation that is the order of their product. Equivalently, we have applied the m=0.1 and M=1 in Fig. 8.2

from Van der Pol equation to transform our 3D shapes. Transforming sphere to a different shape depending on the specific spatial direction (i, j, k) that we apply m 
or M.

Fig. 8.2. The plots were generated based on Van der Pol equation is explained in more details in the text formula (22) that is to generate the ‘Lines’ and formula 
(23) that is to generate the ‘vectors’, indeed the vector field. As it shown they are different based on the m=0.1 or m=1 values. They differ from circle to non-circle 
like plot. The values of ‘k’ have been provided in the codes.

Fig. 8.3.1. We generated the figures based on the Van der Pol and the primary neuronal shape explained in the text. The Primary shape is a pyramid that as an 
example shows how it differs in the shape as we apply the m=0.1 and M=1 iteration in three directions, (i, j, k), the F1 indicates the formula (22) that was used, 
so we can see the difference in the shape as we see the (M.i+M.j+M.k) figure makes them more anisotropic while the effect of (m.i+m.j+m.k) is more isotropic that 
meets our expectations, as one could combine Fig. 8.2, M=1 becomes more anisotropic and m=0.1 becomes more circle and isotropic that has the same effect on 
the generated plots here. The combination of (M.i+m.j+M.k) is a circular surface (isotropic) along ‘y’ axis, but anisotropic along two other directions. The Laplacian 
vector field (Lvf) is also different accordingly and is comparable with the Fig. 8.3.2 as well.
7
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Fig. 8.3.2. Here, it is clearly the anisotropy with M=1 along specified direction and isotropic with m=0.1 in other directions. The Laplacian vector field (Lvf) is 
more homogeneous but different from Fig. 8.3.1.
Their mean differences considered as an important indicator of how 
the electrical flux on the cells can affect the cells when is applied 
in three different directions (i, j, k) with different values of m=0.1 
and M=1 at a very short time dt ≈ 𝜀. We have 23 = 8 iterations of 
m and M in three directions (i, j, k) that is shown in Fig. 8.3.1

and Fig. 8.3.2. The iterations list is as followed in three spatial 
directions: (m.i,m.j,m.k), (M.i,M.j,M.k), (m.i,m.j,M.k), (m.i,M.j,M.k), 
(M.i,m.j,m.k), (M.i,M.j,m.k), (M.i,m.j,M.k), (m.i,M.j,m.k) that can be 
applied through either with F1 or F2 formula. This is a real phenomenon 
that happens between excitatory/inhibitory neurons when electrical 
flux is spatiotemporally propagated.

The histogram indicates the difference of the mean of Laplacian vec-

tor field (Lvf) from the mean difference of Lvf=Lvf (after applying Van 
der pol) - Lvf (before applying Van der pol), (Fig. 8.3.1 and Fig. 8.3.2). 
The mean difference of Lvf that is divided into number of ‘k’ items, is 
respectively from left to right in Fig. 8.3.1 are 2160, 5, 734, they cor-

respond to the number of M in the equations, so the more anisotropy 
obtained after applying Van der Pol with M=1 in spatial directions, the 
higher would be the total mean difference of Lvf, while in spherical 
shape, the total mean differences of Lvf are respectively from left to 
right are 29, 9, 22 that are lower compared to the pyramidal form after 
applying Van der Pol which could indicate a kind of resistance in the 
spherical manifolds to anisotropic/isotropic vector field change. This 
phenomenon is interesting as it is equivalent to the inhibitory neurons 
that are more in spherical shape and excitatory neurons that have more 
pyramidal shape and here it was shown how the primary geometrical 
shape can determine the final vector field (anisotropic/isotropic vector 
field change) after applying Van der Pol oscillator. In our model, neu-

rons have the cellular geometrical features including nucleus structure 
inside the cells.

2.5. The mathematical model for neuronal organisation and development

Here, we provided a simplified mathematical model that denotes 
the possible formulation for neuronal organisation which approximated 
the real neuronal development. The suggested preliminary algorithm 
addressed neuronal development from different aspects. The schematic 
illustration of the model is found in Fig. 9.

The definition of the model is:
8

In formula (27), if ‘N’ stands for ‘Neuronal Organisation and Develop-

ment Function’ that equals to the ‘Curl’ of ‘F’ where ‘F’ was a function 
defined in formula (25) that was followed by known “Curl transforma-

tion”, see formula (26).

We assumed “F” as the following:

𝐹 (𝑥, 𝑦, 𝑧) = 𝐹𝑥(𝑥, 𝑦, 𝑧)𝑒𝑥 + 𝐹𝑦(𝑥, 𝑦, 𝑧)𝑒𝑦 + 𝐹𝑧(𝑥, 𝑦, 𝑧)𝑒𝑧 (25)

Then the Curl of the function F is defined as below:

𝐶 =∇×𝐹 =
(
𝜕𝐹𝑧

𝜕𝑦
−
𝜕𝐹𝑦

𝜕𝑧

)
𝑒𝑥 +

(
𝜕𝐹𝑥

𝜕𝑧
−
𝜕𝐹𝑧

𝜕𝑥

)
𝑒𝑦 +

(
𝜕𝐹𝑦

𝜕𝑥
−
𝜕𝐹𝑥

𝜕𝑦

)
𝑒𝑧 (26)

The definition of the parameters in formula (27) is shown below as I 
to IV. Briefly, the parametrisation included the 3D position of cells, in 
the beginning, cellular position change, shapes and cellular electrical 
activity.

3D Position of Cells in beginning = {𝜄, 𝐽, ̂𝑘}
And we defined the G function and its parameters as:

I. The change in position of cells = {𝑑𝑝1, 𝑑𝑝2, 𝑑𝑝3}
II. Shapes = Sphere, ellipsoid, pyramidal approximation, other convex 

bodies

III. Electrical activity = Excitatory {+}, Inhibitory {−}, Excitatory/In-

hibitory {±},

IV. X(𝑑𝑝1, s, 𝑒1), Y(𝑑𝑝2, s, 𝑒2), 𝑍(𝑑𝑝3, s, 𝑒3)

𝑁 =∇× F =
|||||||

𝜄 𝐽 �̂�
𝜕

𝜕𝑋

𝜕

𝜕𝑌

𝜕

𝜕𝑍

𝐺1(𝑋) 𝐺2(𝑌 ) 𝐺3(𝑍)

||||||| (27)

Then the integration was taken, defined by ‘Cauchy’s integral theorem’, 
so we defined it as a system in which its spatial position, movement, 
cell shape and electrical characteristics were ruled by ‘Curl’ with the 
assumption of possessing a ‘close path’ (process) in a ‘domain’ of the 
brain so-called ‘c’ and were connected by “Cauchy’s Integral” (formula 
(28)). In general, it met the criteria defined by ‘Cauchy’s Integral Theo-

rem’. 𝑓 (𝑧) was definable in a connected domain containing a close path 
called ‘c’.

Cauchy’s Integral: ∮ 𝑓 (𝑧)𝑑𝑧 (28)
𝐶
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Fig. 9. The schematic illustration (used Biorender.com) shows the neuronal development in the mouse embryo, based on a timeline. We can see the radial glial cells 
on the left that make a scaffold for the migrating neurons (IPS) while keeping the connections with them from beginning to end. A lack of radial glial cells leads to 
compromised pathologic cell formation in the “granule cell layer”. In our model, we postulate and formularise each step of neuronal development by parametrisation 
as follows: the coordinates of the primary position (P0) of cells assigned as {𝑖, 𝑗, 𝑘}, then a function of variables G(dp,s,e) that include dp, s and e which they stand 
for dp = change in the position of cells, s = the cell shape and e = the electrical activity.
3. Discussion

This study showed how mathematical modelling [2] may clarify the 
challenging field of understanding neurodevelopmental processes by 
considering different aspects of neuronal development including struc-

ture, function and networking. For this purpose, neuronal developmen-

tal processing was divided into different parts to be quickly addressed 
and become possible to develop a formulation that approximates the 
natural neuronal development process. Our modelling suggests that 
neuronal development occurs in a connected form, between two or 
more points from the beginning, rather than growing only from one side 
of the dendrites. As it was shown in our mathematical model, this is im-

portant that the spiral, or more complex, pathologic branching occurs 
when inter-neuronal connections lack adequate cell-cell connections. 
For example, reelin cells (Cajal) guide neuronal development in corti-

cal layer II-III, therefore when the reelin cells (Cajal) decreases in size 
or number in those layers within the developmental period, the apical 
dendrites of pyramidal neurons begin to show hyper-complexity to com-

pensate for reelin cells inadequacy which will be resulted in pathologic 
neurodevelopment [17]. Hence, it appears that there is a tendency to 
make the connections for the price of hyper-complexity with “distorted 
connections”, as we verified in this study (Fig. 2 and Fig. 3).

Furthermore, it seems that the ‘linear interpolation’ is neurobiolog-

ically adapted for connectivity from inter-neuronal distance to neurite 
connections. We showed that neurites orientation follows Lagrangian 
which minimises the difference of curvatures from a straight-line be-

tween two connected points. In another meaning, the curve’s orienta-

tion tends to be minimal from a straight line. We also used “Taylor 
expansion” or “Spline” to explain how neurons are connected to each 
9

other but we found that these functions are not explanatory enough to 
describe what would happen if the neurites were not connected from 
the beginning of neuronal development (data not shown). We verified 
this issue by applying the “eigenvalues” for the “Surface” and “Line” in-

teractions. In a more exaggerated example, as shown in Fig. 9, due to 
lack of ‘Radial Glial Cells’, neuronal migration becomes compromised, 
then a lack of proper connections with “radial glial cells” at the early 
stage of neuronal development leads to compromised cortical develop-

ment. These results implied that adequate connections are obligatory 
from the beginning of neuronal development to form normal neuronal 
network [17, 18].

Further, we modelled the neuronal soma (Pyramidal and Non-

Pyramidal), including the “Riemann Zeta function”, which allowed cells 
to behave as a neuronal cell that could grow and possess a “mathemat-

ically made”, “nucleus” which acted as a “Growing Cylindrical Body”. 
This stemmed from the nucleus to the cell surface, the shape changes 
depending on the” r” value. This was ‘Unique’ as it stands for continuous 
cell shape configuration and change in “Shape and Size” simultane-

ously.

However, we could also have designed this model with the help 
of “Stokes theorem” that used vector calculus”, which meant “Integral 
of the curl of the vector field” versus the “Riemann Zeta function” of 
our study to produce the shape of the neurons, or in general, using 
the “Tensors”, that in our previous studies was used to estimate the 
neuronal size and shape from histological tissues [19, 20]. However, 
even this mathematical modelling is stationary, it cannot change in a 
way we explained above from a “nucleus to the outward” with growing 
possibility, meanwhile our model kept its primary shape (Pyramidal 
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vs Nonpyramidal), indicating the strength of our mathematical model 
compared to other formulations used to generate a 3D shape of neurons.

Furthermore, we introduced a mathematically designed neuronal 
clustering model consisting of two ensembles of well-connected neu-

rons in the form of the 3D plot, resembling neuronal clustering. In the 
next step, we took the “Gradient”, a type of “Partial differential equa-

tion of several variables”, to explore the neuronal cells’ vector fields by 
using the gradient of the formula that generated the neuronal cluster-

ing. This approach disclosed how the underlying vector field depends on 
the neurons’ shape as visualised in Fig. 7. B. This is similar to “Gradient 
Descent” [21] used in machine learning. We have also shown the effect 
of Van der Pol oscillator on the shape of change (Anisotropic/Isotropic 
change) that is equivalent to how electrical flux can change the shape 
of the cellular vector field based on their primary shape and the qual-

ity of the imposed electrical potential. We have analysed the spatial 
summation of the electrical flux on the neurons, as it is an important 
biophysical phenomenon [12] equivalently occurring among spheri-

cally shaped inhibitory neurons versus excitatory neurons that possess 
pyramidal morphology. We showed how the primary geometrical shape 
can be affected by the final vector field depending on the anisotropic 
versus isotropic vector field change after applying Van der Pol oscilla-

tor which explains how neuronal-electrical field interaction works on 
a biophysical scale that we could show the steps of 3D neuronal alter-

ation.

In the last part of this study, we proposed a formula that tested the 
hypothesis that neuronal development depends on cell shape, electri-

cal property, and neuronal movement. By taking the Curl of them and 
meeting Cauchy’s Theorem, it could be helpful to provide a model for 
neuronal clustering and organisation.

4. Conclusion

In this study, we showed how the neuronal development process can 
be divided into different parts based on the geometrical equivalences 
and explained how naturally the different parts, including neurites, cell 
soma, the whole neuronal structure and its vector field are connected. 
The neuronal-electrical field interaction was explored and simulated in 
three dimensions to investigate the effect of electrical flux using Van 
der Pol oscillator on the neuronal shape. The cells could further grow 
and develop either individually or as an entire system by following the 
Cauchy’s Theorem.

5. Methods

We have used different mathematical formula and algorithms (writ-

ten in form of functions and function handles) implemented in MATLAB 
(R2021B) to generate the plots. The Latex of MATLAB was used for the 
shown formula. The modelling is based on a presumed mouse at de-

velopmental age (C57Bl/6J wild-type (WT) mice were purchased from 
Janvier Labs (Le Genest-Saint-Isle, France) and Charles River Labora-

tories (Sulzfeld, Germany). They were bred in the animal facility at 
the University of Gothenburg (Experimental Biomedicine, University of 
Gothenburg). We show in Fig. 1. A one 3D reconstructed neuron from 
the hippocampus of a mouse (at the age of Post-natal day 12), as it is 
easier to conceptualise modelling compared to the human brain, which 
is more complex.
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