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Abstract 

Background: Adverse events induced by drug‑drug interactions are a major concern in the United States. Current 
research is moving toward using electronic health record (EHR) data, including for adverse drug events discovery. 
One of the first steps in EHR‑based studies is to define a phenotype for establishing a cohort of patients. However, 
phenotype definitions are not readily available for all phenotypes. One of the first steps of developing automated text 
mining tools is building a corpus. Therefore, this study aimed to develop annotation guidelines and a gold stand‑
ard corpus to facilitate building future automated approaches for mining phenotype definitions contained in the 
literature. Furthermore, our aim is to improve the understanding of how these published phenotype definitions are 
presented in the literature and how we annotate them for future text mining tasks.

Results: Two annotators manually annotated the corpus on a sentence‑level for the presence of evidence for 
phenotype definitions. Three major categories (inclusion, intermediate, and exclusion) with a total of ten dimensions 
were proposed characterizing major contextual patterns and cues for presenting phenotype definitions in published 
literature. The developed annotation guidelines were used to annotate the corpus that contained 3971 sentences: 
1923 out of 3971 (48.4%) for the inclusion category, 1851 out of 3971 (46.6%) for the intermediate category, and 2273 
out of 3971 (57.2%) for exclusion category. The highest number of annotated sentences was 1449 out of 3971 (36.5%) 
for the “Biomedical & Procedure” dimension. The lowest number of annotated sentences was 49 out of 3971 (1.2%) for 
“The use of NLP”. The overall percent inter‑annotator agreement was 97.8%. Percent and Kappa statistics also showed 
high inter‑annotator agreement across all dimensions.

Conclusions: The corpus and annotation guidelines can serve as a foundational informatics approach for annotating 
and mining phenotype definitions in literature, and can be used later for text mining applications.
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Background
Adverse events induced by drug-drug interactions are a 
major concern in the United States [1]. The U.S. Food and 
Drug Administration (FDA) reported around 297,010 
serious outcomes and around 44,693 deaths due to 

adverse drug events (ADEs) in the first quarter of 2017 
[2]. The current direction is moving towards the utili-
zation of electronic health records (EHRs) for clinical 
research, including ADE discovery [3–6]. EHR-based 
research, in general, relies on the process of electronic 
phenotyping to advance knowledge of a disease or an 
adverse event [7, 8]. An accurate phenotype definition 
is critical to identifying patients with a certain pheno-
type from the EHRs [7–10]. A “phenotype” can refer to 
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observable patient characteristics inferred from clinical 
data [7, 11–13] or drug-related adverse events or reac-
tions [14]. Several methods can be used for EHR elec-
tronic phenotyping by utilizing either structured or 
unstructured data [11, 15, 16], including natural language 
processing (NLP), rule-based systems, statistical analysis, 
data mining, machine learning, and hybrid systems [13, 
15]. However, it can be challenging to develop new phe-
notype definitions for each phenotype of interest. These 
phenotype definitions are present in literature; however, 
to our knowledge, no work has previously annotated phe-
notype definitions from full-text publications on a sen-
tence-level for the goal of text mining applications.

Phenotype definitions
Different institutions view a phenotype definition or 
a phenotyping case definition differently. For exam-
ple, Strategic Health IT Advanced Research Projects 
(SHARP) [17], which is a collaboration effort (academic 
and industries partners) to advance the secondary use of 
clinical data, views a phenotype definition as the “inclu-
sion and exclusion criteria for clinical trials, the numera-
tor and denominator criteria for clinical quality metrics, 
epidemiologic criteria for outcomes research or obser-
vational studies, and trigger criteria for clinical decision 
support rules, among others” [17]. On the other hand, 
the Electronic Medical Records & Genomics (eMERGE) 
phenotype definitions extend to include practices as the 
“algorithmic recognition of any cohort within EHR for 
a defined purpose. These purposes were inspired by the 
algorithmic identification of research phenotypes” [17]. 
Further practices that eMERGE used in developing phe-
notype definitions include other data modalities, such as 
diagnosis fields, laboratory values, medication use, and 
NLP [17]. Here, we include summarized examples of def-
initions for a phenotype definition, which are:

▪ Inclusion and exclusion criteria are performed 
using the EHR’s structured data and unstructured 
clinical text to identify a cohort of patients from the 
EHR [18].
▪ EHR-based research is concerned with cohort 
selection which is the identification of cases and 
controls for a phenotype of interest. A phenotype 
definition is developed by combining EHR data, 
such as billing codes, medications, narrative notes, 
and laboratory data [19–22].
▪ The process of deriving a cohort of a phenotype 
of interest using either low-throughput or high-
throughput approaches [23].
▪ The identification of the cohort utilizing risk factors 
and clinical or medical characteristics and complica-
tions [24, 25].

Developing a new phenotype definition can be done 
either by creating new case definitions or utilizing exist-
ing case definitions’ information that is already avail-
able in existing data sources. Traditional expert-driven 
phenotyping relies on expert knowledge; however, these 
definitions might change over time [11]. In addition, this 
task is challenging due to the complexity of EHRs and the 
heterogeneity of patient records [15]. Depending on the 
phenotype of interest as well as the study purpose, stand-
ard queries for defining a phenotype can consist of any of 
the following: logical operators, standardized codes, data 
fields, and values sets (concepts derived from vocabular-
ies or data standards) [7]. Furthermore, it is also a labor-
intensive process in which a multidisciplinary team is 
needed with experts including biostatisticians, clinical 
researchers, informaticians, and NLP experts [21]. One 
example of an expert-driven definition is a study that 
identified patients with chronic rhinosinusitis (CRS) for 
a better understanding of the “prevalence, pathophysiol-
ogy, morbidity, and management” using EHR data [26]. 
The authors developed a phenotype algorithm to define 
CRS cases using the International Classification of Dis-
eases, Ninth Revision (ICD-9) diagnosis codes [27] and 
the Current Procedural Terminology (CPT) codes [28]. 
The process took several iterations until they achieved a 
predictive positive value of 91%. Further, they stated that 
the manual review of sinus computed tomography (CT) 
results and notes, which was completed by two reviewers 
in 40 h, was not scalable to larger numbers of patients or 
notes. Not to mention, their CRS definition has only been 
tested on one site and its performance is not known in 
other centers [26]. This creates further difficulties when 
creating new definitions.

Lessons learned from the eMERGE Network [29] 
showed that the process of developing, creating, and 
validating a phenotype definition for a single disease is 
time-consuming and can take around 6 to 8  months. 
Consequently, the eMERGE network developed the 
Phenotype KnowledgeBase (PheKB) [9], which is a phe-
notype knowledgebase collaborative environment that 
allows collaborating and commenting between groups 
of researchers who are invited by a primary author. The 
PheKB [9] uses an expert-driven approach where new 
phenotype definitions are generated by multi-insti-
tutional inputs and are publicly available for use. The 
PheKB provides a library of definitions for several phe-
notypes that include drug response phenotypes such as 
adverse effects or efficacy, diseases or syndromes, and 
other traits. Inspired by PheKB modalities or methods 
[9], a phenotype definition includes the presence of the 
following attributes: biomedical and procedure infor-
mation, standard codes, medications, laboratories, and 
NLP. The NLP has been used in many phenotypes in the 
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PheKB, such as angiotensin-converting enzyme inhibi-
tor (ACE-I) induced cough which provides a list of terms 
that can be used to identify cases [9]. On the other hand, 
data and study design can still be important to capture, 
but these are not the primary modalities/attributes of a 
phenotype definition.

Another method relies on deriving phenotype defini-
tions from existing data sources, such as EHR and bio-
medical literature. Some of these have been addressed 
manually using systematic reviews [30–36] or automati-
cally using computational approaches. Systematic reviews 
have a big role in medical knowledge; however, with the 
massive amount of information, there is still a need to 
use automated approaches to extract medical knowledge. 
For example, the rate of published clinical trial articles 
is over 20,000 per year while around 3,000 systematic 
reviews were indexed in MEDLINE yearly. Overall, con-
ducting systematic reviews can be time-consuming and 
labor-intensive [37]. On the other hand, the automated 
approaches for mining phenotypes in the literature are 
mostly focused on extracting phenotype terminolo-
gies [38–40]. This approach can miss important pheno-
type definitions information that is contained within text 
sources. Additionally, some of these studies [40, 41] have 
addressed only one phenotype at a time which might not 
be generalizable, especially when working on a large-scale 
set of phenotypes. Furthermore, these studies utilized 
abstracts rather than full-text articles [40, 41]. Unlike full-
text articles that are richer in information, abstracts are 
not sufficient for the granularity of phenotype definitions 
information. In addition, such approaches might not be 
generalizable, especially when working on a large-scale set 
of phenotypes. In the study done by Botsis and Ball [41], 
they developed a corpus and a classifier to automate the 
extraction of “anaphylaxis” definitions from the literature. 
However, Botsis and Ball [41] only relied on abstracts 
rather than full-text articles and only addressed one condi-
tion, "anaphylaxis". Even though they focused on some fea-
tures of phenotype definitions, e.g. signs and symptoms, 
they did not consider other features, such as standardized 
codes and laboratory measures [41]. Therefore, this effort 
did not address our information needs that reflect modali-
ties of phenotype definitions such as those used in PheKB.

Applications of electronic phenotyping and phenotype 
definitions
Electronic phenotyping is the process of identifying 
patients with an outcome of interest, such as patients 
with ADEs [15]. There are two major types of research 
in the biomedical domain: primary research that directly 
collects data and secondary research that relies on pub-
lished information or sources of data. EHR phenotyping 
is not limited to but is mostly needed in primary research 

which includes observational studies, also called epide-
miological studies. For example, the design of observa-
tional studies can include cross-sectional, retrospective, 
and prospective cohorts [42], where phenotype defini-
tions can be used [15]. Furthermore, other examples 
of studies that use phenotype definitions are pharma-
covigilance, predictive modeling, clinical effectiveness 
research, and risk factor studies. More examples are 
shown in Banda et al. research [15]. For a phenotype of 
interest, different study designs require different cohort 
designs as well as phenotype definitions where one phe-
notype can be defined in different ways depending on the 
study’s needs. For instance, type 2 diabetes mellitus can 
be defined as “simple as patients with type 2 diabetes or 
far more nuanced, such as patients with stage II prostate 
cancer and urinary urgency without evidence of urinary 
tract infection” [15].

New research, such as pharmacovigilance, is moving 
towards the emergence of electronic health information, 
machine learning, and NLP [43]. Methods used for elec-
tronic phenotyping, include NLP, machine learning, rule-
based, and collaborative frameworks [15]. EHRs provide 
complementary data with some flexibility in extended 
period tracking, large sample size, and data heterogeneity 
[24]. The availability of a cohort can create several oppor-
tunities for data mining and modeling such as building 
risk models, detecting ADEs, measuring the effectiveness 
of an intervention, and building evidence-based guide-
lines [24]. Cohort identification can be accomplished by 
using phenotype definitions, which classify patients with 
a specific disease based on EHR data and can be manu-
ally developed by experts or machine learning. A phe-
notype definition shares some major features, such as 
logic, temporality, and the use of standard codes [44]. 
Furthermore, examples of data categories that are com-
monly used in phenotype definitions across institutions 
are “age, sex, race/ethnicity, height, weight, blood pres-
sure, inpatient/outpatient diagnosis codes, laboratory 
tests, medications” [44]. On the other hand, there are 
some challenges with the cohort identification process 
that vary depending on the study type. The phenotyping 
process is more sophisticated than a simple code search 
[15]. Several factors can contribute to their complexity, 
including the used research methods and the presence of 
confounding factors. For example, when defining acute 
or less-defined phenotypes, one critical step is addressing 
confounding factors by using the matching of gender and 
age. These confounders are relatively easy to address, but 
others, such as co-diseases, might be more difficult. In a 
study completed by Castro et al. [45], they were not able 
to identify methods for matching controls in EHR data. 
Case–control studies may inherent some limitations in 
detecting comorbidities such as insufficient controls, 
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identification of correct confounders, and case–control 
matching processes. Castro et  al. [45] stated that their 
goal is to compare matching algorithms methods to iden-
tify clinically meaningful comorbidity associations. Liter-
ature-based comorbidity associations, derived by clinical 
experts from literature, are considered a reference stand-
ard to compare the performance of the matched controls. 
However, there were disagreements among gastroenter-
ologist experts who compared the inflammatory bowel 
disease and disease associations found in Phenome-wide 
association studies (PheWAS) [46] disease groupings ver-
sus the associations found in the literature [45].

Medical corpora for text mining
Many of the text mining applications require a corpus, 
a collection of text annotated by experts because these 
applications rely mostly on supervised machine learn-
ing methods. This is due to the challenges of recognizing 
terms as the example provided by Rodriguez-Esteban R 
[47] for: “the text ‘early progressive multifocal leukoen-
cephalopathy’ could refer to any, or all, of these disease 
terms: ‘early progressive multifocal leukoencephalopathy’, 
‘progressive multifocal leukoencephalopathy’, ‘multifocal 
leukoencephalopathy’, and ‘leukoencephalopathy’”. Such 
annotations based on expert knowledge can be used to 
train machines on, for example, recognizing biomedical 
terms in a text [47]. An annotated corpus requires expe-
rienced annotators, comprehensive guidelines, and large-
scale high-quality corpora [48]. The manually annotated 
corpus can serve as a gold standard for building auto-
mated systems, e.g. statistical, machine learning, or rule-
based [49]. Examples of annotated biological corpora are 
GENIA for annotating biological terms [50], BioCreative1 
for annotating biological entities in literature e.g. genes 
and proteins [51], and BioNLP2 which is a collection of 
corpora, such as Colorado Richly Annotated Full-Text 
Corpus (CRAFT)3 and Protein Residue Corpora,4 for 
annotating biological entities. Another usage of an anno-
tated corpus is to create a literature-based knowledge-
base, such as MetaCore5 and BRENDA86 for enzyme 
functional data [49]. However, these are mostly restricted 
to specific domains such as the biological domain which 
annotates information, such as gene names, protein 
names, and cellular location or events (e.g. protein–pro-
tein interaction) [49]. The availability of corpora in the 

medical domain is even more limited than in the biologi-
cal domain. One of the major reasons is that the medical 
domain is confronted with data availability and ethical 
issues of using electronic medical records [49], including 
privacy and confidentiality and Health Insurance Port-
ability and Accountability Act (HIPAA) regulations [52]. 
Examples of biomedical corpora are Text Corpus for 
Disease Names and Adverse Effects for annotating dis-
eases and adverse effects entities [53], CLinical E-Science 
Framework (CLEF) for annotating medical entities and 
relations (e.g. drugs, indications, findings) in free texts 
of 20,000 cancer patient records [54], and Adverse Drug 
Effects (ADE) corpus7 for annotating ADEs entities [49]. 
None of the available corpora serves our needs for this 
task to annotate contextual cues of defining a phenotype 
in observational studies on sentence-level annotations 
from full texts, such as the presence of codes, laboratory 
tests, and type of data used.

An example of developing a corpus for phenotypes is 
PhenoCHF [55, 56], an annotated corpus by domain 
experts for phenotypic information relevant to Conges-
tive Heart Failure (CHF) from literature and EHR. The 
PhenoCHF corpus data was derived from the i2b2 (the 
Informatics for Integrating Biology at the Bedside) dis-
charge summaries dataset [57] and five full full-text 
articles retrieved from PubMed that covered the charac-
teristics of CHF and renal failure. However, PhenoCHF 
focused only on one condition, CHF, and was built on a 
small corpus of only five full full-text articles. Further-
more, they did not annotate contextual cues for pheno-
typing case definitions. Intending to minimize human 
involvement, we realized that there is a lack of phenotyp-
ing tools [13] addressing or automating the extraction of 
existing definitions from the scientific literature.

There is no existing corpus that addressed the auto-
matic identification of phenotype definitions on a sen-
tence-level. In this study, our aim is to annotate a corpus 
that captures sentences with phenotypes and contex-
tual cues and patterns of a phenotype definition that are 
presented in the literature. We believe that EHR-based 
studies will provide relevant information for defining 
phenotypes. An annotation guideline is developed and 
serves as a foundational approach for annotating phe-
notype definition information in the literature. Both 
the corpus and the guidelines are designed based on an 
extensive textual analysis of sentences to reflect pheno-
type definitions information and cues. Ten dimensions 
are proposed to annotate the corpus at the sentence-
level. Furthermore, after identifying the presence or 
absence of the 10 dimensions, the level of evidence for 

1 http:// www. biocr eative. org/ news/ corpo ra/ biocr eative- iii- corpus/
2 http:// bionlp- corpo ra. sourc eforge. net/
3 http:// bionlp- corpo ra. sourc eforge. net/ CRAFT/ index. shtml
4 http:// bionlp- corpo ra. sourc eforge. net/ prote inres idue/ index. shtml
5 http:// www. genego. com/ metac ore. php
6 http:// www. brenda- enzym es. org/ 7 https:// sites. google. com/ site/ adeco rpus/ home/ docum ent

http://www.biocreative.org/news/corpora/biocreative-iii-corpus/
http://bionlp-corpora.sourceforge.net/
http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml
http://bionlp-corpora.sourceforge.net/proteinresidue/index.shtml
http://www.genego.com/metacore.php
http://www.brenda-enzymes.org/
https://sites.google.com/site/adecorpus/home/document
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each sentence was generated automatically using a rule-
based approach to ensure consistency and accuracy of 
annotations. All sentences in the methodology section 
were extracted from full-text research articles. To the 
best of our knowledge, no annotated corpus is publicly 
available for annotating sentences with contextual cues of 
phenotype definitions from biomedical full-text articles 
for text mining purposes.

Methods
The procedure of the corpus construction consists of 
document selection and sentence-level annotation [58]. 
The document selection started with the selection of phe-
notypes of interest that could assist in the searching for 
abstracts. After that, the collection of several abstracts 
was prepared, and full-text articles of selected abstracts 
were downloaded for the sentence-level annotation. For 
the sentence-level annotation, ten dimensions were pro-
posed to annotate sentences with cues of phenotype defi-
nitions including biomedical terms and standard codes. 
Finally, conclusions were derived from each level of evi-
dence in the sentences.

Selection of phenotypes
Our research group was primarily interested in ADEs 
[59, 60]. Therefore, we identified our ADE phenotypes of 
interest based on our previous work of literature-based 
discovery [59, 60] that has identified DDIs due to inter-
actions among five Cytochrome P450 (CYPs) enzymes, 
including CYP2C8, CYP2C9, CYP2C19, CYP2D6, and 
CYP3A. These CYPs have a significant role in drug 
metabolism leading to several DDIs [61, 62]. Further-
more, text-mining technology was used to extract DDI 
evidence and their corresponding ADEs from the bio-
medical literature. DDIs were identified with evidence in 
all types of DDI studies, including clinical pharmacody-
namics (PD), clinical pharmacokinetics (PK), and in vitro 
PK studies [60]. Among those clinical PD abstracts with 
986 drugs pairs, we explored ADEs from abstracts con-
taining substrates of the five major metabolizing enzymes 
which are mentioned above. The drug-enzyme relation-
ships were collected from the Flockhart table8 and FDA. 
As a result, a list of ADEs (n = 673) was used as the pri-
mary list of phenotypes. All the ADE terms for those 
substrates, which were matched with the preferred terms 
(PT), were found in the Medical Dictionary for Regula-
tory Activities Terminology (MedDRA) [63].

To narrow down our phenotypes of interest, we identi-
fied ADEs that showed evidence of drugs-ADEs linkage 
in the Side Effect Resource (SIDER) database [64] and 

found that 398 ADEs were successfully linked to the side 
effects in the SIDER database. In the end, expert reviews 
were performed by two co-authors of this study, Lang 
Li, Ph.D. and Sara Quinney, Pharm.D., Ph.D., to finalize 
the list of phenotypes of interest. The experts excluded 
ADE terms that did not meet our lab research interests, 
such as terms related to infections and cancer. The final 
list of phenotypes of interest has 279 ADEs (Supplemen-
tary 1). Figure  1 shows the process of the selection of 
phenotypes.

Abstracts and full texts collection and selection
To search the literature for observational studies, we 
consulted a medical librarian to assist in building search 
queries to ensure the highest coverage. A review study 
reported that due to the broad nature of phenotyping 
studies, it might be difficult to perform one search that 
is capable of capturing all EHR phenotyping studies 
[15]. Therefore, we collected our abstracts based on two 
search criteria:

First, we searched the PubMed database to identify 
observational studies of our phenotypes of interest. The 
searching query consisted of a phenotype of interest 
term (see Supplementary 1 for the list of ADE pheno-
types of interest) combined with a set of keywords that 
were tested to retrieve relevant observational studies 
(see Table 1). We did not put restrictions on the year of 
publication and the search was performed in Novem-
ber 2017. The total number of retrieved abstracts with-
out duplications was 1323 abstracts. One reviewer 
manually reviewed each abstract to select articles that 
met the inclusion criteria described in Table 1. Table 1 
also shows the exclusion criteria that were applied to 
exclude abstracts. A total of 800 abstracts met our 
inclusion criteria. From the 800 abstracts, a subset of 
57 abstracts was randomly selected for the full-text 
sentence-level annotation task (PMIDs in Supplemen-
tary 2).

Second, we used abstracts from a previous search 
that was performed by two reviewers. The used search 
queries were more generalized such as “electronic 
health record AND myopathy” (All queries are pre-
sented in Supplementary 3). However, the disadvantage 
of these queries was that they generated a large number 
of abstracts that were time-consuming and labor-inten-
sive to review all of them. The reviewers collected some 
relevant abstracts from these search queries. From 
these collected abstracts, we randomly selected 29 
abstracts. The query searches with PMIDs are shown in 
Supplementary 3.

With this, the total number of abstracts derived from 
the two search criteria was 86 abstracts. We achieved 
this number based on our goal to reach around 4000 8 https:// drug- inter actio ns. medic ine. iu. edu/ Main- Table. aspx

https://drug-interactions.medicine.iu.edu/Main-Table.aspx
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sentences from the method sections. We downloaded 
their full texts and tokenized them into sentences using 
a package called ‘Perl::Tokenizer’ as preparation for the 
annotation process. In addition, we manually fixed sen-
tences that were tokenized improperly. After that, we 
extracted sentences within the method sections.

Corpus construction
The annotation guidelines were developed based on tex-
tual analysis of the contextual cues in sentences with a 
phenotype definition that was inspired by major data 
modalities of phenotype definitions used in PheKB [9]. 
We performed sentence-level annotations with three 

Fig. 1 Flowchart of the selection process of the adverse drug event (ADE) phenotypes. The selection of the final list of ADE phenotypes started 
with the list literature‑based discovery that has identified drug‑drug interactions (DDIs) due to interactions among five Cytochrome P450 (CYPs) 
enzymes, including CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A. This step was followed by the ADEs eligibility evaluation through evidence of 
drugs‑ADEs linkage in the Side Effect Resource (SIDER) database and expert manual review to include the final list of ADE phenotypes of interest

Table 1 Abstract inclusion–exclusion criteria

a See Supplementary 1 for the list of ADE phenotypes of interest

Searching Query [A phenotype of interest term]a AND electronic health record (code OR codes OR  algorithma or "case 
definition" OR "phenotyping" OR "case identification" OR claim OR administrative)

Inclusion Criteria 1. Abstracts should satisfy each of the following: English, full text available, and original research
2. The primary source of data is electronic health record (EHR) or electronic medical record (EMR). Some 
accepted terms: Registry, administrative data
3. The article should use observational data (population‑based, surveillance, or cohort/cases) either retro‑
spectively or prospectively
4. Clearly describe a case definition or algorithm according to any of the following criteria: coding algo‑
rithms (SNOMED, ICD9/10, CPT, LOINC, RxNorm, UMLS, READ), laboratory, natural language processing (NLP), 
or inclusion and exclusion criteria

Exclusion Criteria 1. Review articles
2. Non‑human studies
3. Nurses/practitioners as the primary population of the study
4. Not real‑world data: e.g. simulation data
5. Tools, systems, or reporting systems that do not address phenotyping or description phenotype definition
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major categories for each sentence, which were: inclu-
sion, intermediate, and exclusion. The sentence-level 
annotations’ categories were derived based on the avail-
ability of ten dimensions that are shown in Table 2 with 
their descriptions and examples. The detailed annotation 
guidelines are available in Supplementary 4.

Within the annotation construction, the inclusion cat-
egory contained sentences that showed evidence of at 
least one of the dimensions that characterized a pheno-
type definition (Table  2). We identified five dimensions 

for the inclusion category, which were “Biomedical & 
Procedure”, “Standard codes”, “Medications”, “Laborato-
ries”, and “Use of NLP”. The proposed dimensions were 
represented either as keywords or more complex such 
as events where co-occurrence of more than one key-
word occurs. For example, the “Standard codes” dimen-
sion was represented by the presence of any keyword 
relative to “Standard codes”, such as ICD-9, Systemized 
Nomenclature of Medicine – Clinical Terms (SNOMED 
CT) [65], or a diagnostic code. On the other hand, 

Fig. 2 Level of evidence to build the final decision (Rule‑based final decisions). Inclusion conclusion (INC); Intermediate conclusion (ITC); Exclusion 
conclusion (EXC). Rule 1 (R1) and Rule (R2)—Strong evidence of a phenotype definition; Rule 3 (R3) and Rule 4 (R4)—Strong intermediate evidence 
of a phenotype definition; Rule 5 (R5) and Rule 6 (R6)—Weak intermediate evidence of a phenotype definition; and Rule 7 (R7)—No evidence of a 
phenotype definition

Table 3 Level of evidence of a sentence with a phenotype definition (Rule‑based final decisions)

INC Inclusion conclusion, ITC Intermediate conclusion, EXC Exclusion conclusion

Rule Rule description Level of evidence Final Decision Number of Sentences (%)

R1 If INC = True and ITC = False 
and EXC = False

The sentence shows strong evidence of a phenotype defini‑
tion

Positive 1222 (30.77%)

R2 If INC = True and ITC = True 
and EXC = False

The sentence shows strong evidence of a phenotype defini‑
tion

R3 If INC = True and ITC = True 
and EXC = True

The sentence shows strong intermediate evidence of a 
phenotype definition due to the presence of any of the Exclu‑
sion criteria

Intermediate I 701 (17.65%)

R4 If INC = True and ITC = False 
and EXC = True

The sentence shows strong intermediate evidence of a 
phenotype definition due to the presence of any of the Exclu‑
sion criteria

R5 If INC = False and ITC = True 
and EXC = False

The sentence shows weak intermediate evidence of a phe‑
notype definition due to the absence of any of the Inclusion 
criteria, but the presence of any of the intermediate criteria

Intermediate II 914 (23.01%)

R6 If INC = False and ITC = True 
and EXC = True

The sentence shows weak intermediate evidence of a phe‑
notype definition due to the absence of any of the Inclusion 
criteria, but the presence of any of the intermediate criteria

R7 If INC = False and ITC = False 
and EXC = True

The sentence shows no evidence of a phenotype definition Negative 1134 (28.55%)
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“Biomedical & Procedure”, “Medications”, “Laboratories”, 
and “Use of NLP” required an event presence such as the 
co-occurrence of two keywords that were identified for 
each dimension. Sentences were categorized as positive 
for the inclusion category if they showed evidence of any 
of the five dimensions (Table 2), which satisfied the inclu-
sion conclusion (INC) criteria (See Fig. 2 and Table 3).

Secondly, the intermediate category included sentences 
that did not show direct evidence of a phenotype defini-
tion, but could assist by providing supporting evidence 
for phenotyping. We identified two dimensions for the 
intermediate category, which were “Data sources” and 
“Study design or Institutional Review Board (IRB)”. Since 
different studies have shown varying research questions 
and designs [24], the intermediate category could assist 
in capturing data sources information that matched the 
study’s goals. A sentence was categorized as positive for 
the intermediate category if it showed evidence of any of 
the two dimensions (Table 2), which we called intermedi-
ate conclusion (ITC) (Fig. 2 and Table 3).

Thirdly, the exclusion category included sentences that 
were out of the scope of a phenotype definition or phe-
notyping. A sentence was categorized as positive for the 
exclusion category if it showed evidence of any of the 
three dimensions (Table  2), which we called exclusion 
conclusion (EXC) is true (Fig. 2 and Table 3).

Finally, the final decision is the overall sentence-level 
of evidence derived from INC, ITC, and EXC (Fig. 2 and 
Table 3). We note that some sentences can have evidence 
of more than one dimension which determines final 
sentence-level conclusions (INC, INT, EXC) in Table  3. 
We used a rule-based approach to produce four final 
sentence-level decisions, which are “Positive”, “Interme-
diate I”, “Intermediate II”, and “Negative”. The goal was 
to create accumulative evidence in each sentence based 
on the presence of any of the three conclusions (INC, 
ITC, EXC). This helped to ensure consistency, accuracy, 
and quality of the annotations. Table  3 and Fig.  2 show 
the criteria of the seven rules (R1, R2, R3, R4, R5, R6, and 
R7). We combined R8 final decision where all the three 
conclusions (INC, ITC, EXC) were false with R7 indicat-
ing negative evidence.

Annotation process
To produce a high-quality corpus, it is recommended that 
the corpus is annotated by more than one annotator [66]. 
Here, two annotators with a biomedical informatics back-
ground (SB, HW) carried out the annotation process. 
Both annotators have degrees in biomedical informatics, 
are familiar with the medical standard terminologies, and 
are familiar with text mining. We designed the annota-
tion guidelines iteratively through several meetings 
and manual analysis of textual patterns of a phenotype 

definition. When both annotators were satisfied with the 
final version of the annotation guidelines, they started 
the annotation of the corpus. For each dimension of the 
ten dimensions (Table  2), if the dimension was present, 
the annotator annotated it as 1, otherwise, it was anno-
tated as 0. The development of annotation guidelines was 
critical to ensure the consistency and quality of the anno-
tations. The process usually starts with a draft, and can 
then be refined iteratively until the final draft is accom-
plished [49]. During the guideline’s development process, 
subsets of the corpus were annotated until the annotators 
were satisfied with the guidelines. After that, the full cor-
pus was annotated. The process is shown in Fig. 3 which 
was inspired by Gurulingappa et  al. annotation task 
workflow [49].

After finalizing the guidelines, both annotators anno-
tated all sentences of the corpus following the final pro-
posed annotation guidelines. The annotation process was 
divided into several rounds starting from the annotation 
of a subset of sentences 400 (first round). After that, the 
number of sentences for each round was 1000, 1300, 
and 2700. After each annotation round, there were “con-
sensus sessions” that each took around 1 h to 4 h where 
annotators discussed and resolved any disagreements. 
Moreover, a third  annotator (LL) addressed disagree-
ments in annotations between annotators if they did not 
achieve a consensus. The goal was to identify areas of 
disagreement as well as areas to build our  gold standard.

Inter-annotator agreement (IAA)
The inter-annotator agreement is to assess the reliabil-
ity of the annotations. There are several benefits of the 
manual annotation by multiple people, such as generat-
ing correct annotations, validating and improving the 
scheme guidelines, resolving ambiguities in data, and 
evaluating valid interpretations [66]. Further, the writ-
ten annotation guidelines scheme help in generating 
consistent and reproducible annotations [66]. Therefore, 
to measure the agreement between annotators, we used 
three measures of agreement: percent agreement, over-
all percent agreement [67], and Cohen’s kappa [68]. These 
measures vary in their approaches, but they all aim at 
producing the best possible reliable and correct annota-
tions as there is no reference for the annotation of some 
of the sources [66]. The percent agreement and Cohen’s 
kappa [68] were calculated for each dimension using 
R packages (‘irr’9 for percent agreement and ‘fmsb’10 
for kappa). For example, if the two annotators annotate 
a dimension as 1, it means an agreement. On the other 

9 https:// cran.r- proje ct. org/ web/ packa ges/ irr/ irr. pdf
10 https:// cran.r- proje ct. org/ web/ packa ges/ fmsb/ fmsb. pdf

https://cran.r-project.org/web/packages/irr/irr.pdf
https://cran.r-project.org/web/packages/fmsb/fmsb.pdf
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hand, if one annotator annotates a dimension as 1 and 
the other as 0, it means disagreement. The overall percent 
agreement [67] was calculated over the ten (10) dimen-
sions on a sentence-level (Table 2) as the following:

Results
Corpus description
PubTator11 is a web-based tool for annotating biomedical 
entities, including diseases, genes, mutations, and chem-
icals [69]. We uploaded our PMID list (n = 86) and run 
the annotation analysis. Table 4 presents the results from 
PubTator for the disease terms that were found in more 
than one abstract. Disease terms that appeared in single 
abstracts and terms for other entities (genes, mutations, 
and chemicals) are shown in Supplementary 5.

We found the following study design terms as they 
appeared in the text in our corpus, including observa-
tional study, longitudinal study, cohort study (retrospective 
cohort, prospective cohort, nonrandomized retrospec-
tive cohort study), case–control study, retrospective study 
(retrospective cohort, nonexperimental retrospective, 
non-randomized retrospective cohort study, retrospective 

Overall sentence level agreement =

(

Number of Sentences × 10
)

− Number of disgreement

(Number of Sentences × 10)
×100

validation), cross-sectional study, comparative study, 
descriptive study, validation study, prospective study (pro-
spective cohort study), genome-wide association study, epi-
demiology and/or surveillance study, and follow-up study.

We annotated the corpus using our annotation 
guidelines with three categories and ten dimensions 
(Table 2), which are the Inclusion category (“Biomedi-
cal & Procedure”, “Standard codes”, “Medications”, 
“Laboratories”, “Use of NLP”), Intermediate category 
(“Data sources”, “Study design and/or IRB”), and Exclu-
sion category (“Irrelative evidence”, “Computational 
and statistical evidence”, “Insufficient evidence”). The 
total number of sentences in this corpus was 3971 sen-
tences that were extracted from 86 full texts methods 
sections. Table 5 shows the number of annotated sen-
tences for each category and dimension. “Biomedical 
& Procedure” dimension showed the highest number 
of annotated sentences with around 1449 (36.5%). 
“Data sources” and “EXC2 – Computational and sta-
tistical evidence” were both over thousand anno-
tated sentences with 1370 (34.5%) and 1314 (33.1%), 
respectively. The number of annotated sentences for 
“Medications”, “Standard codes”, and “Laboratories” 

Fig. 3 The annotation process of developing the annotation guidelines and the final annotation. The annotation task was an iterative process that 
started with a subset of sentences. Two annotators annotated the subset of sentences, calculated the inter‑annotator agreement, and checked the 
agreements. If disagreements existed, a third annotator resolved the disagreements between the two annotators. Then, the annotators revised and 
drafted the annotation guidelines. This was an iterative process until no further disagreements existed

11 https:// www. ncbi. nlm. nih. gov/ resea rch/ pubta tor/

https://www.ncbi.nlm.nih.gov/research/pubtator/
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dimensions from the inclusion category was 593 
(14.9%), 385 (9.7%), and 246 (6.2%). The number of 
annotated sentences for the “Use of NLP” dimension 
was the lowest with 49 (1.2%).

Table 3 (see 5 section) shows the rule-based final deci-
sions which are “Positive”, “Intermediate I”, “Intermedi-
ate II”, and “Negative”. The positive indicated the highest 
level of evidence of defining a phenotype while the nega-
tive indicated no evidence of defining a phenotype. The 
number of sentences with “Positive” is 1222 (30.77%). 
“Intermediate I” is the sentence that showed strong inter-
mediate evidence were 701 (17.65%) sentences of the 
corpus. “Intermediate II” are the sentences that showed 
weak intermediate evidence were 914 (23.01%) sentences 
of the corpus. Finally, the number of negative sentences 
represented in our corpus was 1134 (28.55%) sentences.

Inter-annotator agreement
For inter-annotator agreement, the calculations were 
based on the annotation of each dimension (Tables  2 
and 5). We used the overall sentence-level percent agree-
ment (inspired by Wilbur et al. [67]), percent agreement, 
and Kappa. The overall sentence-level percent agreement 
was high at 97.8%. The percent agreement and kappa 
measures results are shown in Table 5.

Generally, all dimensions showed high agreement on 
both percent agreement and kappa. For the dimensions 
of the inclusion category, the “Biomedical & Procedure” 
showed 95% percent agreement, and almost perfect 
kappa with 88.96%. For the “Standard codes”, “Medica-
tions”, and “Laboratories” dimensions, they all showed 
over 99% percent agreement and over 96% kappa. For 
the “Use of NLP” dimension, it showed over 99% percent 

Table 4 Phenotypes that appeared in more than one abstract in 
our corpus

Term Number 
of 
abstracts

Diabetes 16

Hypertension 11

Diabetes mellitus 8

Heart failure 7

Asthma 3

Bleeding 3

Cancer 3

Coronary heart disease 3

Diabetic 3

Hypertensive 3

Obesity 3

Osteoarthritis 3

Pneumonia 3

Type 2 diabetes 3

Acute renal failure 2

Allergies 2

Death 2

Dementia 2

Gout 2

Myocardial infarction 2

Pulmonary embolism 2

Rhabdomyolysis 2

Rheumatoid arthritis 2

Right bundle branch block 2

Sepsis 2

Stroke 2

Table 5 Corpus description and inter‑annotator agreement

Category Number of sentences 
(%) per category

Dimension Number of 
sentences (%) per 
dimension

Percent Kappa Kappa 95% CI

Inclusion 1923 out of 3971 (48.4%) Biomedical & Procedure 1449 (36.5%) 95.00% 88.96% 0.87—0.90

Standard codes 385 (9.7%) 99.47% 97.01% 0.95—0.98

Medications 593 (14.9%) 99.09% 96.44% 0.95—0.97

Laboratories 246 (6.2%) 99.70% 97.42% 0.95—0.98

Use of Natural Language Processing (NLP) 49 (1.2%) 99.65% 83.54% 0.74—0.92

Intermediate 1851 out of 3971 (46.6%) Data sources 1370 (34.5%) 96.71% 92.59% 0.91—0.93

Study design and/or Institutional Review Board 
(IRB)

780 (19.6%) 98.00% 93.56% 0.92—0.94

Exclusion 2273 out of 3971 (57.3%) Irrelative evidence 733 (18.4%) 97.27% 91.05% 0.89—0.92

Computational and statistical evidence 1314 (33.1%) 96.84% 92.83% 0.91—0.94

Insufficient evidence 359 (9.0%) 95.96% 78.72% 0.75—0.82
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Table 6 Error analysis of the annotation with disagreements

Error Dimension Examples (Sentences)

Abbreviated terms Biomedical & Procedure "Events that occurred during follow‑up were 
identified from hospitalization records, and ARIC 
and CHS study" (PMID25104519)

Standard codes "Finally, the Apollo Data Repository provided data 
for ICDs" (PMID26961369)

Medications " ‘‘common’’ side effects, e.g. headache, to judge 
the relevance of side effects associated with AZA”. 
(PMID24177317)

Use of NLP "From this cohort, we identified 15,761 patients 
with HPI that was processed through a natural lan‑
guage processing algorithm…” (PMID25567824)

Data “Cohort with HPI data” (PMID25567824)

EXC1 – irrelevant evidence "190 patients completed the SCID 
assessment"(PMID25827034)

EXC2 – Computational and statistical evidence "The MCMC method" (PMID21931496)

Missed keywords or criteria Use of NLP "The algorithm uses non‑negated terms indicative 
of HF" (PMID17567225)

Data "If data on weight and height were available” 
(PMID21862746)

EXC1 – irrelevant evidence (financial) "until termination of insurance coverage”. 
(PMID12952547)

EXC1 – irrelevant evidence (ethical) "To protect patient confidentiality, all personal 
identifiers are deleted” (PMID21051745)

EXC1 – irrelevant evidence (location of the 
study)

"We randomly sampled outpatient clinical 
encounters from October 1, 2003 through March 
31, 2004 at VA Maryland (VAMHCS) and at VA 
Salt Lake City (VASLCHCS) Health Care systems”. 
(PMID20976281)

EXC2 – Computational and statistical evidence "Characteristics were measured during the 
one‑year baseline period (i.e., before time zero)”. 
(PMID20112435)

Without co-occurrence with a biomedical, 
procedure, or medication terms

Use of NLP "Humedica derives NLP items from text entries 
that correspond primarily to terms in two 
large dictionaries, SNOMED and MedDRA" 
(PMID26725697)

Data "If the first record for a woman was either …" 
(PMID22071529)

Term ambiguity Biomedical & procedures events "Only acute conditions occurring during the first 
24 h of hospital admission were considered”. 
(PMID24734124)

Study design or IRB "The nucleotide reference for this allele is guanine. 
4″. (PMID26221186)

EXC2 – Computational and statistical evidence "More points mean a higher risk of hyperkalemia”. 
(PMID20112435)

Neither biomedical nor procedure (e.g. 
Social status)

Biomedical & Procedure "We created a binary variable for marital status, 
where “single” included those patients classi‑
fied as divorced, single, widowed, or separated”. 
(PMID25091637)

A not clear statement of using standard 
codes

Standard codes "Outcomes were evaluated by administratively 
coded data” (PMID26370823)

Assigning terms as biomedical & procedure 
vs. medications (e.g. substances)

Biomedical & Procedure/Medications "The most recent fasting lipid profile in patients 
with dyslipidemia and glycosylated hemoglobin 
level in patients with diabetes” (PMID11388131)

Spelling and short forms Medications "Asthma meds refilled regularly”. (PMID12952547)

Without co-occurrence with supportive 
definition evidence

Biomedical & Procedure/Medications "reports KD = 9100 for bupropion and KD > 10 000 
for mirtazapine (vs 200 for nefazodone)”. 
(PMID22466034)
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agreement and 83.54% kappa. For the dimensions of the 
intermediate category, they showed high agreement on 
percent agreement with over 96%, and kappa with over 
92%. Finally, for the dimensions of the exclusion category, 
both “EXC1 – Irrelative evidence” and “EXC2 – Com-
putational and statistical evidence” showed high agree-
ment on percent agreement with 97.27% and 96.84%, and 
kappa with 91.05% and 92.83%, respectively. The “EXC 3 
– Insufficient evidence” dimension showed high percent 
agreement (95.96%) and substantial kappa (78.72%).

Error analysis
We performed an error analysis on sentences where 
annotators had disagreements. Table  6 provides some 
common errors that led to some of the disagreements 
between the annotators with examples. For example, we 
found that recognizing abbreviated terms was slightly 
challenging and it appeared problematic in seven dimen-
sions. It can be hard to determine if an abbreviated term 
is a biomedical, procedure, medication, or standard code, 
such as the abbreviated term “ICD” which might mean 
“Implantable Cardiac Defibrillators” or “International 
Classification of Diseases”. Furthermore, there was an 
ambiguity in some of the terms that the same term has 
more than one meaning, such as “mean” which can refer 
to the statistical measure “mean” or the word “mean”.

Discussion
In this work, our goal was to develop an annotation 
approach and an annotated corpus that can support 
future text-mining tasks such as the literature-based dis-
covery of phenotyping case definitions. In terms of selec-
tion of phenotypes, we chose to select a set of phenotypes 
based on our group research interests, which were 
mostly ADEs (n = 279). We utilized these phenotypes 
to search the literature for abstracts and we included 86 
abstracts to build the sentence-level corpus from their 
full texts’ methods sections. Annotation approaches 
were based on evaluating the presence of our proposed 

ten dimensions in a sentence (Table 2) and the final deci-
sions were derived based on a set of seven rules (Table 3). 
Our focus in annotating the corpus is to develop a gen-
eralized approach to capture contextual features of phe-
notyping rather than focusing on specific entities. The 
two annotators worked on developing the annotation 
guidelines iteratively; after finalizing the guidelines, the 
whole corpus was annotated. For inter-annotator agree-
ment, we used three measures for evaluation: overall sen-
tence percent agreement (inspired by Wilbur et  al. [67]), 
percent, and kappa agreement. Overall, the results for 
the inter-annotator agreement were high and the overall 
sentence-level percent agreement was high at 97.8%. One 
observation with the “EXC 3 – Insufficient evidence” 
dimension showed “substantial agreement” (see Table  2 
for interpretation of Kappa in [70]) that was the lowest 
kappa score among all dimensions. This dimension indi-
cates sentences with a lack of evidence in any of the other 
nine dimensions. Overall, we annotated 3971 sentences 
extracted from methods sections of 86 articles and the 
inter-annotator agreement showed that the annotations 
and guidelines are valid.

Sentence-level annotation and dimensions selection
Our decision in this work is to focus on sentence-level 
annotations rather than entity-level annotations. There 
are several reasons for this decision. First, we believe 
that a phenotype definition is best represented as full 
sentences rather than single concepts or terms. Entity-
level annotations can be accomplished in future steps 
with the goal of text summarization and information 
extraction. Second, we aimed to utilize a generalizable 
approach that serves as a foundational basis for annotat-
ing a phenotype definition. The selection of ten proposed 
dimensions (Table  2) was based on identifying pheno-
type definition contextual cues that were observed in 
the published literature [9, 13, 24, 41] as well as during 
our manual annotation process (Fig. 2). Third, based on 
our analysis, contextual cues of a phenotype definition 

Table 6 (continued)

Error Dimension Examples (Sentences)

“More than or less than” value, but not 
directly relevant to phenotyping

Clinical measurable values " ≥ 2 years of observation before the period of 
interest; n = 50″. (PMID23449283)

New keywords for the dimension EXC2 – Computational and statistical evidence Examples of new keywords describing “EXC2” 
are: risk score, inter‑rater variability, custom‑
designed data entry template, predictor variable, 
Tukey multiple comparison test, Web‑accessible, 
teleconferences, propensity‑matched, machine‑
implementable rule, Illumina Omni1_‑ QUAD, 
Illumina 660 W, TaqMan, Illumina 660‑Quad, and 
Illumina
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are not only reliant only on biomedical terms, but also it 
can be extended to other cues, such as “defined”, “inclu-
sion criteria”, “exclusion criteria”, and “eligibility”. To our 
knowledge, contextual cues and patterns of phenotype 
definitions in the literature on a sentence-level were not 
studied previously.

Error analysis
Recognizing abbreviated terms was slightly challenging 
and it appeared problematic in seven dimensions. Some 
of the disagreements were resolved by returning to the 
full-text article. For terms with ambiguity, understand-
ing the context around the text was necessary and helped 
in addressing this problem. In addition, we observed 
that natural human error generated some disagreements 
during the annotation process. For example, one of the 
annotators missed some keywords for some dimensions 
which we identified during the consensus sessions. Such 
mistakes were not intentionally made. Overall, annotat-
ing phenotype definitions’ events e.g. a co-occurrence 
of more than one keyword is challenging because they 
require the presence of more than one pattern.

Study limitations and future work
This work does not stand without limitations. Annotat-
ing a larger number of articles might generate more con-
textual patterns of a phenotype definition in EHR-based 
studies. However, we also believe that we have compre-
hensive coverage for several study types of studies. With 
the multi-study coverage, we believe that our corpus was 
sufficient to capture a wide range of contextual cues rep-
resenting a phenotyping case definition in the biomedi-
cal literature. Furthermore, we believe that our approach 
can be generalizable and scalable to other phenotypes 
because our intention was on the phenotype definitions 
contextual cues and patterns, and we did not limit the 
sentence-level annotations to the ADE phenotypes.

The manual corpus annotation is time-consuming and 
labor-intensive. Only two annotators annotated the cor-
pus; therefore, we tested the annotations with more than 
one measurement of agreement (overall percent, percent, 
and kappa). Both annotators were familiar with biomedi-
cal informatics concepts and text mining approaches, but 
we note that some were more challenging than others. 
The results of inter-annotator agreement showed high 
agreement indicating reliable annotations and guidelines. 
Generally, more annotators with clinical expertise could 
assist more during the task of annotations. In addition, 
text mining methods, such as named-entity recognition 
(NER) which is a subtask of information extraction [71], 
can be used to automatically recognize entities or phe-
notypes within the phenotype definitions sentences can 
also improve the annotation process and decrease the 

time of annotation. For example, NER can utilize existing 
medical terminologies and classifications, such as Uni-
fied Medical Language System (UMLS) [72, 73], to recog-
nize ADE, biomedical, procedure, social descriptors, and 
other phenotype categories. For example, a list of ADE 
phenotypes of interest can be mapped to all synonyms to 
be used to recognize all ADE entities within a text. How-
ever, the entity-level annotation was out of the scope of 
this work.

For the “Use of NLP” dimension, the number of sen-
tences was comparably lower than the number of sen-
tences in other dimensions. However, since we decided to 
only annotate the presence or absence of NLP in a sen-
tence to use it as a part of a phenotype definition, going 
beyond this scope might complicate the annotation task. 
For instance, detailed annotations of NLP methodology 
might be needed which was out of the scope. In addi-
tion, our aim in this work is to establish a foundational 
approach for annotating phenotypes definitions pub-
lished in the literature. Future work can focus on anno-
tating NLP methods contained within a phenotype 
definition.

To date, PheKB [9] library provides around 50 defini-
tions only for some phenotypes. A study of best prac-
tices for phenotyping of adverse events found that the 
re-utilization of existing definitions is crucial [74]. This 
only works for case definitions that have been already 
published in the literature. Therefore, this work aimed 
to support the reusability of published definitions [7] by 
analyzing their contextual cues. Specifically, for using case 
definitions to establish EHR-based research, such as drug 
safety surveillance. Availability of the phenotype defini-
tions can also assist in the validation of them in several 
institutions to ensure cohort consistency [75]. The ten 
dimensions in our annotation guidelines provide a foun-
dational understanding of the basic contextual cues that 
represent a phenotyping case definition in the literature. 
Therefore, we believe that this corpus can serve as a base-
line for developing either automatic or manual approaches 
to annotate a larger corpus size and advancing our pro-
posed guidelines. Furthermore, our main aim in develop-
ing this corpus is to use it for text-mining applications to 
automate the mining of phenotype definitions published 
in the literature. For example, future work can train word 
vectors on the abstract-level and full-text sentence-level.

Conclusions
In conclusion, clinical research, such as drug discovery, 
is moving towards the use of EHRs and electronic phe-
notyping where phenotype definitions are needed. We 
believe that literature provides an important source 
of data for mining phenotype definitions’ informa-
tion. The corpus and annotation guidelines can serve 
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as a foundational informatics approach for annotating 
and mining literature-based phenotype definitions. Ten 
dimensions on a sentence-level were proposed character-
izing major contextual patterns and cues of a phenotype 
definition in published literature. This is a step towards 
research to advance leveraging of phenotype defini-
tions from literature to support EHR-based phenotyping 
studies.
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