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Abstract

Many coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and
panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several
recent studies have shown that the results can be misleading when it is violated. Among the most widely applied
demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields.
Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot
inferences have so far not been addressed and quantified. We simulated DNA sequence data under a variety of scenarios
involving structured populations with variable levels of gene flow and analysed them using BSPs as implemented in the
software package BEAST. Results revealed that BSPs can show false signals of population decline under biologically
plausible combinations of population structure and sampling strategy, suggesting that the interpretation of several
previous studies may need to be re-evaluated. We found that a balanced sampling strategy whereby samples are
distributed on several populations provides the best scheme for inferring demographic change over a typical time scale.
Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by
simulations. We recommend that sample selection should be carefully considered in relation to population structure
previous to BSP analyses, and that alternative scenarios should be evaluated when interpreting signals of population size

change.
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Introduction

Coalescent-based methods can be used to infer demographic
change (used here in the narrow sense of population size change)
from genetic data [1,2]. The coalescent framework has contrib-
uted important information about the demographic history of
humans [3-5] and other species [6-8]. This has improved our
understanding of the factors that have affected past ecosystems,
whether climatic or anthropogenic, recent or ancient. Demo-
graphic inference methods based on the coalescent usually assume
panmixia, i.e. the absence of population structure, although this is
not a realistic assumption in many biological situations. A number
of recent studies have investigated the effect of violating the
panmixia assumption for inferring population size changes [9-11].
These studies suggest that population structure can lead to
erroneous conclusions about demographic changes in a population
that in fact has remained stationary through time.

Bayesian skyline plots (BSPs [2]), or derivatives thereof such as
the extended Bayesian skyline plot (EBSP [12]), have become
increasingly popular for inferring demographic changes using
sequence data. A search on the exact term (conducted December
13™ 20192) returned 1310 hits in Google Scholar, covering the
spectrum of organisms from viruses to large mammals. Skyline
plots assume a single panmictic population and use inferred
patterns of coalescence to fit a demographic model to a set of
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sequence data. Although a recent review highlights the danger of
violating the panmixia assumption in BSP inference [13], the
structure effect on BSPs has not been quantified. Importantly, the
confounding structure effect is not a fault of the skyline methods per
se, but rather a case of fitting a wrong model (panmixia) to the
data. As shown by several authors [11,14-16] it is fundamentally
due to the fact that genes sampled within one population (or deme)
within a set of inter-connected demes (or a structured population)
exhibit genealogies that resemble those of panmictic populations
that have declined in size. Structured populations have genealogies
that differ from panmictic ones in some crucial aspects. In a
seminal paper, Wakeley [14] identified two distinct phases when
the genealogy of a structured population is considered backwards
in time: the recent scattering phase, which lasts until all sampled
lineages have coalesced or migrated so that each remaining lineage
Is In a separate deme. At this point the genealogy enters the
collecting phase, where two or more lineages have to migrate to
the same deme before coalescence can occur. Pannell [17] showed
how the presence of these distinct genealogical phases will cause an
apparent decline in estimates of effective population size going
from the ancient (collecting phase) to the recent (scattering phase)
part of the genealogy. BSPs derive population sizes from inferred
genealogies and will consequently be prone to confound the effect
of structure with declines in population size. We define this
confounding of structure and demographic change as the
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‘structure effect’. The structure effect remains under-appreciated
in BSP analyses, and consequently there is a danger of deriving
erroneous demographic conclusions from BSP analyses of
structured populations. Some BSP-based studies do consider and
discuss the possible confounding effect of structure (e.g. [7,21]), but
an evaluation of the magnitude of the structure effect and the
conditions that are especially prone to it is lacking. The present
study is intended to serve this purpose.

This study expands on previous studies evaluating the structure
effect. Stadler et al. [9] examined the effect of structure on
Tajima’s D and Fu and Li’s D statistics in growing or constant
populations, and Chikhi et al. [10] examined the structure effect
on inferences based on MSVAR [18], a program using
microsatellite data to infer a single change in population size. As
mentioned above, Pannell [17] provided some important insights
(albeit in a metapopulation framework) into the structure effect on
generalized skyline plots. Here, we address specifically the
structure effect on BSPs with the aim of evaluating their robustness
and power to distinguish true population size changes when the
panmixia assumption is violated. Furthermore, we discuss practical
issues that should be considered before interpreting the demo-
graphic signal in BSPs. Our results show that population structure
and the sampling strategies are issues that must be considered, but
also that some sampling strategies can minimize the effect of
spurious population size inference.

To put our simulation results into perspective, we supplemented
them with a case study of mtDNA data from the African buffalo
(Syncerus caffer) distributed on 34 distinct localities in sub-Saharan
Africa [19]. This structural conformation is comparable (in terms
of the number of demes) to the simulation scenarios and allowed us
to assess the structure effect in a more realistic setting. By including
a case based on real data we demonstrate how simulations can
complement analyses of real data to validate observed skyline plot
results. The risk of a structure effect in an empirical study depends
on many factors, hence is difficult to assess without performing
simulations that emulate the structural context in which the real
data are collected. The inclusion of real data furthermore enabled
us to assess the structure effect when historical changes in the
structure and population size according to the known history of the
buffalo [20,21] are incorporated. We acknowledge that the
complexity underlying any real data set is not reducible to the
simulation scenarios. Yet we think that the simulations and the
case can illuminate each other: the case illustrates how the
simulated results apply to real-world situations and conversely the
simulations lends credibility to the results based on real data.

Materials and Methods

The analyses were divided in two parts: first, we simulated data
under an idealised model with a simplified migration pattern
connecting the demes. This was done to illustrate the structure
effect on BSPs under standardized conditions. We also considered
more complex models that-in addition to the idealised structure—
involved changes in either population size or structure. Second, we
used data from a set of 755 African buffalo D-loop sequences
distributed on 34 distinct populations in sub-Saharan Africa to test
the structure effect under a data-informed migration matrix and
on real sequence data.

Simulated Scenarios

Simulation settings. We used the program Bayesian Serial
SimCoal (BSSC [22]) to simulate DNA sequence data under
different structural and demographic models. We simulated a
600bp fragment of the mitochondrial D-loop, commonly used in
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BSP studies due to its high nucleotide diversity. The sequences
were set to evolve according to a HKY model with kappa =50,
gamma distributed rate heterogeneity (shape parameter 0.5) and a
rate of 32% per million years per bp [6] (note that this rate is
subject to estimation uncertainty, but here it serves to provide a
conversion between genetic distance and real time), equivalent to
0.001344 mutations per sequence per generation (using the
estimated buffalo generation time of 7 years [20]). We emulated
the actual marker used in the buffalo case study in the simulations
to facilitate comparisons, and because BSPs are almost always used
in the context of dated genealogies with time measured in years.
For all scenarios, we carried out 100 replicate simulations to
incorporate coalescent stochasticity [23] and identify general
patterns across stochastic replicates of the same demographic
history. Essentially, this corresponds to simulating 100 non-linked
genetic markers with the high information content of the D-loop.
We were thus able to assess the performance of multi-locus
inference and ensure that our conclusions were not limited by the
use of a single locus. This makes our results more comparable to
multi-locus data that are likely to become common in the genomic
era. Two example input files for BSSC are supplied to show the
details of our simulations (File S1 and File S2).

Sampling strategy. The influence of the sampling scheme
was investigated by drawing 40 samples in three different ways: 1)
all 40 samples from a single deme, 2) 4 samples from cach of 10
demes and 3) one sample from each of the 40 demes in the
structured population. These correspond respectively to the local,
pooled and scattered (not to be confused with the term ‘scattering
phase’, which refers to aspects of the underlying genealogy)
sampling regimes described in Stidler et al. [9] and Chikhi et al.
[10], and we retain that terminology (always in italics) throughout
this study. Unless otherwise stated, these three sampling strategies
were explored for all simulated scenarios.

Idealised structured population. The most simple simula-
tion scenario was an island model with 40 demes of 500 mtDNA
copies (corresponding to 500 females) connected by equal
migration and with a stationary population size throughout.
Three levels of migration rates were simulated: Nym=0.125,
Nym=1.25 and Nym=12.5 (where Nym is the number of female
migrants per generation, since we are concerned with maternally
inherited mtDNA sequences throughout). These rates represent
the extremes and an intermediary level of gene flow found in
structured populations [9,10]. The corresponding equilibrium Fgy-
values (for an mtDNA marker in an infinite island model [24]) are
0.80, 0.28 and 0.04, respectively. We use the number of migrants
(NVym) to denote the level of gene flow, although we point out that
Fg values are more directly comparable across marker types and
inheritance scalars. In keeping with Stadler et al. [9] and Chikhi
et al. [10], we supplemented the island model with simulations
under a stepping-stone model (see Supporting Information S1)
using similar parameter values. We also considered a structured
population identical to the 40-deme island model, but with only
ten demes (with N;=2000 in each) to evaluate the structure effect
under these conditions that match more closely a typical
population genetic study (although the limited number of sampled
demes is probably often indicative of logistic or resource
limitations rather than the actual number of demes in structured
populations).

In addition to the constant-size idealised scenarios, we
considered scenarios where population sizes varied, maintaining
structure as above. The population size changes we explored were
1) a single transition from a constant to a ten-fold exponentially
declining/expanding population at either a Holocene or Pleisto-
cene time point (see Supporting Information S1 regarding the
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selected time points); 2) a boom-bust (combining the above
Pleistocene growth and Holocene decline) demographic history as
recently inferred for the African buffalo [21]. In this way, we
wanted to test how different demographic changes might be
mimicked or concealed by concomitant population structure
under different sampling regimes. For all non-constant demo-
graphic scenarios, we explored only the intermediate Nym=1.25
gene flow level to reduce computation time and because we
already demonstrated the effect of varying gene flow. Finally, we
simulated date under an ‘IM-like’ model where structure was not
permanent (Supporting Information S1).

Data-informed structured population. To assess the
structure effect under more complex conditions than the idealised,
equal-migration scenarios mentioned above, we carried out
simulations that mimicked the structure in a data set consisting
of 755 D-loop sequences from the African buffalo collected in 34
locations (treated as demes hereafter) across sub-Saharan Africa.
First, we assumed an island model of connectivity between the
demes and used the population pairwise Fgr matrix to estimate
female migration rates through the formula Fsr= 2N/n++l [24].
This was intended as an approximation only, as the equation only
holds under certain assumptions—notably migration-drift equilib-
rium in Wright’s infinite island model-which are probably not met
here [25]. However, it does allow us to explore the structure effect
in a more complex and realistic scenario represented by unequal
migration rates among demes. Simulations were carried out with
the data-informed migration matrix and assuming a deme size of
500 females. We simulated data under a constant and a boom-bust
demographic history. Replication in the data-informed simulations
was slightly different from the idealised simulations because we
now had to take into account that under a non-uniform migration
matrix, it matters which populations are represented in the
sample. Under local sampling we analysed ten replicates of each
deme (340 data sets in total); under pooled sampling we analysed
four samples from each of ten randomly selected demes, replicated
100 times. Under scattered sampling, we simply performed 100
replicates of the scenarios and analysed a single individual from
each deme. Because of these differences in replication, the
variance as evident from the different individual lines in the
EBSPs is not directly comparable among the two parts of the
analyses, as we discuss below.

Skyline Plot Analyses

Simulated data analyses. All data sets were analysed with
the extended Bayesian Skyline Plot (EBSP) coalescent prior in
BEAST [2]. This model allows the data to guide the selection of
the most probable piece-wise linear demographic function, hence
in principle allows it to take any shape, although this is affected by
prior settings. The number of change-points in the demographic
function is influenced by the parameter ‘demographic.popSize-
Change’ (PSC in the following), which was given a Poisson prior
with a mean of In(2). This corresponds to a prior assumption that
zero and all non-zero PSCs have equal probability. For
consistency and due to the low number of change points in the
simple demographic scenarios explored here, we did not vary the
PSC prior, but simulations have shown that it does influence the
ability of EBSPs to pick up complex demographic patterns [12].
For each simulated scenario, we plotted the median inferred
population size from each EBSP analysis (100 data sets per
scenario) and the prior and posterior of the PSC parameter. The
BEAST priors on substitution model parameters were chosen to
conform to the values from the simulated data, and we fixed the
substitution rate to that used in the simulations. BEAST analyses
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were run for 107 steps drawing samples every 10 step, which was
found to be sufficient to reach convergence in trial runs.

To quantify the difference between simulated (i.e. the sum of all
deme sizes) and inferred population sizes and supplement the
visual observations of the EBSPs themselves, we calculated the
following measures across all 100 simulation replicates for all
constant-size simulations: Coverage, or the proportion of time
points from the inferred EBSP demographic function where the
95% highest probability density interval included the simulated
population size, and the mean (over all time points as above)
relative departure (MRD) of the median inferred population size
from the simulated one. These measures are related to those
applied in Heled & Drummond [12].

Real data analyses. Finally, we applied the three different
sampling strategies to the real D-loop data: local (all samples from
each of the buffalo populations ranging from three to 85
individuals per population), pooled (four samples picked randomly
from ten of the 34 populations, replicated 100 times) and scattered
(one sample picked randomly from each population, replicated
100 times). It should be noted that this resampling is not equivalent
to the replication of simulations to display coalescent stochasticity,
since the case data represents just one realization of the coalescent
process. It was done to ensure that results were not biased by
sampling effects.

Results

Idealised Structured Population

Our first series of simulations with no demographic change
demonstrates that population structure can mimic population size
changes in the absence of any such change (Fig. 1). The probability
of such a misinterpretation depends on the interplay between the
sampling strategy and the level of gene flow. Locally sampled
scenarios under all levels of migration as well as pooled samples
from the lowest migration class showed a clear trend towards
declining EBSPs. The posterior distribution of the population size
change (PSC) parameter confirmed this qualitative observation, as
the above scenarios showed a strong tendency towards overesti-
mating PSC (Fig. 1 insert panels). The measures of coverage and
mean relative departure (MRD) corroborated the visual inspection
of EBSPs and the PSC distributions, showing that the inferred
population size at the present was notoriously lower than the
simulated one under /local sampling (Table 1). Other notable
observations include a consistently higher inferred population size
than the simulated one in the older parts of the EBSPs under
scattered and pooled sampling for the two lowest migration classes
(though less pronounced for the pooled strategy). This discrepancy
between effective and actual (l.e total number of individuals)
population size at low migration rates under scatfered sampling is in
fact expected as shown in Wakeley’s Eq. (6.18) [26]. The MRD of
the inferred from the simulated population sizes is close to the
expected magnitude of this effect (expected MRD from Wakeley’s
Eq. (6.18): 4.00, 0.40 and 0.04 at Nm=0.125, 1.25 and 12.5,
respectively, to be compared with our calculated values of 4.33,
0.54 and 0.08; Table 1), showing the ability of EBSPs to correctly
infer the structured effective population size in the collecting
phase.

When a single population change point was introduced (either a
Holocene decline or a Pleistocene expansion) in the simulated
demography we observed an interesting phenomenon. The
expansion was unobservable in scenarios under local sampling
(Fig. 2A), whereas it was the decline that was unobservable under
scattered sampling (Fig. 2F). The pooled sampling strategy captured
both phases more reliably (Fig. 2B,E). This pattern was also
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Figure 1. The structure effect in a 40-deme constant-size island model. For each scenario, 100 replicate data sets were generated and
analysed with EBSPs. Light blue lines represent the median inferred female effective population size through time from each replicate. Time is
measured in kya or thousands of years ago and is based on a molecular clock for buffalo D-loop sequences. Bold black lines represent the simulated
size of the structured population (500 females * 40 demes = 20,000 females). Insert into each panel is a histogram of PSC values (on x-axis; see main
text) across replicates. Dashed lines show the prior distribution for PSC. The y-axis in the insert histograms marks the frequency of occurrence in each

PSC bin out of 100 replicates.
doi:10.1371/journal.pone.0062992.g001

evident in the more complex boom-bust demographic simulations
where both change points were included (Fig. 2G-I), although not
all replicates of the pooled boom-bust scenario revealed the
expansion phase (Fig. 2H).

The 10-deme scenarios showed the same overall trend as the
40-deme scenarios, but the severity of the structure effect was
reduced relative to the comparable 40-deme scenarios (Fig. S1).
Results for the stepping-stone simulations showed the same
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qualitative patterns as the island model simulations, but they were
generally more extreme (Fig. S2). This is not surprising, as the
stepping-stone model makes the effect of migration even more
dominant over demographic changes because the average waiting
time for lineages to find the same deme is longer. Results from the
‘IM-like’ models were similar to the permanent structure models

(Table S1; Fig. S3).
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Table 1. Comparison of EBSP and simulated population sizes
under different structural scenarios.
Scenario Nrm EBSP Sampling coverage MRD
constant 0.125 Fig. 1A local 0.72 -0.77
island model  0.125 Fig. 1B pooled 0.86 0.90
0.125 Fig. 1C scattered 0.61 433
1.25 Fig. 1D local 0.78 —0.76
1.25 Fig. 1E pooled 0.98 0.13
1.25 Fig. 1F scattered 0.90 0.54
12,5 Fig. 1G local 0.83 —0.50
12.5 Fig. TH pooled 0.99 0.06
125 Fig. 11 scattered 0.99 0.08
10 demes 0.125 Fig. S1A local 0.69 —0.70
0.125  Fig. S1D pooled 0.80 1.25
1.25 Fig. S1B local 0.77 —0.66
1.25 Fig. S1E pooled 0.97 0.31
125 Fig. S1C local 0.91 —0.30
125 Fig. S1F pooled 1.00 0.07
stepping stone 0.125 Fig. S2A local 0.65 -0.77
0.125  Fig. S2B pooled 0.85 0.29
0.125  Fig. S2C scattered 0.61 7.01
1.25 Fig. S2D local 0.73 —0.76
1.25 Fig. S2E pooled 0.83 -0.33
1.25 Fig. S2F scattered 0.74 0.94
125 Fig. S2G local 0.76 —0.50
125 Fig. S2H pooled 0.90 —0.28
125 Fig. S2I scattered 0.99 0.14
Coverage is the proportion of time points at which the simulated population
size lies within the inferred EBSP 95% highest probability density interval. MRD
(mean relative departure) is the average relative deviation of the median
inferred population size from the simulated size (e.g., 4.33 means that on
average the inferred median population size is 4.33 times larger than the
simulated one). For the 10 demes scenario, only local and pooled sampling was
applied as scattered sampling would have resulted in low sample size (10
samples).
doi:10.1371/journal.pone.0062992.t001

Data-informed Structured Population

Our simulations mimicking the inferred gene flow connecting
34 African buffalo populations revealed that under this structural
configuration, the risk of a false signal of population size change
was relatively low (Fig. 3) and resembled those of the high-
migration scenarios under the idealised island model (Fig. 1G-I).
Interestingly, the local sampling—when analysed deme by deme—
revealed that there was a high correlation between the deme
connectedness (measured as the mean of all pairwise Fsr values
involving a given deme) and PSC (Fig. S4). This shows that within
a structured population with unequal deme connectedness, the risk
of false positives of population decline depends on which demes
are sampled. We expanded on this observation by simulating local
sampling in a structured population with a wide range of gene flow
among demes (Nym 0.12-79.86, corresponding to an equilibrium
Fst of 0.007-0.827; see Supporting Information Sl for details).
This revealed a clear separation between two phases in the relation
between Fgr and PSC (which quantifies the risk of a structure
effect): when Nym <2 (Fsp <0.2), there was a strong positive
correlation between the two and when Nym >2, the correlation
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was negative (Fig. S4). The latter was initially surprising, but then
we considered that in very isolated demes, there is a high
probability that all lineages coalesce in the scattering phase (i.e. in
the sampled deme) so that there will be no collecting phase (see the
Discussion). We show EBSPs and PSC: histograms for the two most
extreme demes in terms of connectedness (Fig. S5) to illustrate the
importance of deme connectedness.

The African buffalo data yielded different results depending on
the sampling strategy (Fig. 4). Under the pooled sampling we
observed a conspicuous boom-bust signal that resembled the signal
in the data-informed simulated data closely (Fig. 3F) and was very
distinct from any of the false signals observed in Fig. 1. Under the
scattered sampling the EBSP approached Fig. 2F and Fig. 3D,
where the decline phase towards the present was almost absent.
The qualitative differences between Fig. 4B and 4C were
confirmed by the corresponding PSC values, with lower PSC
values for the scattered sampling strategy (Fig. 4 insert panels).
Finally, the locally sampled buffalo data showed variable skyline
plots including boom-bust-like dynamics, pure expansions, pure
declines and nearly constant population sizes (Fig. 4A). Note that
low sample sizes for some of the demes (the three smallest samples
consisted of three, four and ten individuals respectively) could lead
to unreliable EBSPs.

Discussion

The Genealogical Background for the Structure Effect
Our results clearly demonstrate the dangers of using skyline plot
methods for inferring demographic history without considering
violations of the panmixia assumption. Overall, our results show
that an apparent BSP population decline towards the present
should always be regarded with caution, as it may be an artefact of
structure. Such a confounding structure effect is not surprising, as
it has been predicted in earlier theoretical studies [11,14,15,17,27]
and identified in practical studies using various analysis methods
[9,10]. However, the effect has not been quantified under
Bayesian skyline plot methods, which have become very popular
in recent years. The intuitive, visual appeal coupled with a real risk
of erroneous demographic inferences make BSPs vulnerable to
misinterpretations. It should be underlined, however, that this is
not a shortcoming of the methods themselves, but rather an under-
appreciation of the dynamics of coalescent intervals in structured
genealogies. As we show, the EBSPs actually do a fairly good job of
inferring the theoretical effective size in the individual demes and
the structured population (corresponding to the start of the
scattering and the collecting phase, respectively). The problem is
that these two are expected to differ (being smaller and larger than
the sum of individuals across demes, respectively), even when the
total population size remains constant over time. This phenom-
enon manifests itself as a declining population trajectory in BSPs.
It should be noted that the structure effect in addition to the false
positive of a population decline can also lead to the false negative
of failing to detect a true population expansion towards the
present, so the absence of a decline signal in a BSP is not
necessarily evidence of the absence of a structure effect.

Using Simulations to Assess the Risk of the Structure
Effect

We show here that a critical approach is required before
accepting the demographic history inferred from skyline plots. The
inclusion of a case of real data allowed us to expand the scope of
the analyses to include more complex connectivity among
populations, to incorporate realistic historical events and to
compare the idealised simulation results to analyses of real data,
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Figure 2. The structure effect in a 40-deme island model with demographic change. As Fig. 1, but the bold black line shows the simulated
demographic change scenarios (see main text) with one or two changes in population size. Only the intermediary level of gene flow (Nfm=1.25) is

shown.
doi:10.1371/journal.pone.0062992.9002

which we believe is a sound approach to validate BSP results in
empirical studies [21]. Collectively, our simulations (not all of
which we were able to report here) show that the magnitude of the
structure effect depends on all of the following: the number of
demes, the population size of the demes, the migration rate, the
migration pattern (i.e. island or stepping-stone model, whether or
not gene flow is equal among demes), the sampling scheme and the
interaction between all of these. This makes it hard to predict the
structure effect in a given biological system and a priori evaluate
how it will affect demographic inferences. Hence, it is important to
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use simulations emulating biologically reasonable scenarios to
evaluate whether an observed skyline plot is robust [7,21]. When
using the pairwise Fgt matrix of the D-loop data set to inform the
migration matrix, we found evidence that pooled sampling should
be able to distinguish between constant and fluctuating popula-
tions under this particular structural architecture, an important
msight that was not evident from the idealised simulations. This
part of the analyses also allowed us to make an important
observation: the risk of a structure effect depends almost linearly
on the ‘connectedness’ of the sampled demes up to a certain point
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Figure 3. Two demographic scenarios under a real data informed island model. As Figs. 1 and 2, but the island model was modified to
conform to the migration matrix estimated for a real biological system, the African buffalo. Only pooled and scattered sampling is shown. Bold lines
mark the appropriate simulated population size. Replication was slightly different from Fig. 1 and 2 because it now matters which demes were
included in the sample, see main text. Note also that the number of demes was 34, so the sum of the deme size differs from Fig. 1 and 2 (17,000 as

opposed to 20,000 females).
doi:10.1371/journal.pone.0062992.9003

(Fs1 ~ 0.2) beyond which it actually decreases slowly (Fig. S4), but
at the cost of EBSPs no longer reflecting the size of the whole
structured population, but rather that of the sampled deme only.
These results are important for devising sampling strategies when
the level of differentiation is approximately known.

The EBSPs from the real data closely resembled those from
simulations including actual boom-bust dynamics, suggesting that
we can explain the signal from the case data by invoking structure
and demographic change according to the parameters of the data-
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informed simulations, but not by invoking structure alone.
Although this does not prove that our case is entirely collapsible
to the data-informed model with two demographic change points,
it makes us more confident that such a model represents the
demographic history of the buffalo reasonably well.

Sampling Strategy and Practical Considerations

Locally collected samples always showed a false signal of
population decline towards the present. Even at the high migration
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Figure 4. Three different sampling strategies for real data from the buffalo. Local, pooled and scattered sampling of real D-loop data from
34 African buffalo populations. The replication of each sampling strategy involved random drawing of the appropriate number of samples from

demes as explained in the main text.
doi:10.1371/journal.pone.0062992.g004

rate Nym = 12.5 (corresponding to an equilibrium Fgr of 0.04), local
sampling resulted in a 97% false positive rate of mean PSC >1 in
constant-size simulations (Fig. 1G). This is a very important
observation underlining that local samples should not be used to
draw conclusions about demographic history in the presence of
even limited population structure. The reason for the false signals
of population decline is conceptually simple. Looking backwards in
time, the first part of the structured genealogy will be the scattering
phase [14,17] where the effective population size is estimated to
something intermediary between that of the local deme and the
structured population. The balance between these two is governed
by the migration process; if all lineages coalesce within demes
before any migration occurs, the inferred population size will
correspond to the deme size, as was shown in the comparison of
deme connectedness and PSC (Fig. S4). The structure effect is only
present when there is a separation of the genealogy into a
scattering and a collecting phase, so in very isolated demes the BSP
will be more reflective of just the local deme population size (see
also the low population size estimates and lower PSC in Fig. 1A
and Fig. S2A). When the population enters the collecting phase, it
starts behaving entirely like a structured population with an
effective population size (1+1/Nm) times that of the census size
(from equation 6.18 in [26]).

Although the scattered sampling approach does not suffer from the
tendency to show false declines, this sampling strategy is apparently
not optimal for inferring changes in the recent past (Fig. 2F). The
reason for this is that under scatlered sampling there is no scattering
phase, so lineage migration has to take place before any coalescent
events can occur. Unless the migration rate is very high (or the
number of demes is very low) this leads to a low rate of coalescence
in the recent part of the genealogy, hence reducing the inferential
power in this period. This observation challenges the recommen-
dation in [10] of using scattered sampling when inferring the recent
demographic history of structured populations. We confirmed the
robustness assertion, but found that power decreased concomitant-
ly. In that study however, the object was explicitly to identify false
positives of population size change (maximize robustness), and we
confirm that this risk is lowest under scattered sampling.

On balance, the pooled strategy was the most appropriate
sampling scheme under both the idealised and the data-informed
structural architecture. This strategy was most capable of
capturing both the expansion and the decline phase of the simulated
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population size change. It is of course important to emphasize that
the pooled strategy can be varied continuously between the two
extremes of local and scattered sampling and is hence less clearly
defined than the two extremes. Consequently, the results presented
here are strictly only valid for the somewhat arbitrarily chosen
strategy of four samples from each of ten demes, which can be
considered closer to the scattered than to the local extreme (any
number 4 in the interval 2-20 samples could be sampled from any
number between 2-20 demes to make reasonably balanced pooled
sampling). As expected, changing d from 4 to 10 under the boom-
bust scenario yielded a signal closer to that under local sampling
(Fig. 2A), with the expansion phase becoming less detectable (results
not shown). A pooled sampling strategy can thus be varied among the
two extremes of local and scattered sampling according to the trade-off
between the power to detect recent changes and the risk of getting a
false positive from a structure effect.

Results from the three different sampling strategies applied to
the real data confirmed that sampling can heavily influence the
demographic signal in the presence of population structure.
Therefore, we recommend that BSP-users at least explore different
sampling schemes along the continuum between local and scattered
sampling for their data sets, because it may reveal whether the
structure effect is confounding the demographic inference. We
recommend that whenever possible one considers the underlying
population structure before planning sampling, yet in many cases
some variety of pooled sampling will be desirable for inferring
population dynamics if structure is present.

Methodological Considerations

The coalescent effective population size is only defined for the
collecting phase of a structured genealogy [14,28,29], therefore it
was impossible to compare the inferred values with the expected
ones throughout EBSPs. Consequently, our EBSP plots (Figs. 1, 2,
3, 4) and the measures calculated in Table 1 should not be
regarded as an evaluation of the accuracy of EBSPs; rather they
show the discrepancy between the sum of the deme sizes and the
effective size in a structured population. However, the shape of the
EBSPs and the PSC histograms demonstrate that even if EBSPs
are accurate in inferring the theoretical (structured) effective
population size at any given time, the change in effective size
caused by the transition from a scattering to a collecting phase can
be misleading if not interpreted in the proper context.
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The replication of each scenario enabled us to assess the
coalescent stochasticity [23] under any demographic scenario. As
the plots show, individual EBSPs vary among repetitions—more so
when the demographic history departs from simple, constant-sized
populations (Fig. 2 and 3)-and only converge on the ‘true’
simulated demographic history when viewed across many repeti-
tions (i.e. many independent loci). This demonstrates the
importance of multi-locus data when inferring demographic
history. The type of simulated marker (600bp of mtDNA)
appeared suitable to shed light on the problem at hand, as the
simulated demographics were always consistently detected in the
EBSPs under at least one of the sampling strategies.

We stress that we were only able to address the structure effect
on BSPs under a limited set of conditions. It is not possible to
evaluate all the factors that influence the structure effect in a single
study. Here we identify some general aspects of the problem, and
we hope this will serve as a starting point for further studies on the
factors that influence the structure effect in coalescent-based
methods. As we show with the buffalo data, the structure effect will
not always lead to serious misinterpretations, especially when a
balanced (pooled) sampling strategy is followed.

The structure effect is not restricted to certain coalescent
methods, but is rather a general problem that affects all methods
that do not explicitly take subdivision into account. Hence, all
methods that assume panmictic populations will suffer from
confounding effects qualitatively similar to those reported here.
One ad hoc approach to evaluate the structure effect in BSP analyses
is to inspect the inferred genealogy and assess whether coalescent
rates are obviously correlated with the structural conformation, 1.e.
if any substantial increase in coalescence rate towards the present
predominantly occurs within demes. Ultimately, the best way of
circumventing the confounding structure effect involves incorpo-
rating explicitly the spatial or structural information into the
genealogical reconstruction. The LAMARC [30] and IM [31]
software packages do this to some extent by allowing specification of
population structure and hence co-estimation of migration and
population size parameters, but currently they only handle simple
demographic trajectories without any demographic change points
[19,20]. BSP methods could benefit from integration with such
approaches. This should facilitate distinguishing between the
transition from a scattering to a collecting phase and a true change
in the census size of a structured population.
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