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Autoimmune diseases are affecting around 7.6–9.4% of the general population. A num-
ber of central nervous system disorders, including encephalitis and severe psychiatric 
disorders, have been demonstrated to associate with specific neuronal surface autoan-
tibodies (NSAbs). It has become clear that specific autoantibodies targeting neuronal 
surface antigens and ion channels could cause severe mental disturbances. A number 
of studies have focused or are currently investigating the presence of autoantibodies in 
specific mental conditions such as schizophrenia and bipolar disorders. However, less is 
known about other conditions such as depression. Depression is a psychiatric disorder 
with complex etiology and pathogenesis. The diagnosis criteria of depression are largely 
based on symptoms but not on the origin of the disease. The question which arises is 
whether in a subgroup of patients with depression, the symptoms might be caused by 
autoantibodies targeting membrane-associated antigens. Here, we describe how auto-
antibodies targeting membrane proteins and ion channels cause pathological effects. 
We discuss the physiology of these antigens and their role in relation to depression. 
Finally, we summarize a number of studies detecting NSAbs with a special focus on 
cohorts that include depression diagnosis and/or show depressive symptoms.

Keywords: neuronal surface autoantibodies, neuropsychiatric disorders, depression, pathogenicity, immuno
globulin, neurotransmitter receptor, ion channel, blood–brain barrier

iNTRODUCTiON

Neuronal surface autoantibodies (NSAbs) have been described mainly in autoimmune encephalitis, 
a group of newly defined neuroimmunological disorders (1). Those autoantibodies target essential 
neurotransmitter receptors, ion channels, or associated proteins on the membrane of neuronal 
cells, such as N-methyl-d-aspartate receptor (NMDAR) (2), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) (3, 4), metabotropic glutamate receptor 1 (mGluR1) (5), 
metabotropic glutamate receptor 5 (mGluR5) (6), GABAB receptor (GABABR) (7), GABAA receptor 
(GABAAR) (8–10), leucine-rich, glioma inactivated 1 (LGI1) and contactin-associated protein-like 
2 (Caspr2) (11), dipeptidyl aminopeptidase-like protein 6 (DPPX) (12–14), and dopamine receptor 
D2 (D2R) (15). Antibody-positive cases are associated with a spectrum of neurological disorders 
including limbic encephalitis, neuromyotonia, Morvan’s syndrome, epilepsy, and psychiatric disor-
ders (16–19).
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Depression is a psychiatric disorder with complex etiology 
and pathogenesis. The International Classification of Diseases 
and The Diagnostic and Statistical Manual of Mental Disorders 
are widely used for the diagnoses of this disorder, based on 
symptoms but not on the cause of the disease. There are several 
theories about the causes of depression and immune dysregula-
tion is one of them. The relationship between the immune system 
and depression has been widely discussed. To date, most research 
has focused on pro-inflammatory cytokines and a few reviews 
also propose a direct link between autoantibodies and depression 
(20, 21). Studies investigating the presence of autoantibodies in 
depression have focused in those targeting peripheral organs 
like the thyroid and intracellular antigens such as antinuclear 
antibodies and ribosomal-P antibodies (21–25). During the 
past decade, it has become clear that NSAbs could cause severe 
neuropsychiatric disorders. Since some of the NSAbs interfere 
with neurotransmission pathways related to depression (26–28), 
a subtype of depression may be caused by antibody-mediated 
autoimmunity and, therefore, might potentially respond to 
immunotherapy. In the current review, we summarize the litera-
ture about NSAbs in autoimmune encephalitis and psychiatric 
disorders, with a special focus on what is known regarding NSAbs 
in depression, evaluate the techniques used and how results can 
be interpreted, and identify research gaps. Together, we aim to 
provide insight into the potential role of NSAbs in depression 
based on the function of relevant neurotransmitter receptors and 
ion channels as well as autoantibody effector mechanisms.

HOw NSAbs ReACH THe CeNTRAL 
NeRveS SYSTeM (CNS)

Because neuronal surface proteins are the target of the autoanti-
bodies discussed in this review, it is important to first understand 
how those autoantibodies get access to the CNS. Now it is widely 
accepted that the CNS is targeted by the immune system, yet the 
mechanism how autoantibodies go through the blood–brain 
barrier (BBB) is still unclear. Under normal conditions, immuno-
globulins go through the BBB at a very low rate; a good example is 
immunoglobulin G (IgG). IgG concentration in the cerebrospinal 
fluid (CSF) is approximately 1% of the levels in the peripheral 
circulation (29–31). This indicates that once the autoantibodies 
reach the CNS they can cause disease as it has been observed in 
autoimmune encephalitis. In certain  situations, like inflamma-
tion, for example, during the group A Streptococcus infection, 
specific Th17  cells could migrate into the brain through the 
cribriform plate along olfactory sensory axons. The Th17  cells 
expressed IL-17A which induced endothelial tight junction 
breakdown, increasing BBB permeability and facilitating the 
penetration of IgG in the brain (32). Additionally, the BBB may 
become leaky because of stroke, brain trauma, hemorrhages, 
microangiopathy, or brain tumors, and antibody penetration rate 
might increase. In this regard, a study has reported that autoan-
tibodies to NMDAR (anti-NMDAR) seropositive schizophrenia 
patients with a history of neurotrauma or birth complications had 
more severe neurological symptoms than seronegative patients. 
And intravenous injections of extracted Ig fractions (IgG, IgA, 

or IgM) from anti-NMDAR seropositive patients to BBB leaky 
(ApoE−/−) mice could induce a psychosis-related response 
(33). A further study confirmed that APOE4 carrier status and 
anti-NMDAR seropositivity together were significantly associ-
ated with schizoaffective disorder (34). Those results indicate the 
importance of the BBB for anti-NMDAR-mediated pathology.

Besides, intrathecal synthesis is another possible source for 
autoantibodies in the CNS. B-cells can migrate to the brain and 
produce autoantibodies locally (35–37). This is also important 
to keep in mind when thinking about therapy because any 
potential drug against B cells has to pass the BBB to be effective. 
The evidence is mainly from studies analyzing autoantibodies in 
serum and CSF from encephalitis patients. It has been reported 
that in some encephalitis patients, autoantibodies targeting 
the NMDAR, AMPAR, GABABR, DPPX, mGluR1, or mGluR5 
were found only in the CSF (38). A postmortem study showed 
the presence of CD138+ plasma cells in the brain of NMDAR 
encephalitis patients, suggesting intrathecal synthesis of autoan-
tibodies (36). Intrathecal antibody synthesis was also described in 
a case with autoantibodies against the mGluR1 where the patient 
did not respond to immunotherapy, while serum antibody levels 
dropped but CSF levels were still high (39). Other NSAbs, such as 
autoantibodies to LGI1, Caspr2, glycine receptor, and GABAAR 
may, in rare instances, be identified only in serum but be absent 
in CSF (38). However, if the autoantibodies are immunoabsorbed 
by the antigen in the brain, they might still have effects and play 
a pathogenic role even they are not detectable in the CSF (40).

igG eFFeCTOR FUNCTiONS

Antibodies (or Igs) are produced by plasma B  cells. They are 
defined as IgM, IgG, IgA, IgD, and IgE isotypes according to 
heavy chain C domains. Different types of NSAbs (IgM, IgA, and 
IgG) have been found so far; IgG autoantibodies are considered 
the most pathogenic (1, 10, 33). IgG, composed of two paired 
heavy chain and light chain, is the major antibody in body fluid 
and a crucial player in the humoral immune response. In humans, 
four IgG isotypes (IgG1–4) exist, which have different ability 
to activate the complement system (41). IgG1–3 mediate pro-
inflammatory activities, while IgG4 also has anti-inflammatory 
activities (42). The functions of IgG effector in myasthenia gravis 
(MG) and other well-studied autoimmune disorders are sche-
matically illustrated in Figure 1.

Antigenic Modulation
Antibodies of the IgG1–3 subtypes are able to cross-link the anti-
gens because of their bivalent nature, whereas the IgG4 subtype 
loses this ability after the fab-arm exchange with other unrelated 
IgG4 molecules (43). Cross-linking autoantibodies are believed 
to bring the antigens close together on the cell membrane and 
promote the degradation of the ligand–receptor complex (44). 
In the case of MG, antiacetylcholine receptor autoantibodies 
(anti-AChR), mainly IgG1 and IgG3, are able to cross-link 
adjacent AChR molecules, leading to rapid internalization by 
endocytosis and AChR degradation (45, 46). Previous studies 
indicated that anti-NMDAR, IgG1–3, led to a reduction in the 
synaptic and extrasynaptic receptors and further decreased the 
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FiGURe 1 | Immunoglobulin G (IgG) autoantibody effector mechanisms. 
Neuronal surface proteins like G-protein coupled receptors, ion  
channels, and associated proteins can be the targets of autoantibodies.  
(A) Autoantibodies can directly target surface proteins and induce their 
internalization by cross-linking of the antigens. (B) Autoantibodies can  
also target associate proteins and block protein–protein interaction.  
(C) Autoantibodies (IgG3 > IgG1 > IgG2) can activate the complement 
system and form the membrane attack complex (MAC) leading to damage  
of the membrane. (D) Autoantibodies binding to effector cell with Fc 
receptors (FcRs) can trigger antibody-dependent cell-mediated cytotoxicity 
(ADCC). (e) In addition, autoantibodies can be agonists or antagonists and 
activate or block the function of membrane receptors.
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synaptic plasticity and transmission (47–50). Anti-GABAAR, 
IgG1 and IgG3, had a similar effect with a reduction of GABAAR 
clusters in both synaptic and extrasynaptic areas (8–10). Also, 
application of anti-AMPAR (GluR1/2) to neuronal cultures 
significantly decreased the number of AMPAR clusters at syn-
aptic and extrasynaptic areas by increasing the internalization of 
AMPAR clusters; the IgG subclasses were not analyzed in these 
studies (4, 51).

Complement Activation
IgG1–3 can activate the complement system by forming the 
membrane attack complex (MAC) and leading to membrane 
damage of targeted cells. Still in MG, anti-AChR binding to 
AChRs, which are densely packed in the folds of the postsynaptic 
membrane of the neuromuscular junction, results in a very high 
density of AChR-bound autoantibodies and hence a very tightly 
packed Fc region. The complement system is activated with high 
efficiency and as a result, MAC is formed in the postsynaptic 
membrane. Together with antigenic modulation, complement 
activation causes severe endplate membrane damage (45, 52). 
Brain biopsy findings support that complement activation and 
MAC deposition happen associated with acute neuronal cell 
death in anti-voltage-gated potassium channel (VGKC) complex 
encephalitis and Rasmussen’s encephalitis (53, 54).

AntibodyDependent CellMediated 
Cytotoxicity (ADCC)
Antibody-dependent cell-mediated cytotoxicity is the process 
when cytotoxic effector cells of the immune system kill the 
antibody targeted cell by the releasing cytotoxic granules or by 
expressing cell death-inducing molecules. The process is acti-
vated when the Fc receptors (FcRs) on the effector cell surface 
bind to Fc region of target-bound antibodies (IgG, IgA, or IgE 
subtypes). Those effector cells include natural killer cells, mono-
cytes, macrophages, neutrophils, eosinophils, and dendritic cells. 
In humans, the IgG1 subtype has the ability to strongly trigger 
ADCC and is used widely in therapy for certain types of cancer 
(55, 56). Neuromyelitis optica (NMO) is a severe inflammatory 
demyelinating disease in CNS, and autoantibodies against aqua-
porin-4 (anti-AQP4), a water channel on astrocyte play a role in 
the pathology of NMO by triggering complement activation and 
ADCC (57). In vitro, NMO patient serum and CSF IgG induced 
ADCC of glial cells transfected with AQP4 (58). In vivo, injec-
tion of anti-AQP4 produced large NMO lesions in mice, with the 
loss of AQP4 and GFAP immunoreactivity, inflammation, and 
demyelination. Those pathologies were largely reduced when 
FcγIII receptor deficient mice were used or when normal mice 
were injected with Fcγ receptor blocking antibody (59).

Loss of Receptor or ion Channel
Associated Proteins
Autoantibodies can target receptor or ion channel-associated 
proteins. As a result, the protein–protein interaction between the 
receptor and the associated protein is interrupted with the con-
sequence that those receptors or ion channels become dysfunc-
tional. Autoantibodies to muscle-specific kinase (anti-MuSK) are 
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another type of autoantibodies involved in the pathogenicity of 
MG. Anti-MuSK (predominant IgG4) binds to an extracellular 
epitope on MuSK at the neuromuscular junction, inhibits the 
pathway involved in the clustering of the AChRs in the mem-
brane, and leads to failure of neuromuscular transmission (43). 
Autoantibodies to LGI1, a VGKC complex-associated protein, 
play a similar role, resulting in reduced VGKC function at CNS 
synapses and increased cell excitability (60). Besides, anti-LGI1 
also interferes with other surface receptors. LGI1 interacts with 
the ADAM22/23, epilepsy-related transmembrane proteins, and 
regulates AMPAR-mediated synaptic transmission in the hip-
pocampus (61, 62). Additionally, an in vitro study showed that 
anti-LGI1 from encephalitis patients blocked the binding of LGI1  
to ADAM22 by neutralizing the ADAM22-binding domain of 
LGI1. The loss of LGI1-ADAM22 interaction could further reduce 
synaptic AMPAR, which indirectly associates with ADAM22 
(63). Importantly, this indicates that besides their direct effect 
on ion channel/receptors, autoantibodies may interfere with 
protein–protein interaction and have consequences for synapse 
formation, function, and maintenance.

Activation, inactivation, and Functional 
Receptor Blockage of the Receptors
Autoantibodies may activate, inactivate, or block ion channels 
and neurotransmitter G protein-coupled receptors (64). Serum 
IgG from MG patients has been shown to block the ACh binding 
sites in cultured mammalian muscle cells (65) and caused acute 
and severe muscle weakness in rodents, independent of inflam-
mation or necrosis (66). Autoantibodies against the γ subunit 
of the AChR which is only present in embryonic forms of the 
receptor have been reported in some cases to block the AChR 
function and cause arthrogryposis multiplex congenita (67). 
Conversely, AChR antibodies can also induce prolonged open 
time of the AChR leading to muscle weakness by excitotoxicity 
at the neuromuscular junction (68). Anti-AMPAR (GluR3B 
subunit) autoantibodies (anti-AMPA-GluR3B) can activate 
AMPAR that contains the GluR3B subunit, leading to the spon-
taneous occurrence of ion currents (69, 70). In an animal study, 
anti-AMPA-GluR3B produced following immunization with 
the GluR3B peptide bonded cultured neurons, evoked GluR 
ion channel activity, and killed neurons by “excitotoxicity” (71). 
When autoantibodies target G-protein-coupled receptors, they 
can interfere with signaling pathways, which might lead to slow 
effector responses. An example is Graves’ disease, where autoan-
tibodies against the thyroid-stimulating hormone (TSH) receptor 
stimulate the synthesis of thyroid hormone, which is produced 
in excess and results in hyperthyroidism. Additionally, there are 
anti-TSH receptor antibodies that block the signal transduction 
and consequently reduce thyroid hormone production by target-
ing different epitopes of the receptor (72).

THe TARGeTS OF NSAbs ARe ReLevANT 
iN THe PATHOLOGY OF DePReSSiON

Monoamine imbalance is the main biochemical postulate 
of depression. Both serotonergic neurotransmission and 

dopaminergic neurotransmission play important roles in causing 
depressive symptoms (73). Genetic studies suggest that poly-
morphisms within genes that encode for 1A serotonin receptor 
(5-HT1A) and D4 dopamine receptor, increase the risk of major 
depressive disorder (MDD) (74). 5-HT1A (75, 76) and D2DR 
(77, 78) levels are decreased in this disorder and both are the 
targets of several antidepressants (79).

Increasing evidence supports that glutamatergic and 
GABAergic systems are also involved in depression (27, 28). 
Glutamate is the predominant excitatory neurotransmitter in the 
CNS (80, 81). Blockade of glutamate uptake from the synapse 
has been reported to reduce sensitivity to reward, a symptom of 
depression (82). Ketamine and other NMDAR antagonists have 
antidepressant effects (83). Antidepressants such as imipramine 
can enhance the synaptic expression of GluR1, a subunit of 
AMPAR (84).

Interestingly, GABA concentration is reduced in cortical brain 
and CSF in MDD and this deficit could be reversed by chronic 
treatment with selective serotonin reuptake inhibitors and 
electroconvulsive therapy (85–87). Studies reported that corti-
cal GABA(A)-benzodiazepine receptor complex affinity and/or 
number were reduced in MDD. Additionally, mice heterozygous 
for the γ2 subunit of GABAAR (γ2+/−) exhibited anxious– 
depressive behavior (88, 89). In this model, GABAAR numbers 
were unaltered, but had reduced benzodiazepine binding sites.

Thus, if the abovementioned neurotransmitter receptors or 
relevant proteins are targeted by autoantibodies, including ion 
channels and associated proteins, they could potentially cause 
depression-like symptoms. Below, we summarize NSAbs that 
target antigens which are relevant in the pathology of depression 
(for an illustration see Figure 2).

eviDeNCe OF NSAbs iN DePReSSiON

AntiGlutamate Receptor Autoantibodies
Anti-NMDAR
The NMDAR, as an ionotropic glutamate receptor, contains two 
GluN1 and two GluN2 (A–D) subunits (alternatively called NR1 
and NR2) forming heterotetramers. The subunit GluN2 can be 
replaced by the GluN3 (A/B) subunit, which has an inhibitory 
effect on receptor activity (90, 91). NMDAR has a variety of physi-
ological roles and any dysfunctions, either enhanced or decreased 
activity, may result in neuropsychiatric disorders such as schizo-
phrenia, bipolar disorder, MDD, substance-induced psychosis, 
Huntington’s disease, Alzheimer’s disease, and neuropsychiatric 
systemic lupus erythematosus (NPSLE) (92). In addition, higher 
gene expression levels of NR1 and NR2 (A–D) are detected in 
female patients with MDD (93). Prolonged inhibition of the 
NMDAR by phencyclidine leads to memory loss, thought dis-
order, depression, and personality changes (94). Antagonists of 
the NMDAR like ketamine also have rapid antidepressant effects 
(95,  96). All in all, these studies suggest that NMDAR plays a 
critical role in psychiatric disorders including depression.

Anti-NMDARs in autoimmune encephalitis were first 
described in three patients with ovarian teratoma and commonly 
presenting with psychiatric symptoms followed by neurological 
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FiGURe 2 | Neuronal surface autoantibodies target neuronal receptors, ion channels, and/or associate proteins that commonly affect GABA and glutamate 
transmission in the brain. (1) GABA receptor activation causes chloride anions influx and potassium flow-out, resulting in the hyperpolarization of the postsynaptic 
neurons. Autoantibodies to GABAA or GABAB receptors cause internalization of those membrane proteins and block the GABA transmission, leading to excitation of 
the postsynaptic neurons. (2) Glutamate receptors activation causes polarization of the postsynaptic neurons by positive ions (Ca2+, Na+, K+) influx. Autoantibodies 
to NMDA and AMPA receptors drive internalization of those receptors and block the glutamate transmission. (3) Potassium channels can be activated by GABAB 
receptors through G proteins. Some proteins like leucine-rich, glioma inactivated 1 (LGI1) and contactin-associated protein-like 2 (Caspr2), contactin 2, ADAM22, 
and ADAM23 are associated with voltage-gated potassium channels (VGKCs). LGI1 can enhance AMPA receptor-mediated synaptic transmission by binding to 
ADAM22. Autoantibodies target to those associate proteins would cause VGKCs or AMPA receptor dysfunction (Elements are partly adapted from Servier Medical 
Art. http://smart.servier.com/).
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manifestations including seizures, movement disorder, and 
dysfunction of the autonomous nervous system (2). The meth-
ods used for detection were immunohistochemistry (IHC) on 
rat brain tissues, immunocytochemistry on live hippocampal 
neurons, and fixed cell-based assay (CBA). The autoantibodies 
identified were present both in CSF and serum. Later studies 
revealed that the extracellular N-terminal domain of the NR1 
subunit is the main epitope of those autoantibodies (97). A 
case series showed that in more than two-thirds of cases with 
NMDAR encephalitis patients were initially seen by psychiatrists 
or admitted to psychiatric centers because they showed promi-
nent psychiatric symptoms including anxiety, agitation, bizarre 
behavior, delusional or paranoid thoughts, and visual or audi-
tory hallucinations (98). Consequently, researchers broaden the 
search for anti-NMDAR to psychiatric disorders, mainly first 
episode psychosis. Bipolar and MDDs were usually included 
as psychiatric disorder controls. One meta-analysis indicated 
higher odds of anti-NMDAR in psychotic and affective disorders 
(99). An affective disorder cohort consisting of 148 patients was 
screened for anti-NMDAR, in which 24 (16.2%) were seroposi-
tive (5 were IgG, 15 IgA, and 7 IgM). The prevalence in this cohort 
was higher than in healthy controls (10.8%) (34). In this study, the 
method used was fixed CBA and the dilution of serum used was 
from 1 in 10 and titers for positive cases were double-determined 
in two laboratories. The results have been criticized because of 
the much higher prevalence of anti-NMDAR in healthy control 
than in other groups’ study results (34, 100, 101). Further com-
plementary investigations, using a dilution of 1:320, identified a 
lower percentage of positive individuals in a cohort of depression 

patients. Anti-NMDAR (IgG, IgA, and IgM) were found to be 
4.1% in depression, still higher than healthy control (1.7%) at 
the significant level (33, 99). The author explained the increased 
number of seropositive anti-NMDAR cases in affective disorder 
cohort by the fact that the mean age of the affective disorder group 
was higher than in the control group (autoantibody prevalence is 
generally increasing with age) (33). Another study using same 
methods found 10.6% (1.9% IgG) positive for anti-NMDAR 
affective disorder cohort (n = 310) but no significant difference 
for healthy control (102). Additionally, another study analyzed 
a depression cohort (n = 70) and found two (2.9%) seropositive 
patients for NMDAR (both IgA) and one seropositive (0.4%) 
(IgM) result in a healthy control (n = 230), so none of them were 
IgG (101). The experiment was replicated and higher numbers of 
seropositive cases were found both in healthy controls and the dis-
ease groups (103). Early studies by Dickerson et al. (104) (ELISA, 
peptide of NR2, n = 28) and Zandi et al. (105) using variations 
of the methodology (live CBA) did not report any positive results 
in depression cohorts. Passive transfer of anti-NMDAR (NR1) to 
mice could cause depressive-like symptoms (106). However, the 
correlation of symptoms in animal models with those observed 
in humans needs to be further demonstrated (107).

In contrast to anti-NMDAR in autoimmune encephalitis 
which mainly targets the NR1 subunit, Lapteva and colleagues 
found that autoantibodies targeting the NR2 subunit of NMDAR 
were associated with depression in systemic lupus erythematosus 
(SLE) patients (108). In fact, anti-NR2A/B autoantibodies were 
thought to be a subset of the anti-double-stranded DNA (dsDNA) 
antibodies (109). The epitope identified to be targeted by the 
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antibodies in this study was a pentapeptide Asp/Glu-Trp-Asp/
Glu-Tyr-Ser/Gly. This sequence present on the NR2A/B subunit 
is a mimotope of anti-dsDNA. This was confirmed by showing 
that affinity-purified antibodies from SLE patients targeting this 
peptide also bind to dsDNA (109, 110). Moreover, those autoan-
tibodies mediated apoptotic death of neurons in vivo and in vitro 
(109). Several studies have investigated the role of anti-NR2 in 
NPSLE and found that the antibody may lead to dysfunction of 
NMDAR in vitro and that passive transfer of anti-NR2 in animals 
induced neuronal apoptosis and affects animal memory and 
cognitive ability (111, 112).

Anti-NMDAR autoantibodies in depression are still question-
able since most of these studies considered the depression cohorts 
as control groups and numbers were relatively small. Variations in 
the methodology make it difficult to compare results from differ-
ent groups, which is a common fact that should be kept in mind 
through this review. In particular, the methodology varies among 
studies (CBA or ELISA), or the same methodology is used with 
different experimental conditions (fixed or live CBA) by different 
groups, different subunits of the antigens are employed (NR1, 
NR1, and NR2a/b together in CBA, NR2 peptide in ELISA), 
different body fluids (serum, plasma, or CSF), different immuno-
globulins detected (IgG, IgA, and/or IgM) and different dilutions 
of the sample used (from 1:10 to 1:320) (17).

Anti-AMPAR
AMPAR is another ionotropic glutamate receptor which medi-
ates the fast excitatory neurotransmission in the CNS (113). The 
majority of AMPAR are tetramers composed of two GluR2 and 
either two GluR1, three, or four subunits that combine in a brain 
region-dependent manner (114, 115). GluR1/2 and GluR2/3 
receptors are highly expressed in the synaptic CA3-CA1 areas of 
the hippocampus. Besides, they are also expressed in cerebellum 
and caudate putamen (116).

Lai and colleagues first reported autoantibodies to AMPAR 
(GluR1 and GluR2 subunits) in limbic encephalitis (4). The 
clinical features of this type of autoimmune encephalitis are 
short-term memory deficits, emotional/behavioral changes, 
and seizures, frequent association with paraneoplastic disease, 
treatment responsiveness and has a tendency to relapse (4). 
GluR3 has been identified as an autoantigen in Rasmussen’s 
encephalitis in which the clinical characteristics of these 
patients were mainly epilepsy and language problems (117, 118). 
An anti-AMPAR (GluR1)-positive case was reported with 
breast ductal infiltrating adenocarcinoma that showed behav-
ioral changes, depressed mood, and memory loss during the  
process of the disease without seizures (3). In contrast, screen-
ing for anti-AMPAR (GluR1 and GluR2) in a depression cohort 
(n < 380) by fixed CBA using 1:10 diluted serum did not report 
any positive cases (101, 102).

AntiGABA Receptor Autoantibodies
Anti-GABAA Receptor
GABAAR are ionotropic receptors and GABA is the ligand. 
There are several subunit isoforms (α, β, and γ) for the GABAAR, 
which determine the receptor’s agonist affinity, chance of open-
ing, conductance, and other properties. Subunits of GABAAR 

have a different distribution in the brain and may respond with  
a different sensitivity to GABA, leading to a different function.  
A decline in GABAAR signaling triggers hyperactivity in neuro-
logical disorders such as insomnia, anxiety, and epilepsy.

Autoantibodies to GABAAR were recently identified in auto-
immune encephalitis. The clinical features varied in different 
studies. Petit-Pedrol et  al. reported a series of 18 patients with 
anti-GABAAR, of whom 6 had high titer antibodies detected both 
in blood and CSF and showed severe encephalitis and refractory 
seizures (8). The other 12 patients with lower titers in serum had 
different diagnoses. Six showed encephalitis with seizures, four 
had stiff-person syndrome, and two had opsoclonus-myoclonus. 
Anti-GABAAR in lower titers was also found in 5 of these 12. 
The autoantibodies targeted α1 and β3 subunits and caused selec-
tive reduction of the synaptic GABAAR (8). Two anti-GABAAR 
encephalitis patients were reported and their autoantibodies 
targeted the β3 subunits (9). Later, a study identified the main 
antigens as α1/γ2 in a group of patients with seizures and cogni-
tive or neuropsychiatric problems. Some of these patients had 
mood changes (2 in 11 showed depression symptoms and the 
autoantibodies targeted to α1 or undefined; 3 showed anxiety and 
the autoantibodies targeted to α1, γ2, or undefined subunits) (10). 
A cohort of purely depression disorders has not been tested so far.

Anti-GABAB Receptor
GABAB receptors are metabotropic transmembrane receptors 
that are linked to G-protein-gated potassium channels (119). 
There are two GABABR subtypes, GABAB1R and GABAB2R, 
assembling into functional heterogenic complexes (120, 121). 
GABAB1R(−/−) mice, which lack functional GABA(B) receptors, 
showed more anxiety and decreased immobility (antidepressant-
like behavior), and GABABR selective antagonist CGP56433A 
showed antidepressant effects as well (122).

Autoantibodies to the GABABR (anti-GABABR) were reported 
in limbic encephalitis (15 in 410 cases) (7). In all patients, autoan-
tibodies to GABABR targeted the GABAB1R and only one targeted 
GABAB2R additionally (123, 124). If anti-GABABR inactivates 
synaptic and extrasynaptic GABABR, it could potentially cause 
anxiety but not depression. Additionally, one anti-GABABR (B1/
B2) positive patient was found in a depression cohort (n < 310) 
by fixed CBA using 1:10 diluted serum with all the controls being 
seronegative (n  >  1,693) (102). To date, there are only limited 
studies that focus on this antigen and further investigations 
should be performed to extend the knowledge about GABABR 
autoantibody effector mechanisms.

AntiMonoamine Receptor Autoantibodies
Anti-5-HT1A Receptor and anti-D2 Antibodies
The 5-HT1A receptor is a subtype of serotonin receptor expressed 
widely in the limbic system and has implications in the control of 
mood, cognition, and memory (125). D2R is a dopamine receptor 
and has long isoforms (located mainly on the postsynaptic mem-
brane) and short isoforms (mainly on the presynaptic membrane), 
coded by alternative splicing of the same DRD2 gene (126). It is 
highly expressed in basal ganglia and also cortex, hippocampus, 
and in substantia nigra and is involved in synaptic plasticity 
and memory formation (127). Both receptors are coupled with 
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G-proteins that inhibit adenylyl cyclase, as well as other second 
messenger cascades (125, 128).

The presence in serum of IgG autoantibodies against 5-HT1A 
(anti-5-HT1A) and dopamine receptor D2 (anti-D2R) in psychi-
atric disorders was studied by radioimmunoassay (RIA) (129). 
7.9% of the mood disorder patients including 33 MDD had anti-
5-HT1A and 9.5% had anti-D2R compared to healthy controls 
which were seronegative for these autoantibodies. Anti-D2R 
was significantly associated with the severity of guilt feeling and 
depressive mood. To our knowledge, no further experiments have 
been reported detecting or investigating the role of anti-5-HT1A 
in psychiatric disorders.

Immunoglobulin G autoantibodies against D2R were identi-
fied by flow cytometry CBA with a cutoff at three SDs above the 
control mean using transfected HEK cells in a subgroup of chil-
dren with basal ganglia encephalitis (15). 12 of 17 children (aged 
0.4–15 years, nine males) with basal ganglia encephalitis had anti-
D2R, compared with 0 in 67 controls. The 12 anti-D2R-positive 
patients had movement disorders and psychiatric disturbance 
characterized by Parkinsonism, dystonia, chorea, emotional 
lability, attention deficit, and psychosis. A later study showed a 
specific and significant reduction of D2R when transfected cells 
were incubated with anti-D2R, and the extracellular N-terminus 
of D2R was revealed as the main immunogenic region (130). 3 
anti-D2R-positive cases out of 43 were reported in first episode 
of acute psychosis in children and the 17 controls studied were 
seronegative (131). This is the first report of serum IgG autoan-
tibodies to surface D2R in pediatric patients with isolated psy-
chosis. And three of the patients were previously diagnosed with 
other types of mental disorders: one patient had attention-deficit/
hyperactivity disorder, behavior disorder, one had depression and 
anxiety, prematurity, and one had anorexia nervosa (131).

AntivGKC Complex and Associated 
Protein Autoantibodies
Anti-LGI1, Anti-Caspr2, and Anti-DPPX
Voltage-gated potassium channels, typically formed by four dif-
ferent α subunits (there are 40 α subunits known), each associated 
with a β subunit (more than 12 β auxiliary proteins to α subunits), 
play a crucial role in returning the depolarized cell such as neurons 
to a resting state (26, 132). Typically, they are tetramers of four α 
subunits arranged as a ring, each contributing to the wall of the 
transmembrane K+ pore. Additionally, there are other associated 
proteins like LGI1, Caspr2, contactin 2, ADAM22, and ADAM23, 
which can affect the function of VGKC and AMPAR (mentioned 
in the antibody effector function section) (133).

Autoantibodies to the VGKC complex (anti-VGKC complex) 
have been known for a long time and are involved in the patho-
genesis of neuromyotonia, Morvan’s syndrome, epilepsy, and 
limbic encephalitis (26, 134, 135). In recent years, researchers 
identified by CBA and IHC that the VGKC-associated proteins 
LGI1 and Caspr2 are actually the main targets in autoimmune 
encephalitis. Kv4.2, a subtype of VGKC, is widely expressed in 
the CNS and autoantibodies directed against DPPX (an auxiliary 
subunit of Kv4.2 channels) (anti-DPPX) was also identified, yet 
in approximately 19% of the seropositive cases for the VGKC 
complex by RIA the antigen/s remain unknown (11, 14). Epilepsy 

and limbic encephalitis are more frequently related to anti-LGI1, 
while peripheral nerve hyperexcitability disorders, like Morvan’s 
syndrome, are more common in anti-Caspr2-positive cases 
(136). Anti-LGI1 patients present a clinical spectrum of confu-
sion, depression, paranoia, behavior disturbances, visual hal-
lucinations, and dementia at onset of the disease (137–139). Two 
seropositive (one IgG type) anti-Caspr2 were found in a cohort 
of 310 patients with affective disorders, while in the same study, 
no anti-LGI1 and anti-DPPX seropositive cases were reported 
(102). The largest described cohort of anti-DPPX (IgG)-positive 
patients consisted of 20 cases. Those sera or CSF-positive cases 
were found in patients referred for evaluation of paraneoplastic 
neurologic autoimmunity (totally tested 83) and 41,812 samples 
submitted for evaluation of neural autoantibodies (0.02% posi-
tive anti-DPPX). Out of the 20 anti-DPPX-positive patients, 20% 
showed depressive symptoms (14).

TAKeHOMe MeSSAGe

Although an increasing number of studies have substantially 
improved our knowledge on autoimmunity in the CNS, still large 
controversy exists, especially due to the variation in the meth-
odology used. Also, our knowledge is largely based on findings 
from autoimmune encephalitis cohorts. There are several meth-
odological aspects which have to be considered when detecting 
NSAbs in psychiatric disorders, especially in depression or other 
mood disorders. First, the antigens targeted by the autoantibod-
ies can be composed of several subunits. Autoantibodies against 
each of the subunits can have different clinical significance and 
implications (1). A good example is the detection of NMDA NR1 
antibodies and N2A/B antibodies. Anti-NR1 is believed to be 
pathogenic in NMDAR encephalitis (97). However, anti-N2A/B 
plays a role in NPSLE (108). When autoantibodies target differ-
ent subunits of other glutamate receptors or GABA receptors, 
they may cause different clinical symptoms. At the same time, 
most NSAbs target epitopes only if the antigens are expressed in 
their native conformation. Techniques like CBA, IHC of brain 
sections optimized to detect membrane proteins (rodent), and 
immunocytochemistry of cultures of rodent live hippocampal 
neurons fit this requirement. Third, different concentrations of 
the same autoantibody might have different effects and biological 
relevance. For example, high titers of anti-GABAAR are specific 
for severe encephalitis and refractory seizures patients and low 
titers present in a broad range of neurology disorders and may 
lack specificity (8). Another aspect which needs to be taken into 
account is the value of serum and CSF for detecting autoanti-
bodies. The use of CSF for detecting NSAbs in depression has 
not been evaluated to date. Finally, NSAbs should be tested in a 
“panel”, rather than a single one because of the overlap between 
symptoms and signs of different autoimmune encephalitis and 
psychotic disorders (140). Also, the coexistence of several NSAbs 
may occur in individual patients and cause combined manifesta-
tions (9, 141, 142).

To summarize, NSAbs, targeting important neuronal recep-
tors or interfering with ion channels and associated protein func-
tion, are responsible for psychiatric symptoms in autoimmune 
encephalitis cases. At the moment, several studies reported the 
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presence of anti-NMDAR (NR1 and NR2B), anti-5-HT1A, and 
D2R in depression cohorts. However, due to the heterogeneity 
of the methodology, variation in the samples used, and the lim-
ited cohort size, there is insufficient evidence to support those 
NSAbs can cause depression without other obvious neurological 
symptoms. In the future, large cohorts, longitudinal studies need 
to be performed using sensitive, quantitative, and reproducible 
methods without loss of antigen conformation. Finally, analysis 
of autoantibodies targeting neuronal surface antigens relevant to 
the pathology of depression should be performed.
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