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Abstract: Amyloid self-assembly of islet amyloid polypeptide
(IAPP) is linked to pancreatic inflammation, (-cell degener-
ation, and the pathogenesis of type 2 diabetes (T2D). The
multifunctional host-defence peptides (HDPs) cathelicidins
play crucial roles in inflammation. Here, we show that the
antimicrobial and immunomodulatory polypeptide human
cathelicidin LL-37 binds IAPP with nanomolar affinity and
effectively suppresses its amyloid self-assembly and related
pancreatic 3-cell damage in vitro. In addition, we identify key
LL-37 segments that mediate its interaction with IAPP. Our
results suggest a possible protective role for LL-37 in T2D
pathogenesis and offer a molecular basis for the design of LL-
37-derived peptides that combine antimicrobial, immunomo-
dulatory, and T2 D-related anti-amyloid functions as promising
candidates for multifunctional drugs.

Amyloid self-assembly of islet amyloid polypeptide (IAPP)
is linked to pancreatic (-cell degeneration and the patho-
genesis of type 2 diabetes (T2D).!! The 37-residue IAPP is
secreted from the B-cells together with insulin and acts in its
soluble form as a neuropeptide regulator of glucose homeo-
stasis (Scheme 1).'! However, under conditions of T2D, the
intrinsically disordered but highly amyloidogenic IAPP self-
assembles into cytotoxic oligomers and amyloid fibrils, which
mediate pancreatic inflammation and B-cell degeneration.[!

The multifunctional host-defense peptides (HDPs) cath-
elicidins play crucial roles in inflammatory processes, includ-
ing both pro- and anti-inflammatory ones.”! So far, the only
known human cathelicidin is LL-37 (Scheme 1).5 LL-37 is
a 37-residue polypeptide that is broadly expressed by
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Scheme 1. Primary structures of IAPP, LL-37, scrambled LL-37 (scrLL-
37), and LL-37 segments synthesized and studied (IAPP has a C-
terminal amide; LL-37 and related peptides have a C-terminal COOH).
IAPP and LL-37 sequence alignment was performed by LALIGN;®
similar residues are blue and identical green coloured.

a plethora of immune and non-immune cells, including the
B-cells of pancreas.**** LL-37 plays a crucial role in innate
immunity; its best known functions are its broad-spectrum
antimicrobial activity and its potent immunomodulatory
effects.”! Importantly, secretion of the mouse LL-37 ortho-
logue cathelicidin related antimicrobial peptide (CRAMP) by
pancreatic [3-cells was recently found to suppress pancreatic
B-cell inflammation in a mouse model of type 1 diabetes
(T1ID) by converting inflammatory cells into regulatory
ones.”! In addition, CRAMP/LL-37 treatment promoted
insulin and glucagon secretion and enhanced islet function.™’
Thus, a protective role for LL-37 in T1D has been suggested.
The multifunctional nature of LL-37 makes it of high
biomedical importance and numerous studies toward the
design of LL-37-derived peptides with antimicrobial or
immunomodulatory functions have been reported.’*

Increasing evidence suggests that interactions of amyloi-
dogenic polypeptides with other polypeptides are crucial
modulators of amyloid self-assembly.”! For instance, high-
affinity interactions of non-fibrillar species of IAPP with
insulin or amyloid f peptide (AP40(42)) of Alzheimer’s
disease (AD) have been found to suppress IAPP amyloido-
genesis in vitro.***” In addition, LL-37 was recently shown to
interact with AP42 resulting in suppression of AP42 amyloi-
dogenesis and neuroinflammation in vitro.*!

Based on the above information and in particular on the
presence of LL-37 in the pancreas, we asked whether it might
also interact with IAPP. Notably, LL-37 and IAPP share
a remarkable (42 %) sequence similarity (Scheme 1). Herein,
we show that LL-37 in fact binds with nanomolar affinity to
IAPP and effectively suppresses its amyloid self-assembly and
related pancreatic B-cell-damage in vitro. In addition, we
identify key LL-37 segments that mediate its interaction with
IAPP.
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Figure 1. Effects of LL-37 on IAPP amyloid self-assembly and cell-damaging effects. a) Fibrillogenesis of IAPP (16.5 um) alone or with LL-37 (1:1)
determined by ThT binding (means+SD, 3 assays). LL-37 alone is shown for comparison (1 assay). b) TEM images of 7 days aged solutions
from (a) as indicated (bars, 100 nm); inset in LL-37 image shows LL-37 fibrils (minor population). c) Cell viability of cultured RIN5fm cells after
treatment with |IAPP and its mixtures from 1a (7 days aged) determined by MTT reduction [mean=SD, 3 assays (n=3 each)]; effects of LL-37
alone are also shown (1 assay, n=3). d) ICs, of inhibitory effect of LL-37 on IAPP cytotoxicity determined by titration of IAPP (100 nm; red
symbol) with LL-37 and MTT reduction [mean=SD, 3 titration assays (n=3 each)]. e) Fibrillogenesis of IAPP (16.5 um) alone or with LL-37 (1:1)
following seeding with flAPP (10%) determined by ThT binding (mean=SD, 3 assays).

We first addressed the question of whether LL-37 might
interfere with IAPP amyloidogenesis and the formation of
cell-damaging assemblies by using the ThT binding assay in
combination with TEM and a cell viability assay (Figure 1). In
fact, LL-37 (1:1 relative to IAPP) effectively suppressed
IAPP amyloid self-assembly (Figure 1a). The results of the
ThT assay were confirmed by TEM, which revealed amor-
phous aggregates as major species in aged IAPP-LL-37
mixtures (Figure 1b). Interestingly, a few fibrils were also
observed in aged LL-37 alone in addition to amorphous
aggregates consistent with previous findings.”) The dose-
dependence of the amyloid inhibitory effect was confirmed by
additional studies (Figure S1). Addition of the above solu-
tions to cultured pancreatic B-cells (RINSfm) and determi-
nation of cell damage through a the 3-[4,5-dimethylthiazol-2-
yl1]-2,5-diphenyltetrazolium bromide (MTT) reduction assay
showed that LL-37 effectively suppressed formation of
cytotoxic IAPP assemblies as well (Figure 1c,d). Of note,
scrambled LL-37 (scrLL-37) was unable to inhibit up to an at
least 10-fold molar excess and LL-37 alone was not cytotoxic
(Scheme 1, Figures 1a—c & S2). To quantify the inhibitory
activity of LL-37, titrations of cytotoxic IAPP with LL-37
were performed and an ICs, of 17(+1.7) nm was obtained
(Figure 1d); thus, LL-37 is a nanomolar inhibitor of IAPP
cytotoxic self-assembly. Furthermore, we asked whether LL-
37 may also interfere with nucleation of IAPP fibrillogenesis
by addition of seed amounts of preformed IAPP fibrils
(fIAPP). In fact, in the presence of LL-37 (1/1), the seeding
effect of fIAPP (10% ) was fully suppressed (Figure 1e).
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To characterize the LL-37-IAPP interaction, we per-
formed fluorescence spectroscopic titrations, CD spectrosco-
py, cross-linking, and dot blots (DBs). First, titration of N-
terminal fluorescein-labeled IAPP (Fluos-IAPP, 5 nm) with
various amounts of LL-37 was performed; its interaction with
100-fold molar excess of LL-37 resulted in a 322 % increase in
its fluorescence emission (Figure 2 a). The titration yielded an
apparent (app.) Ky of 88.1(+12) nm consistent with a high-
affinity interaction (Figure 2a). Since freshly made solutions
of Fluos-IAPP at 5nwm consist mainly of monomers, these
results suggest that LL-37 binds monomeric IAPP with
nanomolar affinity.*! To find out whether LL-37 binds
IAPP fibrils as well, DBs were performed using N-terminal
fluorescein-labeled LL-37 (FAM-LL-37). In fact, FAM-LL-37
bound both IAPP fibrils and monomers (Figure 2b).

To determine the effects of LL-37 on IAPP conformation
and misfolding, far-UV CD spectra of IAPP, LL-37, and the
IAPP/LL-37 mixture (1:1) were measured at various incuba-
tion time points (Figures 2c—e).'”! The spectrum of IAPP
(0 h) exhibited a strong minimum at approximately 200 nm,
which is indicative of large amounts of unordered structure
(Figure 2¢). By contrast, the spectrum of LL-37 exhibited
a strong n—* minimum at around 227 nm, a smaller one at
around 210 nm, and a maximum at around 198 nm. These
features were indicative of large amounts of a-helix and/or f3-
sheet/turn structure. Importantly, the spectrum of the mixture
differed from the sum of the spectra confirming the inter-
action (Figure 2¢). Also, the CD spectra of the mixture and of
LL-37 were very similar to each other; a-helical homo- or

Angew. Chem. Int. Ed. 2020, 59, 12837-12841


http://www.angewandte.org

iw + FluosIAPP +LL-37
E
a) 60 —— Fluos-IAPP & %0 b)
P ——1/500 s
3 50 ——1/250 g2 Binding to: FAM-LL-37
5 H
- —— 1/100 320
e —1/25 S0l IAPP monomers.
230 — 15 € £5807570656055
Le LL-37 concen iof
a ¥ 1P5 og( tration) (M)
520 \ " 1APP fibrils
E}
w10 -
0
500 520 540 560 580 600
Wavelength (nm)
C) d) 30, —0h
40 —IAPP _ 05h
? ——IAPP + LL-37 (1/1) g —1h
T 20 —LL-37 E 10{ —3h
E sum > | ——2n
Z o 5 )
2 2 100\ T
o 20 : )
- -30
200 210 220 230 240 250 200 210 220 230 240 250
Wavelength (nm) Wavelength (nm)
i Anti-LL-37 WB
e) ., oh f) Anti-IAPP WB i
—05h
et 2 2
° —3h —
£ 0y 24h 40 40
20 30 30 —
5}
= 20 20 —
-10
1 15 15 — o
w 5 10 PP 10 —
-30 —— ]
200 210 220 230 240 250 5 3.5
Wavelength (nm)
g g

IAPP +LL-37 1/0.1
IAPP +LL-371/1
IAPP +LL-371/0.1
IAPP +LL-371/1

Figure 2. Characterization of the LL-37-IAPP interaction. a) Determina-
tion of the app. Ky by fluorescence spectroscopic titrations. Fluores-
cence emission spectra of Fluos-IAPP (5 nm) alone or with various
amounts of LL-37 (pH 7.4) as indicated. Inset: binding curve
(mean=£SD, 3 titration assays). b) Binding of FAM-LL-37 to IAPP
monomers and fibrils as determined by DB. IAPP monomers and
fibrils (40 ug) were spotted on a nitrocellulose membrane and probed
with FAM-LL-37 (200 nm; results representative of 4 assays). c) Far-UV
CD spectra of IAPP (5 pum), IAPP-LL-37 (1:1; 5 um each), and LL-37

(5 um, 0 h,pH 7.4). The sum of the spectra of LL-37 and IAPP is also
shown. d, e) Kinetic follow-up of IAPP misfolding alone (d) or its 1:1
mixture with LL-37 (e) through far-UV CD spectroscopy. Conditions as
in (c). f) Characterization of IAPP/LL-37 hetero-assemblies through
cross-linking with glutaraldehyde (pH 7.4), NuPAGE, and western
blotting (IAPP 30 um; IAPP/LL-37 1:0.1 or 1:1). A representative gel
(n>5) is shown.

hetero-oligomers could account for the 227 and 210 nm
minima (Figure 2¢).’>! In fact, LL-37 has a well-known
propensity to self-assemble into a-helical oligomers, while a-
helix-mediated homo-dimerization might precede IAPP
amyloidogenesis.’*!*'? Of note, scrLL-37 (1:1 relative to
IAPP) did not affect IAPP conformation (Figure S2). The CD
spectra of IAPP at various incubation time points indicated
a conformational transition into [-sheet-rich assemblies,
leading to fibril formation and precipitation (24 h; Fig-
ure 2d).'"! By contrast, the LL-37/IAPP mixture exhibited
a strong time-dependent increase of random-coil content and
no precipitation occurred (Figure 2¢). Thus, the LL-37/IAPP
interaction yielded soluble, partly disordered hetero-assem-
blies that suppressed IAPP fibrillogenesis.

To further characterize the LL-37/IAPP hetero-assem-
blies, cross-linking studies were performed. IAPP solutions
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contained low MW oligomers, mostly di- to hexamers, and
higher MW aggregates (Figure 2f). A similar pattern was
observed in the presence of non-inhibitory amounts
(0.1 equivalents) of LL-37. By contrast, in the presence of
an inhibitory (equimolar) LL-37 amount, a novel prominent
band, which was absent in the IAPP-only incubations, was
found at around 15kDa and suggested the formation of
IAPP/LL-37 hetero-tetramers (Figure2f). In addition,
a strong reduction of low MW oligomeric IAPP bands,
likely corresponding to cytotoxic IAPP oligomers, was
observed (Figure 2f). Western blot (WB) with anti-LL-37
antibody confirmed the presence of LL-37 in the 15 kDa band
of the TAPP/LL-37 mixtures (Figure 2f). Notably, LL-37
alone also contained a band at around 15 KDa corresponding
to LL-37 homo-tetramers (Figure $3).’>!12 Together, these
studies identified LL-37/IAPP hetero-tetramers as major
hetero-oligomeric populations and suggested that their for-
mation may underlie the inhibitory effect of LL-37. Further-
more, IAPP seeding studies suggest that binding of LL-37 to
IAPP fibrils converts them into seeding-incompetent assem-
blies, thereby providing an additional mechanistic explana-
tion for its potent amyloid inhibitor function (Figure 3 and
Supporting Information).
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Figure 3. LL-37 binding to IAPP fibrils (fIAPP) converts them into
seeding-incompetent assemblies: a) Fibrillogenesis of IAPP (16.5 um)
alone or following seeding with 10% fIAPP or with 10% LL-37-treated
fIAPP determined by ThT binding (means £ SD, 3 assays). b) TEM
images of solutions from (a): fIAPP seeds, LL-37-treated fIAPP seeds,
and IAPP seeded with fIAPP (10%, red dot) or LL-37-treated fIAPP
(10%, blue dot; both at 6 h). Scale bars=100 nm.

Specific partial LL-37 sequences within its central/C-
terminal parts such as LL-37(17(18)-29) or LL-37(13-32) have
been found to be sufficient for antibacterial, antiviral, or
immunomodulatory activity and are thus being used for drug
design.”**1 To find out whether the amyloid-inhibition
function of LL-37 resides within specific sequence parts as
well, we dissected it into the two segments: LL-37(1-14) and
LL-37(15-37), which contain the N- and central/C-terminal
helical parts, respectively.’>!3! The peptides were synthesized
and their interactions and effects on IAPP amyloid self-
assembly were studied. Importantly, neither segment was able
to interfere with IAPP amyloid self-assembly and cell-
damaging effects (1:1 with IAPP; Figure 4a,b). In addition,
fluorescence titrations revealed that LL-37(15-37) bound
Fluos-IAPP with as high affinity (app. K;=31.9(£2.2) nm) as
full length LL-37; by contrast, a circa 30-fold weaker binding
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Figure 4. |dentification of regions of LL-37 that mediate its interaction
with IAPP and its potent amyloid-inhibition function. a) Fibrillogenesis
of IAPP (16.5 um) alone or in the presence of LL-37(1-14) or LL-37(15-
37) (1:1) as determined by ThT binding (mean £ SD, 3 assays). b) -
cell-damaging effects of 24 h aged solutions from (a) determined by
MTT reduction [RIN5fm cells; mean=+SD, 3 assays (n=3 each)].

c) Identification of LL-37 regions that bind IAPP using peptide micro-
arrays. Glass slides with decamers consisting of overlapping LL-37
sequences (bold) were incubated with Fluos-IAPP (1 um); visualization
by fluorescence. Identified IAPP binding clusters are indicated by
dashed blue line frames; LL-37 “binding cores” by red letters (results
representative from 4 assays).

(app. K;=2.54(£0.5) um) was found for LL-37(1-14); Fig-
ure S4). Thus, while the central/C-terminal LL-37 part likely
mediates its high-affinity interaction with IAPP, it is not
sufficient for amyloid inhibition; the concerted action of
central/C-terminal and N-terminal parts appears to be
required.

To better characterize the LL-37 regions involved in its
interaction with IAPP, we used peptide arrays of LL-37
decamers covering full-length LL-37 and positionally shifted
by one residue; peptides were covalently attached on glass
slides.'" Incubation with Fluos-IAPP revealed two clusters of
6-8 consecutive IAPP binding segments: the first one in LL-
37(1-15) and the second one in LL-37(18-34) (Figure 4c). The
common sequence parts within each binding cluster, that is,
the “binding cores”, were LL-37(6-10) or FRKSK at the N-
terminus, and LL-37(25-27) or KDF within the C-terminal
part (Figure 4c). These findings were in line with the LL-37
dissection studies; in addition, they identified the segments
mediating its interaction with IAPP.

In summary, we have identified a high-affinity interaction
between LL-37 and IAPP that effectively suppresses IAPP
amyloid self-assembly in vitro, along with key LL-37 seg-
ments that mediate this interaction. Our results suggest that
the inhibitor function of LL-37 is mediated by binding to
1) early prefibrillar IAPP species and their sequestration into
soluble, non-fibrillar hetero-assemblies and 2) IAPP fibrils
and their conversion into seeding-incompetent assemblies.
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Together with findings by others, our results support the
hypothesis that LL-37 secreted by pancreatic B-cells or
infiltrated neutrophils under conditions of pancreatic inflam-
mation binds IAPP and suppresses its amyloid self-assembly
and related B-cell damage, thus slowing down T2D patho-
genesis (Scheme 2).**4! Studies on the potential physiolog-
ical relevance of the LL-37/IAPP interaction are now of high
priority.

_~”INFLAMMATION "™

P neutrophils ™\
= '(\’ \\: 4

LL-37

sz /

Scheme 2. Suggested protective role of the LL-37/IAPP interaction in
pancreatic amyloid formation, inflammation, -cell degeneration, and
T2D pathogenenesis.

In conclusion, our studies have uncovered a high-affinity
amyloid-suppressing interaction between a major antimicro-
bial and immunomodulatory polypeptide and the key amyloid
polypeptide of T2D, and offer a molecular basis for the design
of novel molecules combining antimicrobial, immunomodu-
latory, and T2D-related anti-amyloid functions as candidates
for multifunctional drugs.
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