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A boundary-integral
representation for biphasic
mixture theory, with
application to the
post-capillary glycocalyx
P. P. Sumets1, J. E. Cater1, D. S. Long1,2 and R. J. Clarke1

1Department of Engineering Science, and 2Auckland Bioengineering
Institute, University of Auckland, Auckland 1142, New Zealand

We describe a new boundary-integral representation
for biphasic mixture theory, which allows us to
efficiently solve certain elastohydrodynamic–mobility
problems using boundary element methods. We apply
this formulation to model the motion of a rigid particle
through a microtube which has non-uniform wall
shape, is filled with a viscous Newtonian fluid, and
is lined with a thin poroelastic layer. This is relevant
to scenarios such as the transport of small rigid cells
(such as neutrophils) through microvessels that are
lined with an endothelial glycocalyx layer (EGL). In
this context, we examine the impact of geometry upon
some recently reported phenomena, including the
creation of viscous eddies, fluid flux into the EGL, as
well as the role of the EGL in transmitting mechanical
signals to the underlying endothelial cells.

1. Introduction
Biphasic mixture theory is commonly used to model
linearly poroelastic materials, including cartilage [1],
and the brush-like layer that lines the microvasculature,
namely the endothelial glycocalyx layer (EGL) [2]. It
has long been known how to represent the fluid phase
of these biphasic mixture theory models in boundary-
integral form [3]. This is a convenient formulation as
it describes the flow entirely in terms of quantities
defined on flow surfaces, thereby effectively reducing the
dimensionality of the problem. However, reformulating
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the solid phase into boundary-integral form is hampered by the appearance of volume integrals
that arise from the coupling between the fluid and solid phases. Here, we demonstrate how these
volume integrals can be recast into surface integrals, to yield a boundary-integral formulation
for the full poroelastic dynamics. In doing so, we open up biphasic mixture theory models to a
boundary element method (BEM) numerical treatment.

Although we present a general purpose boundary-integral formulation for linearly poroelastic
materials, our immediate interest in this problem is motivated by the microvasculature, and our
choice of physical parameters is informed by this physical regime. The walls of blood vessels are
composed of endothelial cells which have non-uniform shape, and which can be coated with a
layer consisting of a mixture of macro-molecules. In the literature, this brush-like layer is referred
to as the EGL, or sometimes the endothelial surface layer. This layer has a gel-like structure and
comprises proteoglycans, glycosaminoglycans, glycoproteins and absorbed plasma proteins [4].
The EGL is believed to serve a number of functions, including mechanotransmission of fluid
shear stress (FSS) to the endothelial actin cortical cytoskeleton (degradation of the EGL is seen to
be correlated with the endothelial cells becoming less likely to align with the flow, i.e. remodel
[5]), a modulator of permeability in the transcapillary exchange of water, and as a regulator in the
inflammatory response where it is believed to play a role in the leucocyte adhesion cascade [6]. In
addition, the results obtained by Vink et al. [7] suggest that, along with other functions, the EGL
plays a major role in providing vessels with an anti-adhesive inner lining. As such, the interplay
between the EGL, the flow of blood plasma within the lumen and cells within the plasma is
expected to be an important one for cardiovascular health.

The motion of cells through the microvasculature is a topic that has received much previous
theoretical treatment. Some models have considered rigid cells passing through a straight vessel
in the absence of an EGL [8,9]. When the cell is allowed to deform, as do red blood cells
(RBCs), cell-depleted regions form adjacent to the vessel walls, and an accompanying drop
in the apparent viscosity of the fluid is observed [10]. The role of a rigid, but porous, EGL
in the migration of deformable cells from rigid surfaces has recently been considered, where
it is suggested that the EGL may act to reduce the thickness of the depletion layer [11].
Boundary-integral formulations already exist that can describe these EGL-free or rigid-EGL
scenarios [12,13].

However, the EGL is deformable, and some previous studies have accounted for its poroelastic
behaviour using biphasic mixture theory. In a wavy-walled vessel, and in the absence of any cells,
it has been demonstrated how the flow can separate and form a recirculation region which may,
in turn, influence molecular transport and cellular response [14]. Other studies have adopted a
similar approach to consider the passage through the lumen of rigid cells [2], EGL-coated cells [15]
and cells which can undergo large deformations (e.g. RBCs) [16–19]. These studies have shown
that the poroelastic layer can significantly affect the apparent viscosity of the flow, and that
hydrodynamic forces can perhaps explain an observed exclusion of RBCs from the EGL under
flow [18,20]. There is also the suggestion that the presence of the compliant EGL can reduce the
FSSs exerted upon a RBC as it passes through non-uniformly shaped microvessels [19]. The EGL
is also predicted to suppress FSSs on the endothelial wall, which seems at odds with its role as a
transducer of mechanical stresses. It is now hypothesized that a significant portion of the stress is
actually carried through the solid phase of the EGL.

These previous biphasic mixture theory models of EGL-lined microvessels have typically
adopted a lubrication theory approximation, which places certain geometrical constraints
upon the model (i.e. a long-wavelength analysis). By implementing our boundary-integral
representation for biphasic mixture theory, we are now able to consider the aforementioned effects
in a more general setting. Special attention is paid to the effect of geometry upon the system as a
whole and the interaction between the flow, particle and poroelastic layer.

In §2, we show how the governing equations for biphasic mixture theory can be recast into
boundary-integral form. The results we present in §3 for the two-dimensional case show how
wall shape and the presence of a rigid cell affect the flow and solid displacements of the EGL. We
draw some conclusions from these observations in §4.
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2. Formulation

(a) Geometry
Our geometry consists of a lumen of radius H∗, and volumeΩl, through which an incompressible
Newtonian fluid can flow unhindered, as well as a poroelastic layer, Ωm, which is attached to
the vessel walls. The lumen contains a rigid particle, Ωp, with surface Sp. The lumen and the
poroleastic layer are bounded by the surfaces, Sl and Sm, respectively. The tube has a rigid wall
denoted by Sw. Surface Si forms the interface between the lumen and the poroelastic layer.
Denoting inlet and outlet surfaces as S in and Sout, we have Sm = S in

m ∪ Sout
m ∪ Si ∪ Sw and

Sl = S in
l ∪ Sout

l ∪ Si. See figure 1 for a diagram of the geometry.
The intrinsic masses and the volumes occupied by the fluid and solid phases in the poroelastic

layer are mf, Vf and ms, Vs, respectively. The total volume of the poroelastic layer is therefore
V = Vf + Vs. Introducing the volume fractions for each phase as φf = Vf/V and φs = Vs/V, we can
define two partial densities for each phase: ρf = φfmf/Vf and ρs = φsms/Vs. The requirement that
there are no voids in the poroelastic layer necessitates that φf + φs = 1.

There is a flow with characteristic speed, V∗, through the lumen, which in turn drives flows
and elastic deformations within the poroelastic layer, as well as transporting a rigid particle
through the lumen.

(b) Particle motility
We assume that the particle moves as an impermeable rigid object (as might be largely the case
for white blood cells, for example), and hence the instantaneous particle velocity, V∗

p, can be
written as

V∗
p = W∗ + ω∗

pk × (x∗ − x∗
c ), (2.1)

where x∗ is a point on the surface of the particle, x∗
c is its centre and k is the axis of rotation

(asterisks denote dimensional quantities). The particle translational velocity, W∗, and angular
velocity, ω∗

p , are initially unknown. We non-dimensionalize using

x = x∗

H∗ , W = W∗

V∗ and ωp =
ω∗

pH∗

V∗ , (2.2)

which gives

Vp = W + ωpk × (x − xc). (2.3)

In the absence of inertia (due to the small scale of the flow) and external forces or torques, the
particle must be both force and torque free, i.e.

∫
Sp

f p ds(x) = 0,
∫
Sp

(x − xc) × f p ds(x) = 0, (2.4)

where f p is the traction on the particle surface (see §2c).

(c) Hydrodynamics in the lumen
As we consider steady flows through very small tubes, such as those that might typify post-
capillary venules or capillaries, the governing flow equations in the lumen are the incompressible
Stokes flow equations

μf∇2v∗ = ∇P∗, ∇ · v∗ = 0, (2.5)

where v∗ = (v∗
1 , v∗

2 , v∗
3 ) and P∗ are the flow velocities and pressure, and μf is the dynamic viscosity

of the fluid. The Cauchy stress tensor for the fluid has the form σ ∗ = −P∗I + (∇v∗ + (∇v∗)T)
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Figure 1. A diagram of the geometry of the microtube containing a rigid cell, and lined with a poroelastic layer.

(superscript T denotes transpose). Non-dimensionalizing according to

x = x∗

H∗ , v = v∗

V∗ , P = P∗H∗

(μfV∗)
and σ = σ ∗H∗

(μfV∗)
(2.6)

yields

∇2v = ∇P, V · v = 0. (2.7)

This can be recast into the following boundary-integral form [3]:

−
∫
Sl

fj(x)Gij(x, x′
0) ds(x) +

∫
−

Sl

vj(x)Tijk(x, x′
0)nk(x) ds(x)

+ Wj

∫
−

Sp

Tijk(x, x′
0)nk(x) ds(x) + ωp

∫
−

Sp

(k × (x − xc))j Tijk(x, x′
0)nk(x) ds(x)

= cf

{
vi(x′

0), x′
0 ∈ Sl

Wi + ωp(k × (x′
0 − xc))i, x′

0 ∈ Sp,
(2.8)

cf = 2π (i, j, k = 1, 2) for the two-dimensional case, and cf = 4π (i, j, k = 1, 2, 3) for three-dimensional
flow. The integrals involving the Stokeslet Gij are referred to as the single-layer potentials,
whereas the second, third and fourth integrals involving Tijk, the associated stress tensor, are only
defined in a Cauchy principal value sense, and referred to as the double-layer potentials (similar
terminology applies for the boundary-integral representations which follow). Details of the exact
form of these tensors are given in the electronic supplementary material, S1. Here, f = σ · n is the
surface traction on the Stokes flow surfaces and n is the inward normal vector.

(d) Elastohydrodynamics in the poroelastic layer
The poroelastic layer consists of a solid phase which is linearly elastic, and a fluid phase that
obeys the porous flow equations. In what follows, the subscript s refers to the solid phase, while
subscript f refers to the fluid phase. Following earlier work [2,14], we model the poroelastic
layer using biphasic mixture theory [21–23] and make the assumption that each phase is
incompressible, has the same density, is homogeneous and has negligible inertia.

From incompressibility, we have the mass conservation equation

∇ · (φf w∗ + φsv∗
s ) = 0, (2.9)

where w∗ is the velocity of the fluid phase and v∗
s is the velocity vector of the solid phase.
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The momentum equations then take the form [22]

∇ · (φfσ
∗
f ) = π∗ (2.10)

and
∇ · (φsσ

∗
s ) = −π∗ (2.11)

(note that ∇ · (φfσ
∗
f + φsσ

∗
s ) = 0) where σ ∗

f and σ ∗
s are the intrinsic Cauchy stress tensors for the

fluid and solid phases, respectively, and π∗ is the momentum transfer tensor which expresses the
force coupling due to the interaction between the two phases, which we define below.

For small strains (linear elastic theory), the constitutive equations for each phase are [22,24]

σ ∗
f = −p∗I + μf(∇w∗ + (∇w∗)T) (2.12)

and
σ ∗

s = −p∗I + μs(∇u∗ + (∇u∗)T) + λs(∇ · u∗)I, (2.13)

where p∗ is the flow pressure, u∗ is the displacement vector of the solid phase, μf is the dynamic
viscosity of the fluid (which we assume to be the same as that in the lumen), and λs and μs are
the Lame constants of the solid phase. The total stress is then

Γ ∗ = φfσ
∗
f + φsσ

∗
s = −p∗I + φfμf(∇w∗ + (∇w∗)T)

+ φsμs(∇u∗ + (∇u∗)T) + φsλs(∇ · u∗)I. (2.14)

It can be seen that the total stress tensor represents the sum of fluid and elastic stress tensors with
rescaled material constants, corresponding to the partial stress tensors.

Following [2,14], momentum transfer is given by

π∗ = K∗(w∗ − v∗
s ), (2.15)

where K∗ is the hydraulic resistivity of the biphasic mixture. As the solid phase is attached to an
immovable solid wall, at steady state, in the Cartesian coordinates fixed on the tube, the solid
velocities are zero. Hence,

π∗ = K∗w∗. (2.16)

(i) Fluid phase

Conservation of mass (assuming v∗
s = 0) dictates that

∇ · w∗ = 0. (2.17)

With regards to momentum conservation, upon substituting (2.12) and (2.16) into (2.10), we obtain
the Brinkman-type equation for the fluid phase [25],

φfμ∇2w∗ = φf∇p∗ + K∗w∗, ∇ · w∗ = 0. (2.18)

We note that, owing to v∗
s = 0, we can solve (2.18) for the fluid phase before determining the elastic

deformation of the solid phase. Non-dimensionalizing according to

x = x∗

H∗ , w = w∗

V∗ , p = p∗H∗

(μfV∗)
and σ f = σ ∗

f H∗

(μfV∗)
(2.19)

gives
∇2w = ∇p + χw, V · w = 0, (2.20)

where χ = K∗H∗2/(φfμf) is a measure of porous resistance. Brinkman flow also has a well-known
boundary-integral representation (equivalent to that for oscillatory Stokes flow [3])

cf wi(x0) = −
∫
Sm

gj(x)Mij(x, x0) ds(x) +
∫
−

Sm

wj(x)Rijk(x, x0)nk(x) ds(x), (2.21)
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where Mij and Rijk are the free-space singularity solutions to Brinkman’s equation (see the
electronic supplementary material, S1). The coefficient cf here is as defined for the boundary-
integral representation for Stokes flow within the lumen (2.8), and g = σ f · n(Sm) is the surface
traction due to flow in the fluid phase.

(ii) Solid phase

Substituting (2.13) and (2.16) into (2.11) yields the momentum conservation equations for the solid
phase

φs(λs + μs)∇(∇ · u∗) + φsμs∇2u∗ = φs∇p∗ − K∗w∗. (2.22)

Hence, the solid phase is governed by the steady Navier equation with two forcing terms.
Non-dimensionalizing using

x = x∗

H∗ , u = u∗φμs

(V∗μf)
and σ s = σ ∗

sφH∗

(μfV∗)
(2.23)

gives

1
1 − 2ν

∇(∇ · u) + ∇2u = φ∇p − χw, (2.24)

where φ = φs/φf and ν = λs/2(λs + μs) is Poisson’s ratio. Following the usual procedure for
writing the Navier equation in boundary-integral form, we can use the Maxwell–Betti reciprocal
relation to obtain the following integral form for the behaviour of the solid phase [26]:

csui(x0) = −
∫
Sm

hj(x)Sij(x, x0) ds(x) +
∫
−

Sm

uj(x)Kijk(x, x0)nk(x) ds(x)

− φ

∫
Ωm

p,j(x)Sij(x, x0) dΩ + χ

∫
Ωm

wj(x)Sij(x, x0) dΩ , (2.25)

with cs = 4π (1 − ν) or cs = 8π (1 − ν) in two and three dimensions, respectively. Here, p,j stands for
the partial derivative with respect to the xj coordinate, and h = (σ s + φpI) · n(Sm) is the traction
vector for the elastic part of the solid phase. Also Sij and Kijk are the Green’s function and
fundamental stress tensor for isotropic linear elasticity (i.e. Kelvin solutions; see the electronic
supplementary material, S1). This is not yet in boundary-integral form, due to the volume
integrals of the two forcing terms. We shall now show how these can also be converted into surface
integrals. We consider each forcing term in turn.

Pressure forcing. To convert the volume integral involving pressure gradients into a surface
integral, we use divergence theorem and Green’s identities along with the property of
fundamental solutions (see details in appendix Aa),

∫
Ωm

p,jSij dΩ = (1 − 2ν)
∫
Sm

x̂iβ
∂p
∂n

ds + 2(1 − ν)
∫
Sm

2pβδiknk − p
∂(x̂iβ)
∂n

ds, (2.26)

where x̂i = (x − x0)i, r = |x̂|, and β = ln r or β = −1/r in two and three dimensions, respectively. In
order to use identity (2.26), we need to know both the pressure and its normal derivative, ∂p/∂n,
on the boundary. The boundary-integral flow representation (2.21) yields only flow velocities and
tractions, from which surface pressures can be determined from the following boundary-integral
relation [27]:

cf p(x0) = −
∫
−

Sm

gi(x)Qi(x, x0) ds(x) +
∫
=
Sm

wi(x)Lik(x, x0)nk(x) ds(x) (2.27)

(singularity solutions Qi and Lik are given in the electronic supplementary material, S1). The first
integral is a Cauchy principal value integral, and the second a hyper-singular integral that must



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140955

...................................................

be regularized for numerical treatment (see appendix Aa for details). Consequently,

cf p(x0) = −
∫
−

Sm

gi(x)Qi(x, x0) ds(x)

+
∫
−

Sm

(wi(x) − wi(x0))Lik(x, x0)nk(x) ds(x) − 2χwi(x0)
∫
Sm

niβ ds(x). (2.28)

Once surface pressure is known, its normal gradient can be determined through Green’s third
identity, ∫

Sm

β
∂p
∂n

ds(x) = cf

2
p(x0) +

∫
−

Sm

p(x)
∂β

∂n
ds(x), x0 ∈ Sm. (2.29)

Momentum transfer. We now turn to the volume integral in (2.25) that stems from the momentum
transfer between phases. Our approach involves consideration of the flow within the fluid
phase (2.21)

∇ · σ f = F, (2.30)

where Fj = χwj, alongside a second complementary flow defined by

∇ · σBi = FBi , (2.31)

where FBi
j = χv

Bi
j + Sij, Sij is Green’s function for linear elasticity, and σBi , vBi are the Cauchy stress

tensor and flow velocity for the complementary flow.
We then apply the Lorentz reciprocal relation to flows (σ f , w) and (σBi , vBi ), integrate over the

flow domain and apply the divergence theorem to obtain [3]
∫
Sm

gjv
Bi
j ds(x) +

∫
Ωm

Fjv
Bi
j dΩ =

∫
Sm

gBi
j wj ds(x) +

∫
Ωm

FBi
j wj dΩ , (2.32)

where gBi = σBi · n. It can be seen that, after substitution of the expressions for F and FBi into
(2.32), we obtain the volume integral in terms of boundary integrals

∫
Ωm

wjSij dΩ = −
∫
Sm

gBi
j wj ds(x) +

∫
Sm

gjv
Bi
j ds(x), x0 ∈Ωm. (2.33)

Hence, the problem now reduces to finding a flow which satisfies (2.31), and which is given by

v
Bi
j = 2 − 2ν

χ

[
1
r

(A(η) − 1)δij + x̂ix̂j

r3 (B(η) − 1)

]
, (2.34)

where

A(η) = 2 e−η
(

1 + 1
η

+ 1
η2

)
− 2
η2 , B(η) = −2 e−η

(
1 + 3

η
+ 3
η2

)
+ 6
η2 (2.35)

and η= √
χr (see appendix Ab for details).

Boundary-integral representation. We arrive at the final boundary-integral representation for the
solid phase

csui(x0) = −
∫
Sm

hj(x)Sij(x, x0) ds(x) +
∫
−

Sm

uj(x)Kijk(x, x0)nk(x) ds(x)

− φ(1 − 2ν)
∫
Sm

q(x)(x − x0)iβ(x, x0) ds(x)

− 2φ(1 − ν)
∫
Sm

p(x)
(

2β(x, x0)δiknk(x) − ∂((x − x0)iβ(x, x0))
∂n

)
ds(x)

+ χ

(
−

∫
Sm

wj(x)gBi
j (x, x0) ds(x) +

∫
Sm

gj(x)vBi
j (x, x0) ds(x)

)
, (2.36)

where q(x) = ∂p/∂n.
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(e) Boundary conditions
As we assume that the particle is impermeable, with a no-slip surface, Sp, we have

v(x) = Vp, x ∈ Sp. (2.37)

The vessel wall, Sw, is assumed to be rigid and impermeable, hence we have

w(x) = u(x) = 0, x ∈ Sw. (2.38)

On the inlet and outlet surfaces, we prescribe the analytical solutions for displacement and
velocity corresponding to flow through a straight-walled, poroelastic-lined tube, U0, W0, V0 (see
the electronic supplementary material, S2), i.e.

v(x) = V0(x), w(x) = W0(x), u(x) = U0(x), x ∈ S in
m ,Sout

m ,S in
l ,Sout

l . (2.39)

As there is no inertia in the flow, we expect entry and exit development effects to be localized,
typically scaling with tube radius.

As we assume small-strain elasticity, in keeping with earlier models, all boundary conditions
on the interfaces can be applied at their undeformed locations, Si. The first condition on the
interfaces is continuity of flow velocity (accounting for the fact that we assume vs = 0, i.e. no
elastic velocities)

φfw(x) = v(x), v ∈ Si. (2.40)

The second interface boundary condition is continuity of traction [28]

n · Γ (x) = n · σ (x), x ∈ Si, (2.41)

where n is a unit normal to the boundary and Γ = φfσ f + φs(σ s/φ) is the total stress in the
poroelastic material. The proportion of the total stress in the porous medium borne by each phase
is proportional to its volume fraction, hence

φs

φ
(h(x) − φpI · n) = φsf (x), x ∈ Si (2.42)

and

φfg(x) = φff (x), x ∈ Si (2.43)

(recalling that φs + φf = 1).

3. Results
The boundary-integral formulation derived in §2 is very general, applicable in both two and three
dimensions. Due to the computational expense, however, we follow [14] and consider a two-
dimensional regime, where the vessel is modelled as a channel. Notation specific to this geometry
is given in figure 2. We solve the governing integral equations using a BEM scheme, the particulars
of which can be found in the electronic supplementary material, S4, alongside validation details.

(a) Parameter values
We model the elastohydrodynamics of an EGL-coated microvessel containing a rigid cell (such
as a white blood cell) with the new boundary-integral formulation. We consider a wavy-walled
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lumen

poroelastic layer

rigid wall

poroelastic layer

rigid wall

n

x2

x1

particle

S1

S2

S8

S3

S5

S9S4

W3

W1

W2

S11

S10

S6

S7

Figure 2. A diagram illustrating two-dimensional geometry of the model, detailing surface labels.

channel, with top and the bottom channel walls prescribed (in dimensional form) by

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±H∗ −1 − 5
4
Λ∗

e ≤ x∗
1 <−5

4
Λ∗

e

η∗±(x∗
1) −5

4
Λ∗

e ≤ x∗
1 <−Λ∗

e

±H∗ ± a∗ cos
(

2πx∗
1

Λ∗
e −Φ±

)
−Λ∗

e ≤ x∗
1 <Λ

∗
e

ζ ∗±(x∗
1) +Λ∗

e ≤ x∗
1 <

5
4
Λ∗

e

±H∗ +5
4
Λ∗

e ≤ x∗
1 ≤ 1 + 5

4
Λ∗

e,

(3.1)

where the positive and negative signs correspond to S = S10 and S = S7, respectively. The
functions η∗±(x1), ζ ∗±(x1) are spline interpolations that guarantee a smooth transition from
a straight inlet/outlet to the non-uniform wavy topology (see the electronic supplementary
material, S3). Hence, the channel has a mean width of 2H∗ with wall undulations of amplitude a∗
and wavelength of Λ∗

e, and we allow for a phase difference between the top and bottom walls of
Φ+ = 0, Φ− =Φ, similar to [14]. The interfaces between the lumen and the poroelastic layers are
located at

S4 = S10 − ε∗ and S2 = S7 + ε∗. (3.2)

Parameter values were chosen to be broadly representative of the movement of a cell in a
capillary. Hence, the vessel radius was chosen to be H∗ = 5 µm, representative of a capillary.
We consider a spherical particle having radius R∗ = 2.5 µm, which is characteristic of a small
lymphocyte. The fluid viscosity is assumed to be that of water μf = 10−3 Pa s. The EGL thickness
ε∗ varies from 0.2 to 0.4 µm up to 1 µm [5]. Although there are currently no direct measurements
of hydraulic resistivity within the EGL, estimates are in the range K∗ = 1010 − 1011 N s m−4 [17].
The shear modulus of the EGL is calculated in [29] to be φsμs = 3.5 − 10 Pa, and it is generally
assumed [2] that the EGL has a small solid fraction φs = 0.01. Its Poisson ratio is assumed to
be ν = 0.3. The mean blood velocity in capillaries is V∗ = 0.8 − 1 mm s−1 [30]. An endothelial
cell has length of approximately Λ∗

e = 20 − 50 µm and height of a∗ = 1 − 2 µm [14]. Table 1
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Figure 3. Shear stress distribution on the interface S4 and on the solid wall S10 in the absence of a cell (case IX): (black
solid line) Γs(S4); (black dashed line) Γs(S10) (elastic stresses); (grey solid line) Γf (S10); (grey dashed line) Γf (S4)
(fluid stresses).

Table 1. Typical non-dimensional parameter values for a small lymphocyte negotiating an EGL-lined capillary.

R χ a φs ε δ ν

0.5 250 0.2 0.01 0.2 0.25 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Wall shapes and cell positions for the various cases considered.

case I II III IV V VI VII VIII IX X

xc (−2, 0) (−1, 0) (0, 0) (0, 0.4) (−2, 0) (−1, 0) (0, 0) (0, 0.4) — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ 0 0 0 0 π/2 π/2 π/2 π/2 0 π/2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

summarizes these parameters, including values for the non-dimensional quantities which define
the dynamics, namely χ , ε= ε∗/H∗, δ = H∗/Λ∗

e, a = a∗/H∗ and R = R∗/H∗.
Accordingly, we consider 10 cases corresponding to different combinations of the position of

the particle’s centre, xc, and shape of the walls. For each cell position, we also consider two distinct
channel shapes: varicose (Φ = 0) and sinuous (Φ = π/2) (see table 2 for a summary). The variation
of channel height against x1 for both geometries is shown in the electronic supplementary
material, S3.

In what follows, we present flow fields and associated flow shear stresses, Γf = φfg(x) · τ on
the channel walls and Γc = f (x) · τ on the cell, corresponding to a varicose geometry, Φ = 0, and
sinuous geometry, Φ = π/2. In addition, we present predictions for the elastic displacements in
the EGL and associated elastic shear stresses on the wall, Γs = (φs(h(x) − φpI · n)/φ) · τ (here the
direction of the tangential vector τ always coincides with the positive x1 direction). The total shear
stress is Γ = Γf + Γs.

(b) No cell
Firstly, in figure 3, we compare the stresses on the interface with those on the wall and find that
the EGL acts to reduce the FSS (as previously reported), but increases the stress in the solid phase.
Combining these two contributions, we observe that in general the total shear stress on the wall
is in fact greater than that on the interface. The exception is at the widest section of the vessel,
although this is only non-negligible for a varicose vessel (figure 4).

Below, we show the flow fields, stresses (both fluid and elastic) and elastic displacements for
both sinuous and varicose microvessels in the absence of the cell. These act as base cases, against
which we can compare the cases where a cell is present. We observe that elevated stresses and
elastic displacements occur at the geometric constrictions, as expected. Moreover, we note that
the magnitude of the shear stress on the wall due to the solid phase dominates over that due to
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Figure 4. Ratio of the total shear stressesΓ exerted on the interfaceS4, compared with that on the wallS10, in the absence
of a cell. Here,α= Γ (S10)/Γ (S4); (solid line) case IX; (dashed line) case X.

the fluid phase for all cases considered. This appears to support current ideas around the solid
phase being the main transducer of mechanical stresses to the underlying endothelial cells [31].

(c) Varicose geometry with the cell
In figure 5, we examine the flow fields and FSSs for the varicose geometry in the presence of
a cell. When the cell is located in the geometric constriction (case I), in figure 5a, we observe
a local amplification of stresses and flow velocities, over that seen when the cell is absent
(figure 5e). However, immediately above the cell we observe a reduction in the shear stress. This
is highlighted further in figure 6, which shows that the presence of the cell leads to increased
wall stress (as compared with the cell-free vessel) immediately upstream and downstream of
the cell, but decreased stress directly above the cell (i.e. x = −2). When the particle is located on
the centreline of the vessel, and in the widest part of the vessel (figure 5c), we observe that the
influence of the cell upon the FSSs on the wall is fairly minimal.

However, when the cell is positioned in the expanding section of the vessel (case II, as shown
in figure 5b), we again see elevated levels of wall shear in the vicinity of the particle, and a
local reduction in shear immediately above and below the cell. In fact, in this scenario, the
cell-induced local stress reduction occurs to such an extent that we see a region of negative
FSS on the wall. A similar situation occurs when the cell is placed in the widest section of the
channel, but close to the upper wall (case IV; figure 6, dashed line). Upon closer examination
of the associated flow fields for these two cases (figure 7), we see that this is associated
with the presence of a vortex. It was shown in [14] that vortices can appear in a varicose
vessel in the absence of a cell, although these were noted to appear in the widest part of
the vessel, and for values of χ ≥ 1600 which is greater than those considered here. From a
physiological standpoint, these flow features are important as they have the capacity to increase
the residence time of circulating substances within the EGL. Moreover, the accompanying
variations of the shear stress profile could have important implications for mechanotransduction
in the microvasculature, as mechanoreceptors located on the surface of the endothelial cells
are liable to experience shear stresses exerted by flow within the EGL (fluid component of the
total stress).

We also analyse the influence of the cell on the normal velocity through the interface, i.e.
wn = w · n(S4), since Wei et al. [14] also previously reported a net flux of fluid into the EGL in
the absence of a cell. We see in figure 8 that the presence of the particle leads to greater amplitude
EGL fluxes (both positive and negative, as compared with the cell-free vessel) in the vicinity
of the particle. The highest value of the normal flux occurs for case IV close to the particle
(max |wn| = 0.07) and the lowest for case X, where there is no cell present (max |wn| = 0.012).
Although not shown in figure 8, we also note that, for each cell position, phase shifting of the
wall does not significantly affect the normal flux distribution.
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Figure 5. Varicose vessels ((a–d) cases I–IV and (e) IX, respectively) showing flow fields and shear stresses exerted by
the flow. The first colour bar indicates the magnitude of the shear stresses on the vessel walls, whereas the scale beneath
corresponds to the stresses on the cell. Corresponding translational and angular velocities are: (a) W = (0.98, 0), ωp = 0;
(b)W = (0.88, 0), ωp = 0; (c)W = (0.7, 0), ωp = 0; (d)W = (0.6, 0), ωp = −0.1. Regions inside dashed boxes in (b,d)
are shownmagnified in figure 7.

When we examine the FSSs exerted upon the cell itself in this varicose geometry, we observe
that it experiences a much larger shear stress than the solid walls. We also note the degree to which
the distribution of stress over the surface changes with cell location in the channel. The cell takes
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Figure 6. FSS distributions, showing regions of rapid change: (thin black solid line) case IX; (thick grey solid line) case I; (dashed
line) case IV.
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Figure 7. Flow fields in regions of the EGL close to the cell, for (a) case II and (b) case IV. In both cases, the presence of a vortex
is evident. These regions of magnification correspond to the dashed boxes shown in figure 5.
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Figure 8. Normal fluid fluxes, wn, at the interface between core flow and EGL: (thin black solid line) case IX; (thick grey solid
line) case I; (dashed line) case IV.

its greatest translational velocity in the constriction, and lower velocities in the widest section of
the vessel. As would be expected, for the case of a varicose channel, the angular velocity of the
cell is negligible unless moved substantially from the vessel centreline (case IV), where its (non-
dimensional) angular velocity is 0.1. In this case, the cell also experiences an up–down asymmetry
in shear stress.
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Figure 9. Varicose vessels ((a–d) cases I–IV and (e) IX, respectively) showing elastic displacement vectors and shear stresses
exerted by the solid phase, the magnitudes of which are indicated by the colour bars beneath. Regions inside dashed boxes in
(d,e) are shownmagnified in figure 10.

In figure 9, we examine the corresponding displacements and elastic shear stresses. Firstly,
as in the no-cell scenario, we see that the elastic stresses are larger in magnitude than the
fluid stresses, again offering some support to the notion that a significant proportion of the
mechanotransduction in the EGL is performed by the solid phase. We also note that, unlike
the FSSs, the elastic shear stresses always remain positive. However, for cases II and IV, where
vortex structures were observed in the flow field, we note a corresponding distortion in the elastic
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Figure 10. Elastic displacements in the EGL interior: (a) case IV and (b) case IX. These regions of magnification correspond to
the dashed boxes shown in figure 9.

displacement field. This is highlighted in figure 10, which compares case IV with the vortex-free
case IX. Note that the maximum magnitude of the displacement observed is about 7% of the
EGL thickness, and so within the 10% usually accepted for the small strain approximation to
be held valid for biological tissue (although a more comprehensive examination of the linear
elasticity assumption requires either experimental data or full nonlinear computations; certainly
for smaller cells, we expect the linear elasticity assumption to become a better approximation,
with the converse being true for larger cells—see the Discussion section for further comments).
We can also examine the (non-dimensional) elastic deformations at the interface, and these are
shown in figure 11 for the case where no cell is present (case IX), as well as when the cell is close
to the upper wall (case IV). We see that the presence of the cell leads to a 65% increase in the
displacements induced at the interface.

We also briefly investigate the influence of EGL thickness on the stresses exerted on the solid
wall. Figures 12 and 13 compare the elastic and fluid stress distributions in case II with ε= 0.1,
ε= 0.125, ε= 0.15, ε= 0.175 and ε= 0.2. We observe that a reduction in EGL thickness leads to
approximately proportional reductions in the elastic stresses exerted upon the wall (e.g. a 50%
reduction in EGL thickness leads to an approximately 50% drop in elastic shear). FSSs, however,
increase nonlinearly with decreasing layer thickness. Decreasing EGL thickness by 25% leads to
an approximately 20% increase in stress while changing it by 50% increases the stress by 60%.
In addition, FSS is always positive for ε≤ 0.15, which indicates that for these EGL thicknesses a
vortex is not generated.

(d) Sinuous geometry with the cell
Let us now briefly examine the changes which occur when the vessel is sinuous (Φ = π/2). We
first note from figures 14 and 15 that the magnitudes of the stresses on the walls and the cell,
from both the fluid and solid phases, are comparable with those observed in the varicose case. As
the vessel does not expand and contract with downstream distance in the manner of the varicose
vessel, the FSSs on the wall have a greater tendency to stay positive. For example, see figure 16,
which compares the flow shear stress on the upper wall when xc = (−1, 0), for both Φ = 0 (case II)
and Φ = π/2 (case VI). We see that the region of negative FSS disappears.
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Figure 11. (Non-dimensional) horizontal u1 (a) and vertical u2 (b) elastic displacements on the EGL interface: (solid lines) case
IV ; (dashed lines) case IX.
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Figure 12. Solid shear stress distribution on the rigid wall corresponding to case II: (black solid line) ε= 0.2; (dashed line)
ε= 0.175; (dotted line) ε= 0.15; (dashed-dotted line) ε= 0.125; (grey solid line) ε= 0.1.

However, if we move the cell sufficiently close to the upper layer (case VIII), figure 14d
demonstrates that negative FSS on the wall can still occur in the vicinity of the cell and is
comparable in magnitude to that observed for the varicose vessel (figure 17). If we examine this
region more closely, we see from figure 18 that there is an associated recirculation in the flow field,
and corresponding modification of the elastic displacement field. However, this is slightly offset
from the cell centre, as compared with that observed in a varicose vessel (cf. figure 7).

In terms of cell mobility, in the sinuous geometry, the cell tends to rotate more and the
translational velocity varies within a smaller range (0.68 ≤ W ≤ 0.92) than in the varicose
geometry (0.6 ≤ W ≤ 0.98).

4. Discussion
Biphasic mixture theory is widely used to model linearly poroelastic materials. The linearity of
the governing equations suggests that a boundary-integral representation is possible. However,
the traditional derivations lead to volume integrals of the terms which couple together the solid
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Figure 13. FSSdistributionon the rigidwall corresponding to case II: (black solid line)ε= 0.2; (dashed line)ε= 0.175; (dotted
line) ε= 0.15; (dashed-dotted line) ε= 0.125; (grey solid line) ε= 0.1.

Table 3. Summary of findings for the different scenarios considered, including maximum and minimum values of FSSs on the
wall (Γf (S10)), interface (Γf (S4)) and cell surface (Γf (S5)). Similarly, elastic stresses on the wall and interface (Γs(S10) and
Γs(S4), respectively). We also summarize the maximum flux of fluid into the EGL (wn).

I II III IV V VI VII VIII IX X

max{Γf (S10)} 1.1 1.4 0.8 1.1 1.6 1.3 0.8 1.4 0.9 0.7

max{Γf (S4)} 5.2 4.4 3.6 3.7 5.3 4.2 3.2 4.4 3.6 3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

min{Γf (S10)} 0.1 −0.1 0.02 −1.1 0.1 0.1 −0.02 −1.3 0.1 0.1

min{Γf (S4)} 1.2 1.2 1.1 1.2 1.4 1.4 1.0 1.4 1.2 1.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max{Γs(S10)} 5.9 6.0 4.8 4.8 6.6 5.5 4.2 4.7 4.8 4.2

max{Γs(S4)} 0.05 0.04 0.03 0.04 0.05 0.04 0.03 0.04 0.03 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

min{Γs(S10)} 1.1 0.9 0.9 0.8 1.2 1.2 0.9 0.9 1.1 1.2

min{Γs(S4)} 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max{Γc} 7.2 4.2 2.3 7.9 7.3 7.5 3.9 8.2 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max{wn} 0.026 0.05 0.013 0.07 0.05 0.04 0.013 0.069 0.013 0.012
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and fluid phases. By demonstrating how these can be converted into surface integrals, we have
been able to derive a true boundary-integral representation for biphasic mixture theory, which we
believe will have wide use and applicability.

This has allowed us to examine the elastohydrodynamics of a rigid particle negotiating a
poroelastic-lined channel of general shape, as a model for a small lymphocyte negotiating a
microvessel coated with an EGL. The EGL is believed to play an important role in transmitting
mechanical stresses to the underlying endothelial cells. Indeed, when the EGL is compromised,
it has previously been reported that the endothelial cells are less able to align with the flow
direction [5]. Numerically solving the boundary-integral representation of the biphasic mixture
theory equations, we have been able to examine the effect of vessel shape, and particle position,
upon the poroelastic dynamics of the EGL, and motility of the cell. Table 3 summarizes the
main findings. Our computations suggest that the shear stresses on the vessel wall consist of
significant contributions from the solid phase, and that this contribution increases with increased
EGL thickness. This seems to support current theories that suggest that a significant proportion of
the mechanical stress applied at the EGL interface is transferred through the solid phase (which
is consistent with another one of the EGL’s hypothesized roles in protecting the endothelial
cells from excessive FSSs) [5]. We noted that the magnitude of the wall shear stress was a
function of EGL thickness. The contribution from the solid phase was seen to decrease (almost
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Figure 14. Sinuous vessels ((a–d) cases V–VIII and (e) X, respectively): flow fields and shear stresses exerted by the flow. The
top colour bar indicates the magnitude of shear stresses on the wall, whereas the bottom colour bar indicates the magnitude
of the cell shear stresses. Corresponding translational and angular velocities are: (a) W = (0.92, 0.1), ωp = 0; (b) W =
(0.92, 0.1), ωp = 0.1; (c) W = (0.82,−0.1), ωp = 0.1; (d) W = (0.68, 0), ωp = −0.1. The region inside a dashed box in
(d) is shownmagnified in figure 18.

linearly) with decreased EGL thickness, in contrast to the contribution from the fluid phase, which
increased (nonlinearly) as the EGL became thinner. These findings have potential implications for
mechanotransduction through compromised EGLs, and the damage to the underlying endothelial
cells which might ensue as a result.
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Figure 15. Sinuous vessels ((a–d) cases V–VIII and (e) X, respectively): elastic displacements and shear stresses exerted by the
solid phase, themagnitudes ofwhich are indicated by the colour bar. The region inside the dashed box in (d) is shownmagnified
in figure 18.

In the presence of the rigid cell, we see heightened levels of wall shear from both the fluid and
elastic phases. We also find that regions of negative shear stress on the vessel wall can develop
in the immediate vicinity of the cell, when it is located relatively close to the EGL. These, in turn,
are associated with the presence of recirculating flow regions in the EGL. These recirculating flow
regions are seen to be produced more readily in the varicose vessel, where the vessel diameter
varies more rapidly. These eddies have previously been reported in the absence of a cell, however
only for much higher EGL hydraulic resistivities, and at different locations from those reported
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Figure 16. FSS distribution at particle location xc = (−1, 0), demonstrating the disappearance of negative values when the
vessel moves from a varicose shape (case II, solid line) to a sinuous shape (case VI, dashed line).
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Figure 17. FSS distribution at particle location xc = (0, 0.4), comparing the differences between the varicose (solid line) and
sinuous (dashed line) geometries, i.e. cases IV and VIII.
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Figure 18. Case VIII: (a) flow field, showing the presence of a vortex, and (b) associated elastic displacement.

here (specifically at the widest section of the microvessel [14]). The regions of recirculating flow
could be physiologically important, as they have the potential to increase the residence time of
blood components.

Following Wei et al. [14], we also examined the flux of fluid into the EGL from the lumen,
which potentially has implications for the hypothesized filtering function of the EGL [32]. As in
their work, we note the sensitivity of this flux to wall shape, which we observe to be greater in
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magnitude for a sinuous vessel than for a varicose one. However, we also observe the impact of
the cell, the presence of which can lead to an almost fivefold increase in the local flux into the EGL.

In terms of transport of the cell itself, we observe that it generally travels more rapidly
through the sinuous vessel than through the varicose one. However, the maximum speed we
observe occurs within the constrictions of the varicose vessel. It also exhibits non-negligible
angular velocity when close to the EGL, a scenario which occurs more often in the sinuous
vessel, where it consequently rotates at more locations along the length of the vessel. These
rolling motions are potentially material to lymphocyte recruitment, which forms part of the
body’s immune response. We also note that the cell experiences greater shear stresses than
the vessel walls, perhaps unsurprisingly given the expected role of the EGL in protecting the
endothelial cells from potentially harmful levels of FSS. The cell shear stresses, however, appear
to be comparable in magnitude for both shapes considered here, i.e. varicose and sinuous. For
computational convenience, we have examined the instantaneous motions of the cells at manually
specified positions in the geometry. It would, however, be interesting to track the cell’s trajectory
from some starting position. Such simulations would necessarily be very computationally
expensive, although they would enable us to determine whether certain configurations are
stable or unstable, i.e. determine the extent to which a cell close to the vessel wall remains at
this distance.

In keeping with earlier studies, we have used a relatively simple poroelastic, continuum model
(i.e. biphasic mixture theory) to encapsulate the elastohydrodynamics of the EGL, and all of its
structural complexity. It would be interesting to see whether this particular division of stress
from the fluid and solid phases holds under more complex representations of the EGL. It would
also be useful to apply our new boundary-integral representation to see how the aforementioned
elastohydrodynamics are modified in a three-dimensional setting, using biologically informed
vessel geometries, and this is work that we are currently undertaking [33]. We have also assumed
small-strain deformations of the EGL, which is legitimate provided that the cells are sufficiently
small. However, in order to gauge the range of validity of this linear elasticity assumption, and
to model situations where cells are large enough to generate displacements comparable to the
EGL thickness, it would be useful to extend the model to incorporate nonlinear elastic effects.
On a related theme, another useful extension of the model would be to consider the motion of
deformable cells, such as RBCs, through the lumen by adopting a capsule model to capture the
finite-strain mechanics of the cell [34].

Finally, there are also additional mechanisms besides elastic forces that are believed to restore
the EGL to an equilibrium configuration, following its deformation due to the passage of a
cell through a microvessel. These include oncotic processes [17], whereby a difference in the
concentration of the plasma proteins in the EGL and lumen plasma generates an oncotic pressure.
This pressure difference leads to relaxation of the EGL back to its equilibrium profile. It is
also hypothesized that mechano-electrochemical effects can play a similar role [35]. This comes
about because the EGL is believed to be hydrated by an electrolytic solution, which contains
electrostatically charged macromolecules. The changes in the charge density, which occur when
the EGL is compressed, thereby provide another restoring force. It would also be valuable to
include both of these effects into our EGL model.
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Appendix A

(a) Pressure forcing terms
Let us consider the integral corresponding to the ith component

∫
Ω

p,j(x)Sij(x, x0) dΩ =
∫
Ω

∇p · S̄i dΩ , (A 1)

where vector

S̄i =

⎧⎪⎪⎨
⎪⎪⎩

−(3 − 4ν)δij ln r + x̂ix̂j

r2 , j = 1, 2 2D,

(3 − 4ν)δij

r
+ x̂ix̂j

r3 , j = 1, 2, 3 3D,
(A 2)

x̂ = (x0 − x), and r = |x̂|. We begin by rewriting S̄i as

S̄i = ∇(x̂iβ) − 4(1 − ν)B̄i, (A 3)

where ⎧⎨
⎩
β = ln r, B̄i = δijβ, j = 1, 2 2D,

β = −1
r

, B̄i = δijβ, j = 1, 2, 3 3D.
(A 4)

Hence, ∫
Ω

∇p · S̄i dΩ =
∫
Ω

∇p · ∇(x̂iβ) dΩ − 4(1 − ν)
∫
Ω

∇p · B̄i dΩ . (A 5)

The first area integral in (A 5) can now be converted into a boundary integral by using Green’s
first identity together with the fact that pressure is harmonic (∇2p = 0),

∫
Ω

∇p · ∇(x̂iβ) dΩ = −
∫
S

x̂iβ
∂p
∂n

dl −
∫
Ω

x̂iβ∇2p dl = −
∫
S

x̂iβ
∂p
∂n

dl. (A 6)

Hence, ∫
Ω

∇p · S̄i dΩ = −
∫
S

x̂iβ
∂p
∂n

dl − 4(1 − ν)
∫
Ω

∇p · B̄i dΩ . (A 7)

We also note that

∇p · B̄i = ∇ · (pB̄i) − p∇ · B̄i = ∇ · (pB̄i) − 1
2 p∇2(x̂iβ). (A 8)

Therefore,
∫
Ω

∇p · B̄i dΩ =
∫
Ω

∇ · (pB̄i) dΩ − 1
2

∫
Ω

p∇2(x̂iβ) dΩ

= −
∫
S

pB̄i · n dl + 1
2

∫
S

(
p
∂(x̂iβ)
∂n

− x̂iβ
∂p
∂n

)
dl, (A 9)

upon application of the divergence theorem to the first integral, and Green’s second identity to the
second integral, together with the fact that pressure is harmonic. Hence, we arrive at the desired
representation of the forcing term solely in terms of boundary integrals

∫
Ω

∇p · S̄i dΩ = (1 − 2ν)
∫
S

x̂iβ
∂p
∂n

dl + 2(1 − ν)
∫
S

2pβδiknk − p
∂(x̂iβ)
∂n

dl. (A 10)
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(i) Pressure regularization

In order to regularize the pressure equation (2.27), we first rewrite it as

cf p(x0) = −
∫
−

Sm

gi(x)Qi(x, x0) ds(x) +
∫
−

Sm

(wi(x) − wi(x0))Lik(x, x0)nk(x) ds(x)

+ wi(x0)
∫
=

Sm

Lik(x, x0)nk(x) ds(x). (A 11)

The second, hyper-singular, integral can now be regularized by considering a Brinkman flow with
constant velocity V = w(x0). The corresponding pressure is given by (2.20) as

∇p = −χV , (A 12)

hence p = −χV · x and g = −pn. From the boundary-integral representation for pressure (2.27), we
obtain

Vi

∫
=

Sm

Lik(x, x0)nk(x) ds(x) = −cfχV · x0 + χVi

∫
−

Sm

xiQk(x, x0)nk(x) ds(x). (A 13)

We can further simplify the second integral on the right using Green’s third identity
∫
−

Sm

xiQk(x, x0)nk(x) ds(x) = −2
∫
−

Sm

xi

(
∂β

∂n

)
ds(x) = cf x0 · ei − 2

∫
Sm

niβ ds(x), (A 14)

where ei is the unit vector in the xi direction. Substituting (A 14) into (A 13) gives us
∫
=

Sm

Lik(x, x0)nk(x) ds(x) = −2χ
∫
Sm

niβ ds(x). (A 15)

Hence,

cf p(x0) = −
∫
−

Sm

gi(x)Qi(x, x0) ds(x)

+
∫
−

Sm

(wi(x) − wi(x0))Lik(x, x0)nk(x) ds(x) − 2χwi(x0)
∫
Sm

niβ ds(x). (A 16)

(b) Complementary flow problem
(i) Two-dimensional case

Let us consider the complementary problem

∇ · σBi = FBi , i = 1, 2, (A 17)

where FBi
j = χv

Bi
j + Sij and σBi is the Cauchy stress tensors for the fluid phase. Let us consider the

case i = 1, as the solution when i = 2 is derived similarly. Rewriting (A 17) in terms of components,
we have

∇2v1
B1 = ∂pB1

∂x1
+ χv1

B1 − (3 − 4ν) ln r + x̂2
1

r2 (A 18)

and

∇2v2
B1 = ∂pB1

∂x2
+ χv2

B1 + x̂1x̂2

r2 , (A 19)

where x̂ = (x̂1, x̂2) = x − x0; r = |x̂|. Taking the divergence of (A 18) and (A 19), we come to
Poisson’s equation for pressure,

∇2pB1 = 2(1 − 2ν)
x̂1

r2 , (A 20)

which has a solution of the form

pB1 =
(

A1 + ν − 1
2

+ A2

r2 + (1 − 2ν) ln r
)

x̂1 + ξ (x̂). (A 21)
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Here, A1, A2 are constants and ξ (x̂) is a solution to the Laplace equation ∇2p = 0. There is freedom
in the choice of values A1, A2 and ξ , as, for our purposes, we can choose any boundary conditions
to (A 18) and (A 19). Choosing A1 = 1

2 − ν, A2 = 0, ξ = 0, we come to the particular solution for
pressure,

pB1 = (1 − 2ν)x̂1 ln r. (A 22)

Substituting the expression for pressure (A 22) into (A 18) and (A 19) and solving, we obtain

v
B1
1 = 1 − ν

χ

[
2 ln η − 2 ln

√
χ + C1I0(η) + C2K0(η) − 1

+
(

1 − 4
η2 + C1I2(η) + C2K2(η)

)(
1 − 2x̂2

1
r2

)]
(A 23)

and

v
B1
2 = −2

(1 − ν)
χ

(
1 − 4

η2 + C̃1I2(η) + C̃2K2(η)
)

x̂1x̂2

r2 . (A 24)

Here, η= √
χr, Iα(η) and Kα(η) are the modified Bessel functions of the first and second kind,

respectively. The solution consists of two parts, namely a general solution of the homogeneous
equation and a particular solution. The homogeneous part contains constants that need to be
chosen to remove any algebraic singularities at r = 0. Analysing the small-scale behaviour of Kα(η)
gives [36]

K0(η) = − ln
η

2
− γ + O(η2) ≈ − ln

η

2
− γ , ηK1(η) = 1 + O(η2) ≈ 1

and K2(η) = 2
η2 − 1

2
+ O(η2) ≈ 2

η2 − 1
2

,

⎫⎪⎪⎬
⎪⎪⎭ (A 25)

γ = 0.57721 . . . is the Euler–Maschelroni constant. As a consequence, choosing the constant
C1 = C̃1 = 0, C2 = C̃2 = 2 leads to the following solution to the complementary problem:

v
B1
1 = 1 − ν

χ

[
2 ln η − 2 ln

√
χ + 2K0(η) − 1 +

(
1 − 4

η2 + 2K2(η)
)(

1 − 2x̂2
1

r2

)]
(A 26)

and

v
B1
2 = −2

(1 − ν)
χ

(
1 − 4

η2 + 2K2(η)
)

x̂1x̂2

r2 , (A 27)

which is non-singular as vB
1 → (1 − ν)(2 ln 2 − 2 ln

√
χ − 2γ − 1)/χ and vB

2 → 0 as r → 0.
The final solutions for both terms, FB1 and FB2 , can be written as

v
Bi
i = 1 − ν

χ

(
ψ − 1 + ϕ

(
1 − 2x̂2

i
r2

))
, v

Bj

i = −2(1 − ν)ϕ
x̂1x̂2

χr2 and pBi = (1 − 2ν)x̂i ln r, (A 28)

where

ϕ(η) = 1 − 4
η2 + 2K2(η), ψ(η) = 2 ln η − 2 ln

√
χ + 2K0(η),

ϕ(η)′xi
= ∂ϕ(η)/∂xi

∂xi
= 2x̂i

r2 (−ϕ(η) + 1 − ηK1(η)), ψ(η)′xi
= ∂ψ(η)/∂xi

∂xi
= 2x̂i

r2 (1 − ηK1(η)),



25

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140955

...................................................

and the notation Bi relates to the solution corresponding to the FBi term. This has an associated
stress tensor (i, j = 1 . . . 2, i �= j)

σ
Bi
ii = −(1 − 2ν)x̂i ln r + 2

1 − ν

χ

[
ψ(η)′xi

+ ϕ(η)′xi

(
1 − 2x̂2

i
r2

)
+ ϕ(η)

(
−4x̂i

r2 + 4x̂3
i

r4

)]
, (A 29)

σ
Bj

ji = σ
Bj

ij = (1 − ν)
χ

[
ψ(η)′xi

+ ϕ(η)′xi

(
1 −

2x̂2
j

r2

)
− 2ϕ(η)′xj

x̂1x̂2

r2 + ϕ(η)

(
8x̂2

j x̂i

r4 − 2x̂i

r2

)]
(A 30)

and σ
Bj

ii = −(1 − 2ν)x̂j ln r − 4(1 − ν)
χ

[
ϕ(η)′xi

x̂1x̂2

r2 + ϕ(η)

(
x̂j

r2 − 2x̂jx̂2
i

r4

)]
. (A 31)

For small r, we have

ϕ(η) = O(η2), ψ(η) = 2(ln 2 − ln
√
χ − γ ) + O(η2), ϕ(η)′xi

= O(η) and ψ(η)′xi
= O(η). (A 32)

It can be seen by substituting (A 32) into (A 28)–(A 31) that the resulting solutions are bounded
functions in the neighbourhood of r = 0. Hence, flow velocities and stresses are non-singular and
the integrals (2.33) are proper.

(ii) Three-dimensional case

For the complementary problem (A 17) corresponding to the three-dimensional case, we
have FBi

j = χvBi
j + Sij, S = (3 − 4ν)δij/r + x̂ix̂j/r3, i, j = 1, 2, 3. Let us consider first the problem

corresponding to the vector FB1 . The resulting equations are as follows (i = 1, 2, 3):

∇2v
B1
i = ∂pB1

∂xi
+ χv

B1
1 + (3 − 4ν)

r
δi1 + x̂1x̂i

r3 . (A 33)

Taking the divergence of (A 33) and using incompressibility, we obtain

∇2pB1 = (2 − 4ν)
x̂1

r3 , (A 34)

which has a solution of the form

pB1 = −(1 − 2ν)
x̂1

r
. (A 35)

Substituting (A 35) into (A 33), we obtain (i = 1, 2, 3)

∇2v
B1
i − χv

B1
i = (2 − 2ν)

(
x̂1x̂i

r3 + δi1

r

)
. (A 36)

Let us first consider equation (A 36) when i = 1. To solve this equation, we consider the solution
in the form

v
B1
1 = (2 − 2ν)(vI

1 + vII
1 ), (A 37)

where

∇2vI
1 − χvI

1 = 4
3r

, ∇2vII
1 − χvII

2 = x̂2
1

r3 − 1
3r

. (A 38)

Introducing spherical coordinates x̂1 = r sin θ cosφ, x̂2 = r sin θ sinφ, x̂3 = r cos θ , centred on x0,
and seeking a solution for vI

1 that depends upon r alone we come to the equations

∂2vI
1

∂r2 + 2
r
∂vI

1
∂r

− χvI
1 = 4

3r
(A 39)

and

∂2vII
1

∂r2 + 2
r
∂vII

1
∂r

+ cos θ
r2 sin θ

∂vII
1

∂θ
+ 1

r2

∂2vII
1

∂θ2 + 1

r2 sin2 θ

∂2vII
1

∂φ2 − χvII
1 = 1

r

(
sin2 θ cos2 φ − 1

3

)
. (A 40)
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The solution to equation (A 39) has the form

vI
1 = CI

1
e−√

χr

r
+ CI

2
e
√
χr

r
− 4

3χr
. (A 41)

The solution to equation (A 40) can be represented in the form

vII
1 = f (r)(sin2 θ cos2 φ − 1

3 ). (A 42)

By substitution of (A 42) into (A 40), we obtain the equation for unknown function f (r)

f ′′ + 2
r

f ′ −
(
χ + 6

r2

)
f = 1

r
, (A 43)

where f ′ = df (r)/dr. Solving equation (A 43), we find an expression for the function f (r)

f (r) = CII
1

e−√
χr (χr2 + 3

√
χr + 3

)
r3 + CII

2
e
√
χr (χr2 − 3

√
χr + 3

)
r3 − (χr2 − 6)

r3χ2 . (A 44)

According to (A 37), we can write the solution expressed in Cartesians as

1
2 − 2ν

v
B1
1 = CI

1
e−√

χr

r
+ CI

2
e
√
χr

r
− 4

3χr
+
(

x̂2
1

r2 − 1
3

)

×
[

CII
1

e−√
χr(χr2 + 3

√
χr + 3)

r3 + CII
2

e
√
χr(χr2 − 3

√
χr + 3)

r3 − χr2 − 6
r3χ2

]
. (A 45)

In the complementary problem, we do not have any boundary or initial conditions, so the
constants to be taken are arbitrary. Let us set CI

2 = CII
2 = 0, CI

1 = 4/(3χ ) and CII
1 = −2/χ2. This

choice is dictated by the fact that the final solution is bounded for large r or χ and it does not
contain a strong singularity as

√
χr → 0. As a result, the final solution can be expressed as

v
B1
1 = 2 − 2ν

χ

[
1
r

(A(η) − 1) + x̂2
1

r3 (B(η) − 1)

]
, (A 46)

where (η= √
χr)

A(η) = 2e−η
(

1 + 1
η

+ 1
η2

)
− 2
η2 , B(η) = −2e−η

(
1 + 3

η
+ 3
η2

)
+ 6
η2 . (A 47)

Similarly, we can find the solution to problems (A 36) when i = 1, 2,

v
B1
2 = (2 − 2ν)x̂1x̂2

χr3 (B(η) − 1) and v
B1
3 = (2 − 2ν)x̂1x̂3

χr3 (B(η) − 1). (A 48)

Summarizing, we can write the solution for the full complementary problem

v
Bi
j = 2 − 2ν

χ

[
1
r

(A(η) − 1)δij + x̂ix̂j

r3 (B(η) − 1)

]
. (A 49)
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