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A B S T R A C T   

Wearable technology is an emerging method for the early detection of coronavirus disease 2019 (COVID-19) 
infection. This scoping review explored the types, mechanisms, and accuracy of wearable technology for the 
early detection of COVID-19. This review was conducted according to the five-step framework of Arksey and 
O’Malley. Studies published between December 31, 2019 and December 15, 2021 were obtained from 10 
electronic databases, namely, PubMed, Embase, Cochrane, CINAHL, PsycINFO, ProQuest, Scopus, Web of Sci-
ence, IEEE Xplore, and Taylor & Francis Online. Grey literature, reference lists, and key journals were also 
searched. All types of articles describing wearable technology for the detection of COVID-19 infection were 
included. Two reviewers independently screened the articles against the eligibility criteria and extracted the data 
using a data charting form. A total of 40 articles were included in this review. There are 22 different types of 
wearable technology used to detect COVID-19 infections early in the existing literature and are categorized as 
smartwatches or fitness trackers (67%), medical devices (27%), or others (6%). Based on deviations in physio-
logical characteristics, anomaly detection models that can detect COVID-19 infection early were built using 
artificial intelligence or statistical analysis techniques. Reported area-under-the-curve values ranged from 75% to 
94.4%, and sensitivity and specificity values ranged from 36.5% to 100% and 73% to 95.3%, respectively. 
Further research is necessary to validate the effectiveness and clinical dependability of wearable technology 
before healthcare policymakers can mandate its use for remote surveillance.   

1. Introduction 

Scientists have begun to unravel the complexities of the coronavirus 
disease 2019 (COVID-19) virus, and the end of the pandemic is nowhere 
in sight as highly resistant variants continue to emerge (Fontanet et al., 
2021). Asymptomatic infections remain a challenge for disease control 
(Gao et al., 2021; Neamah, 2020) and the effectiveness of vaccines have 
evidently waned in the face of the most recent omicron variant (Call-
away, 2021). Studies have shown numerous cases of reinfection (Ren 
et al., 2022) and technological advances assisting in COVID-19 recovery 
also remain inchoate (Islam et al., 2020a; Islam et al., 2020b). The recent 
discovery of the COVID-19 treatment pill cannot be regarded as a 
panacea as its efficacy is limited to the early stages of infection. The 
mutagenic potential of the virus may also give rise to highly resistant 
variants (Singh et al., 2021). With the omnipresence of COVID-19, 
developing a detection system that can identify the infection before 
symptom onset or among asymptomatic carriers is imperative to stop the 
domino effect of the disease (Hashmi and Asif, 2020). 

Contact tracing, symptom screening, and routine testing are current 
COVID-19 public health surveillance methods (World Health Organi-
zation, 2020). Manual contact tracing is labor intensive and the efficacy 
of digital contact tracing depended on substantial user uptake, which is 
difficult to achieve (Shahroz et al., 2021). Older age groups may also 
struggle with its navigation (Grekousis and Liu, 2021). Meanwhile, daily 
symptoms screening mandated by workplaces and schools is subject to 
respondents’ truthful reporting (Ruffini et al., 2021) and may not be 
reliable due to asymptomatic and pre-symptomatic presentations 
(Callahan et al., 2020). Moreover, the wide variety of atypical symptoms 
makes it difficult to distinguish a COVID-19 infection (Baj et al., 2020). 

To address this ambiguity, routine reverse transcription polymerase 
chain reaction (RT-PCR) testing is mandated in high-risk settings such as 
healthcare institutions (Hellewell et al., 2021). However, RT-PCR 
testing is unviable in some countries owing to its long turnaround 
time and trained personnel are required to perform nasal swabs safely 
(Peeling et al., 2021). The development of antigen rapid tests (ARTs) 
provide an inexpensive self-test kits with a faster turnaround time, but 
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are less accurate (Peeling et al., 2021). RT-PCR tests and ARTs are also 
invasive and cause discomfort for the users (Kinloch et al., 2020). Hence, 
other detection approaches such as wearable devices are needed to 
remedy the aforementioned shortcomings. Besides noticeable COVID-19 
symptoms, an infection can be identified through changes in physio-
logical characteristics, such as heart rate variability (Hasty et al., 2021), 
oxygen saturation (Teo, 2020), respiration rate (Natarajan et al., 2020), 
and arrhythmia (Öztürk et al., 2020). With such knowledge, detection 
methods should ideally be able to establish a baseline pattern unique to 
an individual and identify deviations related to an infection (Radin 
et al., 2021). This process can be facilitated through continuous moni-
toring and automation, which can be realized with wearable devices 
(Metcalf et al., 2016; Natarajan et al., 2020; Yetisen et al., 2018). 

Wearable technology refers to electronic devices that are worn on 
various parts of the body or built into clothing or accessories. It lever-
ages on the miniaturization of sensors and integration of network con-
nectivity and predictive analytics to capture, transmit, and analyze 
biometric information automatically (Yetisen et al., 2018). With its 
ability to generate real-time measurements continuously, wearable 
technology requires minimal involvement from users and healthcare 
professionals, thereby minimizing viral transmission (Metcalf et al., 
2016). Unlike other types of surveillance methods, wearable technology 
can tailor reliable predictions for an individual by gathering multiple 
physiological characteristics unobtrusively (Metcalf et al., 2016). The 
burgeoning use of wearable technology can be attributed to its multi-
functional and versatile application (Wright and Keith, 2014). Although 
predominantly used for fitness tracking, the healthcare sector witnessed 
a proliferation of wearable technology owing to its medical application 
(Bonato, 2010; Cheung et al., 2019; Iqbal et al., 2021; Yetisen et al., 
2018). Before the pandemic, wearable technology was used for the 
detection of other illnesses such as neurological disorders, cardiovas-
cular and respiratory diseases (Lu et al., 2020). 

A recent review recommended the usage of telehealth systems and 
technology during pandemic to prevent and avoid Covid-19 infection 
and wearable technology shows potential primarily as a screening and 
surveillance tool capable of disrupting the ripple effect of COVID-19 
(Ullah et al., 2021). Types, mechanisms, and accuracy are relevant as-
pects to consider when examining the feasibility of deploying wearable 
technology for the early detection of COVID-19 in real-world settings 
(Radin et al., 2021). Hardware components including their form factor 
and placement, can influence the accuracy of gathered physiological 
metric measurements and users’ comfort (Davies et al., 2020; Park et al., 
2019), which may affect the adoption of wearable technology (Li et al., 
2016). The mechanism used in the technology may also influence 
detection accuracy and the credibility of its results (Radin et al., 2021). 
Furthermore, poor or overoptimistic accuracy results may undermine 
the applicability of wearable technology in real-world settings (Radin 
et al., 2021). 

Reviews specific to the early detection of COVID-19 via remote 
monitoring using wearable technology are limited due to its novelty. 
The available reviews (Islam et al., 2020a; Islam et al., 2020b; Santos 
et al., 2021; Vindrola-Padros et al., 2021) reported using wearable 
technology used to support and monitor deterioration in COVID-19 
infected patients. Other reviews (Channa et al., 2021; De Fazio et al., 
2021; Ding et al., 2021; Islam et al., 2020a; Mirjalali et al., 2021) 
involving early detection of covid-19 using developing wearable tech-
nology have not been tested on real-life subjects. The review done by 
Anglemyer et al. (2020) focused on the digital contact tracing aspect of 
wearable technology, while Channa et al. (2021) examined the potential 
application of wearable technology in the COVID-19 pandemic in gen-
eral. However, such reviews demonstrate methodological gaps, specif-
ically, their search strategy was incomprehensive, limited to only three 
databases (Channa et al., 2021), and did not include grey literature 
(Anglemyer et al., 2020). 

Given the novelty of this topic, the available evidence is complex and 
diverse. Hence, a scoping review methodology is suitable to map the 

available evidence and identify the existing gaps in knowledge for 
subsequent systematic reviews (Munn et al., 2018). As more research on 
this topic is envisaged, the findings of this review can elucidate and 
provide insights on the available evidence for ensuing reviews (Munn 
et al., 2018). This scoping review aims to map out the (1) types of 
wearable technology for the early detection of COVID-19 infection, (2) 
mechanisms, and (3) detection accuracy. 

2. Methods 

This scoping review was performed in accordance with the five-step 
framework of Arksey and O'Malley (2005). As this work is a scoping 
review, the quality of included papers was not appraised critically 
(Arksey and O'Malley, 2005). Instead, a broad overview of the use of 
wearable technology for the early detection of a COVID-19 infection is 
presented. The results of the search are presented according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
Extension for Scoping Reviews (PRISMA-ScR) checklist (Table S1) 
(Tricco et al., 2018). This protocol is registered in the Open Science 
Framework registries (https://osf.io/2v6qc). 

2.1. Identifying the research questions 

Based on the population, concept, context (PCC) mnemonic recom-
mended for scoping reviews (Peters et al., 2020), the population of this 
review was the general worldwide population affected by the COVID-19 
pandemic. The details of the eligibility criteria are presented in Table S2. 
The concept of interest was the types, mechanisms, and accuracy of 
currently available wearable technology for the early detection of 
COVID-19 infection in the context of the COVID-19 pandemic. In 
accordance with the PCC framework, the specific review questions are as 
follows:  

(1) What types of currently available wearable technology are used 
to detect COVID-19 infection early?  

(2) How do the mechanisms of wearable technology enable the early 
detection of COVID-19 infection?  

(3) How accurate is wearable technology in detecting COVID-19 
infection? 

2.2. Identifying relevant studies 

A three-step search strategy recommended by the Joanna Briggs 
Institute (JBI) was utilized for a comprehensive search (Peters et al., 
2017). First, a preliminary search of PubMed clinical queries and the 
Cochrane Database of Systematic Reviews was conducted using search 
terms such as “wearable technology” and “COVID-19,” but no scoping 
reviews on this topic were identified. The gaps in similar systematic 
reviews were evaluated previously. The text words and index terms used 
in the titles and abstracts of the retrieved papers were also analyzed. 

Second, the identified keywords and index terms were refined and 
used across all the databases and grey literature sources. The Peer Re-
view of Electronic Search Strategies checklist was used to guide the 
electronic literature search strategy (McGowan et al., 2016). An expe-
rienced science librarian was engaged to check the search strategy 
(Table S3), which included all the identified keywords and index terms 
adopted according to the utilized database or information source. The 
final search terms used were “wearable technology,” “wearable elec-
tronic devices,” “wearable sensors,” “COVID-19,” and “SARS-CoV-2.” No 
language restrictions were imposed. Studies published between 
December 31, 2019, when COVID-19 was first discovered, and 
December 15, 2021 were included. Published and unpublished studies 
were searched across 10 electronic databases, namely, PubMed, Embase, 
Cochrane, CINAHL, PsycINFO, ProQuest, Scopus, Web of Science, IEEE 
Xplore, and Taylor & Francis Online. Sources of the unpublished studies 
or grey literature included ProQuest Dissertation & Theses, 
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ClinicalTrials.gov, and Google Scholar. 
Third, the reference lists of all the included articles were screened to 

obtain additional studies. A manual search was also performed to find 
key journals related to wearable technology and COVID-19 (i.e., Sensors, 
Nature Medicine, Frontiers in Digital Health, The Lancet, The Lancet Digital 
Health, and The Lancet Infectious Diseases). 

2.3. Study selection 

After the database search, all the identified records were uploaded to 
EndNote X20 (The EndNote Team, 2020), and the duplicate articles 
were removed. Articles were included if they described a (1) type of 
currently available wearable technology that will be or was used in 
experiments on real-life subjects who developed COVID-19 or are 
COVID-19 positive and/or (2) its mechanism and/or (3) accuracy in the 
early detection of COVID-19 infection and (4) only one primary study 
and its study design. Articles were excluded if they (1) described the 
potential application of wearable technology for the early detection of 
COVID-19 infection or wearable technology that will not be or was not 
used in experiments on real-life subjects who developed COVID-19 or 
are COVID-19 positive (e.g., simulated prototypes or tested only on 
healthy individuals) or did not describe its (2) mechanisms or (3) ac-
curacy for COVID-19 early detection, (4) were not about the early 
detection of COVID-19 (e.g., point-of-care diagnosis of COVID-19 or 
monitoring of COVID-19 patients), or (5) described more than one pri-
mary study (e.g., reviews) or did not describe the primary study design 
(e.g., news, perspectives, and editorials). A pilot test was performed by 
the two reviewers on 10 articles to refine the eligibility criteria. Both 
reviewers independently screened the titles and abstracts, followed by 
the full texts, against the eligibility criteria. Disagreements between the 
reviewers at each stage of the selection process were resolved by 
reaching a consensus. 

2.4. Charting the data 

The data were charted on a data collection form jointly developed by 
both reviewers, adapted from the JBI methodology guidance for scoping 
reviews (Peters et al., 2020). The data items were selected based on the 
review questions and categorized as study details (e.g., authors’ names, 
year of publication, study design, name of study, clinical trial number, 
and aim of study), population (study population, sample size, and 
geographical region of study), wearable technology type (name, place-
ment, form factor, FDA status, type of sensor, and type of physiological 
measurements gathered), wearable technology mechanism (name of all 
mechanisms, best mechanism, type of best mechanism, ability to 
distinguish COVID-19 from similar diseases, data used, and data prep-
aration techniques), and wearable technology accuracy (reference test 
used, accuracy measures, and values). The two independent reviewers 
pilot tested the form on five randomly selected articles, and amendments 
were made before its use. The two reviewers independently charted the 
data using Microsoft Excel before making comparisons. Disagreements 
were resolved through discussions. Finally, the data were presented as 
visual representations, tables, and narrative syntheses. 

3. Results 

3.1. Study selection and characteristics 

A total of 874 articles were identified from the 10 electronic data-
bases. Thereafter, 299 articles were removed using EndNote X20 (The 
EndNote Team, 2020). The titles and abstracts of 575 articles were 
screened against the eligibility criteria, and the full text of 77 articles 
was retrieved and assessed against the eligibility criteria. An additional 
38 full-text articles were retrieved from the grey literature sources, 
reference lists, and key journals. Subsequently, 75 articles were 
excluded (Table S4); thus, 40 articles from the electronic databases and 

other sources were included (Table S5 and Fig. S1). The selection pro-
cess using the PRISMA flow diagram is presented in Fig. 1. 

Table 1 summarizes the characteristics of the selected articles. Most 
of the included articles were developmental papers (n = 16) and clinical 
trials (n = 11). The study designs were predominantly observational (n 
= 34), specifically, cohort studies (n = 24). The studies mainly involved 
participants from the United States (n = 26). Among the articles that 
reported on the wearable technology mechanism (n = 18), the majority 
had a sample size of less than 1000 individuals (n = 12). 

3.2. Review question 1: What types of currently available wearable 
technology are used to detect COVID-19 infection early? 

A total of 22 types of wearable technology were identified and 
categorized as smartwatches or fitness trackers (SOFTs), medical de-
vices, or others (Fig. 2). SOFTs with FDA clearance were not classified as 
medical devices, as only their mobile application features received 
clearance. Technology that was not SOFT or a medical device was 
classified as “others.” Among the different types of wearable technology, 
SOFTs were the most frequently used (67%; Fig. 3). SOFTs and “others” 
were predominantly placed on the wrist (90%) and suprasternal notch 
(100%), respectively, whereas a variety of placement positions (chest, 
axillary, upper arm, waist, and wrist; Table S6) were described for the 
medical devices. The medical devices and “others” were mainly in patch 
form (58%), while the SOFTs were in strap form (90%). The embedded 
sensors in wearable technology enable the remote monitoring of phys-
iological changes that serve as potential indicators of a COVID-19 
infection (Fig. 2). On average, the “others” (mean = 6.5) gathered the 
most types of physiological characteristics, followed by the SOFTs 
(mean = 6.1) and medical devices (mean = 4.1; Fig. S2 and Table S7). 

3.3. Review question 2: How do the mechanisms of wearable technology 
enable the early detection of COVID-19 infection? 

The mechanisms reported in 18 articles focused on anomaly detec-
tion (Table 2). The process for developing the anomaly detection models 
(ADMs) included data extraction, data preparation, and model training, 
testing, and comparison (Fig. 4). 

3.3.1. Data extraction 
As the wearable technology data were obtained mainly from SOFTs 

(n = 17) and only one device (n = 14), the ADMs were generally not 
device-agnostic (Table 2). Some of the ADMs also combined self- 
reported symptoms with data collected from the wearable technology. 
Hirten et al. (2021), Natarajan et al. (2020), Smarr et al. (2020), and 
Sarwar and Agu (2021) used only wearable technology data from 
COVID-19 positive individuals to develop their ADM. 

3.3.2. Data preparation and model training, testing, and comparison 
Subsequently, the raw data obtained underwent data cleaning. 

Instead of using automated feature extraction or feature selection 
techniques, most of the features were manually selected (n = 12). The 
basis of selection was either knowledge from another study or not stated. 
On average, only two physiological characteristics were used to develop 
the ADM (Table 2), among which heart rate variation was the most 
common (46.3%; Fig. S3). Data augmentation was rarely employed to 
increase the amount of the available data (n = 4). Internal validation 
was frequently used to split the dataset into training and validation sets 
(n = 13). Conversely, only Nestor et al. (2021) conducted external 
validation by testing the ADM on a new dataset independent of the 
dataset used for the internal validation. The performance of the ADMs 
was evaluated and compared based on their COVID-19 detection 
accuracy. 

3.3.3. Best performing models 
Majority of the best performing ADMs utilized artificial intelligence 
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38 Full-text Articles assessed 
for eligibility 

23 Articles excluded: 
 

Potential applications of WT 
that will not be or have not 
been experimented on real-life 
subjects that develop COVID-
19 or are COVID-19 positive 
(n=15) 
 
Did not describe WT type, 
mechanism, or accuracy (n=2) 
 
Not specific to the early 
detection of COVID-19 (n= 4) 
 
Reviews (n=1) 
 
Perspective (n=1) 

52 Articles excluded: 
 
Potential applications of WT that 
will not be or have not been 
experimented on real-life subjects 
that develop COVID-19 or are 
COVID-19 positive (n=27) 
 
Did not describe WT type, 
mechanism, or accuracy (n=3) 
 
Not specific to the early detection 
of COVID-19 (n=6) 
 
Did not use WT (n=1) 

 
Reviews (n=9) 
 
News/perspective/editorial (n=6) 

44 Full-text articles to be retrieved 
ClinicalTrials.Gov  (n = 12) 
Google Scholar  (n = 30) 
Handsearching  (n=1) 
Reference list    (n = 1) 

Articles not 
retrieved (n = 6) 

40 Articles included in review 

83 Full-text articles to be retrieved  Articles not retrieved (n = 6) 

77 Full-text articles assessed for 
eligibility  

Fig. 1. PRISMA 2020 flow diagram of study retrieval and selection process. 
Note: ECG = electrocardiography and PPG = Photoplethysmography. 
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Table 1 
Characteristics of the included 40 articles.  

No. Author (year) Country/Region Study Design Population (Sample Size) Wearable Technology 

1. Alavi et al. (2021) United States/America Prospective 
cohort study 

COVID-19 +ve and -ve individuals and untested 
individuals (N = 3316) 

Fitbit, Apple watch 

2. Bogu and Snyder 
(2021) 

United States/America Retrospective 
cohort study 

COVID-19 +ve and -ve individuals and untested 
individuals and healthy individuals (N = 106) 

Fitbit 

3. Brakenhoff et al. 
(2021) 

The Netherlands/Europe Clinical trial 
registered 
protocol 

Residents of Netherlands (N = 20,000) Ava 

4. Choi (2021) United States/America Prospective 
cohort study 

Students at the University (N = 2, 494) Fitbit, TempTraq 

5. Choi (2021) United States/America Prospective 
cohort study 

Healthcare workers at Michigan Medicine (N = 226) Fitbit 

6. Chung et al (2020) China/Asia Prospective 
cohort study 

Healthcare professionals and college students in 
quarantine (N = 287) 

HEARThermo 

7. Cislo et al (2021) United States/America Prospective 
cohort study 

College students at the University of Michigan (N =
2158) 

Fitbit 

8. Cleary et al (2021) United States/America Prospective 
cohort study 

COVID-19 +ve and -ve medical interns (N = 105) Fitbit, Apple watch 

9. Clingan et al (2021) United States/America Observational 
study protocol 

Healthcare workers at Michigan Medicine (N = 226) Fitbit, TempTraq 

10. ClinOne (2021) United States/America Clinical trial 
registered 
protocol 

All adult subjects seeking a COVID-19 test (N =
2352) 

BioSticker 
(BioIntelliSense) 

11. D’Haese et al (2021) United States/America Pilot study Front-line healthcare workers (N = 867) Oura 
12. Evidation Health 

(2020) 
United States/America Clinical trial 

registered 
protocol 

Adult participants (ages 18+) (N = 847) Empatica E4 

13. Gadaleta et al. 
(2021) 

United States/America Prospective 
cohort study 

Participants with self-reported result for a COVID-19 
swab test (N = 1131) 

Fitbit, Apple watch 

14. Gielen et al (2021) United States/America Case report Biostrap users who have tested positive for SARS- 
CoV-2) (N = 2) 

Biostrap 

15. Hassantabar et al. 
(2021) 

Italy/Europe Retrospective 
cohort study 

Healthy individuals, COVID-19 positive individuals 
(N = 87) 

Empatica E4 

16. Hirten et al. (2021) United States/America Prospective 
observational 
study 

COVID-19 +ve and -ve health care workers (N =
297) 

Apple watch 

17. Hung (2020) China/Asia Clinical trial 
registered 
protocol 

Asymptomatic subjects with close COVID-19 contact 
(N = 200-1000) 

Everion 

18. Imperial College 
London (2020) 

United Kingdom/Europe Clinical trial 
registered 
protocol 

Returning traveler from airport with mild symptoms 
of Covid-19 (N = 200) 

SensiumVitals 

19. Iqbal et al. (2021) United Kingdom/Europe Pilot study Individuals arriving to London with mild suspected 
COVID-19 symptoms (N = 14) 

SensiumVitals 

20. Jayaraman (2020) United States/America Clinical trial 
registered 
protocol 

Individuals who may have experienced COVID-19 
like symptoms (N = 100) 

ADAM sensor 

21. King's College 
London (2020) 

United Kingdom/Europe Clinical trial 
registered 
protocol 

Healthy healthcare workers who work in high-risk 
COVID-19 areas (N = 60) 

Empatica E4 

22. Liu et al (2021) Not reported/Europe Retrospective 
cohort study 

Participants with multiple sclerosis with COVID-19 
symptoms (N = 87) 

Fitbit 

23. Lonini et al (2020) United States/America Pilot study Inpatient and home-quarantining COVID +ve 
individuals and healthy individuals (N = 29) 

Soft-wearable 

24. Miller et al (2020) Australia/Oceania Retrospective 
cohort study 

Individuals with COVID-19 +ve (N = 271) WHOOP 

25. Mishra et al. (2020) United states/North America Retrospective 
cohort study 

Participants with COVID-19 diagnosis (N = 125) Fitbit 

26. Natarajan et al. 
(2020) 

United States/America Retrospective 
cohort study 

Subjects diagnosed with COVID-19 (N = 2, 745) Fitbit 

27. Nestor et al. (2021) United States/America Retrospective 
cohort study 

Influenza individuals and COVID-19 +ve individuals 
(N = 32,198) 

Fitbit 

28. Polsky and Moraveji 
(2021) 

United States/America Case reports Patients with COVID-19 (N = 3) Health Tags (Spire 
Health) 

29. Quer et al (2021) United States/America Prospective 
cohort study 

COVID-19 +ve and -ve individuals and untested 
individuals (N = 30, 529) 

Fitbit, Apple watch 

30. Sarwar and Agu 
(2021) 

United States/America Retrospective 
cohort study 

COVID-19 positive individuals (N = 20) Fitbit 

31. Scripps 
Translational 
Science Institute 
(2020) 

United States/America Clinical trial 
registered 
protocol 

United States residents with any connected wearable 
devices (N = 100,000) 

Fitbit, Apple watch, 
Garmin Vivosmart 4, 
Oura, 

32. Shapiro et al (2020) United States/America Retrospective 
cohort study 

Participants with self-reported diagnosed COVID-19 
cases, non-COVID-19 flu cases and pre-COVID-19 flu 
(N = 1, 352) 

Fitbit 

(continued on next page) 
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(n = 13), and few employed statistical analysis (Table 2). Artificial in-
telligence was categorized as machine learning; its subset, deep 
learning; and others (Fig. 4). For supervised machine learning, the 
datasets were generally labeled as infectious and healthy periods to train 
the algorithms to identify periods of COVID-19 infection. However, the 
infectious period varied between the articles. Instead of labeling the 
data, unsupervised machine learning segmented the data into infectious 
and noninfectious periods. Autoencoders were trained to reconstruct the 
wearable technology data from noninfectious periods. Hence, the high 
reconstruction error when tested on data from infectious periods was 
used to determine a COVID-19 infection. Statistical analysis determined 
deviations from baseline values through statistical calculations. Large 
variations from the baseline values were indicative of an infection. Apart 
from discerning COVID-19 infection, attempts to distinguish COVID-19 
infection from differential diagnoses such as vaccination side effects 
(Alavi et al., 2021) and influenza-like illnesses, were scarce (n = 3). 

3.4. Review question 3: How accurate is wearable technology in detecting 
COVID-19 infection? 

The lack of validation standards was observed among the wearable 
technology used for the early detection of COVID-19. As mentioned 
previously, the samples used across the articles to develop and test the 
ADMs had differing characteristics. Moreover, FDA clearances were not 
specific to COVID-19 detection. The accuracy results reported across 15 
articles revealed inconsistent reference tests used, such as self-reported 
symptom onset, COVID-19 diagnosis, or both (Table 3). The accuracy 
measures were also heterogenous. The area-under-the-curve (AUC) 
values ranged from 75% to 94.4%, and the specificity values were 
generally higher than the sensitivity values. Furthermore, a third of the 
reported sensitivity values was close to or less than 50%. 

4. Discussion 

4.1. Summary of results 

In this scoping review, 22 types of wearable technology were iden-
tified from 40 articles and categorized as SOFTs, medical devices, and 
others. The medical devices had diverse placement positions on different 
parts of the body, while the “other” devices gathered the most physio-
logical characteristics. Nonetheless, the SOFTs were the most frequently 

used. The mechanisms reported in 18 articles focused on anomaly 
detection, and the best performing models utilized artificial intelligence 
and statistical analysis. Generally, the ADMs were not device-agnostic 
and could not distinguish a COVID-19 infection with its differential di-
agnoses. Furthermore, shortcomings in data preparation were identi-
fied, such as manual feature selection, few selected features, and 
infrequent use of data augmentation and external validation methods. 
The accuracy results reported in 15 articles revealed inconsistent 
reference tests used and heterogenous accuracy measures. Thus, the lack 
of validation standards for the early detection of COVID-19 was 
observed among the devices. The use of wearable technology for the 
early detection of COVID-19 is nascent, evident from the predominance 
of developmental papers and ongoing trials. The study characteristics 
revealed the underrepresentation of geographic regions beyond the 
United States and small sample sizes. 

4.2. Wearable form and physiological characteristics 

This review found that beyond the wrist, the placement of medical 
devices on other parts of the body can enhance measurement accuracy 
for certain physiological characteristics. Wrist placements are affected 
by motion artefacts and ambient light interference (Kamǐsalić et al., 
2018). Likewise, skin temperature monitoring at the axilla and chest is 
less affected by the ambient environment and can better reflect the core 
temperature than the wrist (Kamǐsalić et al., 2018; Tamura et al., 2018). 
Central locations such as the waist and chest are also ideal for acceler-
ometer and gyroscope sensors to encapsulate whole-body movement 
(Bayoumy et al., 2021; Yang and Hsu, 2010). Electrocardiography (ECG) 
sensors are the gold standard for measuring cardiac arrhythmias and are 
typically placed on the chest (Zeagler, 2017). and photo-
plethysmography (PPG) were used to detect abnormalities in heart 
rhythm and respiratory rate and oxygen saturations (Bayoumy et al., 
2021; Charlton et al., 2018; Kamǐsalić et al., 2018). 

Owing to its unique placement at the suprasternal notch, the “other” 
wearable technology could gather additional physiological characteris-
tics, especially cough sounds. Its anatomical proximity to the throat 
enables mechano-acoustic sensing for cough detection (Lee et al., 2020). 
Nevertheless, cough patterns are not useful for early detection prior to 
symptom onset and hence hardly used. Furthermore, its conspicuous 
location may be socially undesirable (Casson et al., 2010). 

Besides body placement, the form factor can also affect the accuracy 

Table 1 (continued ) 

No. Author (year) Country/Region Study Design Population (Sample Size) Wearable Technology 

33. Skibinska et al 
(2021) 

United States/North America Retrospective 
cohort study 

COVID-19 cases, healthy controls, influenza cases (N 
= 68) 

Fitbit 

34. Smarr et al. (2020) United States, United Kingdom, Finland, 
Austria, Canada, Germany, Honduras, 
Italy, The Netherlands, Norway, and 
Sweden/America and Europe 

Retrospective 
cohort study 

Subjects that reported covid-19 infections (N = 50) Oura 

35. The Christie NHS 
Foundation Trust 
(2020) 

United Kingdom/Europe Clinical trial 
registered 
protocol 

Patients with solid tumour or haematological 
malignancy diagnosis who present with symptoms 
suspicious for Covid-19 who the admitting clinicians 
deems appropriate for outpatient management (N =
30) 

Patient Status Engine 
(Lifetouch and 
Lifetemp) 

36. Wendel et al (2021) United States/America A cross-sectional 
study 

Medical professionals in 1A and 1B vaccination 
phases at the UCHealth University of Colorado 
Hospital (N = 290) 

BioButton 
(BioIntelliSense) 

37. Wong et al. (2020) China/Asia Clinical trial 
registered 
protocol 

Asymptomatic subjects with close COVID-19 contact 
under mandatory quarantine (N = 200-1000) 

Everion 

38. Xu (2020) United States/America Clinical trial 
registered 
protocol 

Healthy adults and adults exposed to or diagnosed 
with COVID-19 (N = 324) 

ANNE One (ANNE 
Limb and ANNE Chest) 

39. Zargaran et al 
(2020) 

United Kingdom/Europe Prospective 
observational trial 

Healthcare workers in high-risk areas for COVID-19 
(N = 60) 

Empatica E4 

40. Zhu et al (2020) China, Italy, Spain, Germany and France/ 
Asia and Europe 

Retrospective 
cohort study 

Huami device users who wore Huami device from 
July 1, 2017, to April 8, 2020 (N = 1.3 million) 

Huami/Amazfit 

Note. RCT = randomised controlled trial, +ve = Postive; -ve = Negative 
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Fig. 2. Types of wearable technology used for early detection of COVID-19.  
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of sensor measurements. Sensors perform optimally when in direct 
contact with the skin. However, increased precision comes at the 
expense of comfort. Adhesive patches, which were the predominant 
forms of the medical devices and “others,” conform to the skin and 
demonstrate flexibility. However, this form factor is highly susceptible 
to skin irritation, especially since continuous monitoring requires pro-
longed wear (McAdams et al., 2011). Skin irritation is considerably 
reduced with the clothing form factor, but loose-fitting clothing is sub-
ject to motion artefacts caused by poor contact with the skin, and tight- 
fitting clothing can be uncomfortable (McAdams et al., 2011). Likewise, 
sensor accuracies are compromised in the strap form, which is the pre-
dominant form factor in SOFTs, owing to poor contact with the skin. 
Nevertheless, the strap form is more appealing than the other form 
factors owing to its comfort and convenience (Bayoumy et al., 2021; 
Sartor et al., 2018). 

Coinciding with its burgeoning use, the predominance of SOFTs over 
the other types of wearable technology can be explained by high user 
acceptance (Massoomi and Handberg, 2019; McAdams et al., 2011). As 
continuous monitoring requires prolonged use, relatively accurate de-
vices that users are likely to wear frequently are effective (Radin et al., 
2021). Moreover, the ubiquity and accessibility of SOFTs are useful for 
large-scale deployment (Mishra et al., 2020). 

4.3. Anomaly detection models 

As COVID-19 is transmissible before the onset of symptoms (Tindale 
et al., 2020), the combination of symptom reports would be futile for 

early detection. Viral infections are known to trigger inflammatory re-
sponses in the early stages, and COVID-19 is no exception (García, 
2020). Several studies documented abnormalities in heart rate vari-
ability, resting heart rate, and heart rate as inflammatory responses to a 
COVID-19 infection, which can explain their frequent use in ADMs 
(Hasty et al., 2021; Park et al., 2017; Whelton et al., 2014). However, 
Yanamala et al. (2021) demonstrated the use of features such as body 
temperature and oxygen saturation as superior indicators. Hassantabar 
et al. (2021) also showed that galvanic skin response, albeit uncon-
ventional, is a useful feature. Thus, given the novelty of the virus, more 
physiological characteristics should be incorporated and explored. 
Feature selection and feature extraction techniques can then be 
employed to identify the most relevant features and prevent overfitting 
(Zebari et al., 2020). Similar artificial intelligence techniques have been 
used on chest radiography imaging for COVID-19 diagnosis (Al-Rakhami 
et al., 2021; Asraf et al., 2020; Islam et al., 2021; Saha et al., 2021) and 
forecasting the growth of the pandemic (Rahman et al., 2021). However, 
early detection using radiography imaging remains challenging 
(Jemioło et al., 2022) and poses radiation exposure risks (Zhou et al., 
2021). Moreover, the long-term forecasts were also largely inaccurate 
(Rahman et al., 2021). 

Overfitting occurs when the ADM corresponds too closely to the 
training data and is unable to perform on unseen data (Ying, 2019). 
Selecting samples representative of the population to which the ADM 
will be applied in can prevent overfitting (Faes et al., 2020). However, 
given the underrepresentation of geographic regions outside the United 
States and samples that did not reflect the general population, this 

Fig. 3. Frequency of wearable technology types amongst 40 included articles.  

S.H.R. Cheong et al.                                                                                                                                                                                                                            



PreventiveMedicine162(2022)107170

9

Table 2 
Components of wearable technology mechanism (n = 18).  

Author (year) Data Extraction Data Preparation Model Comparisons Best Model (Type) External 
Validation 

Distinguish 
COVID-19 
from another 
ILI 

WT Data Input Feature 
Selection or 
Extraction 

Data 
Augmentation 

Internal 
Validation 

Data Labelling/Data 
Segmentation 

Alavi et al. 
(2021) 

Fitbit, 
Apple 
Watch 

Overnight RHR NR NR NR NA RHRAD, CuSum, 
NightSignal, Isolation 
Forest 

NightSignal 
(Deterministic Finite 
State Machine) 

NR No 

Bogu and 
Snyder 
(2021) 

Fitbit RHR NR Seven time-series 
data 
augmentation 
techniques 

Time series 
cross-validation 

7 days before and 21 
days after symptom 
onset were considered 
as infectious 

NA Long Short-Term Memory 
Networks-based 
autoencoder (LAAD) 
(Unsupervised deep 
learning) 

NR No 

Cleary et al 
(2021) 

Fitbit, 
Apple 
watch 

RHR, sleep and steps NR NR NR 0–7 days after 
symptom onset as test 
periods 

RHRmetric, SLEEPmetric, 
STEPmetric, SENSORmetric 

SENSORmetric 
(Statistical Analysis) 

NR No 

D’Haese et al 
(2021) 

Oura Overnight HR, HRV, 
RR, activity, sleep and 
symptom report 

NR NR K-fold cross- 
validation 

Label symptoms 
suspicious of viral-like 
symptoms 

NA Markov network and 
Association Rule Mining 
Algorithm (Supervised 
deep learning and 
unsupervised machine 
learning) 

NR No 

Gadaleta et al. 
(2021) 

Fitbit, 
Apple 
watch 

RHR, sleep, activity 
and symptom report 

Feature 
Extraction 

NR k-fold cross 
validation 

NR NA CatBoost (Supervised 
machine learning) 

NR No 

Hassantabar 
et al. 
(2021) 

Empatica 
E4 

Galvanic skin 
response, 
Temperature, inter- 
beat interval, oxygen 
saturation and 
symptom report 

NR Synthetic data 
generation with 
the TUTOR 
framework 

Unspecified NR Naïve Bayes, Random 
Forest, Ada Boost, Decision 
Tree, SVM, k-NN, deep 
neural network model with 
grow-and-prune synthesis 

Deep neural network 
model with grow-and- 
prune synthesis 
(Supervised deep 
learning) 

NR No 

Hirten et al. 
(2021) 

Apple 
watch 

HRV NR NR Bootstrapping Defined being 
symptomatic as the 
first day of a reported 
symptom 

NA Mixed-effect Cosinor 
model (Statistical 
Analysis) 

NR No 

Liu et al 
(2021) 

Fitbit HR NR NR leave one subject 
out cross- 
validation 

NR CNN, MLPs, LSTM Contrastive CAE 
(Unsupervised deep 
learning) 

NR No 
CAE, contrastive CAE 

Lonini et al 
(2020) 

NR RR intervals, steps, 
RR and frequency 
spectrum of cough 
signals 

Feature 
Selection 

NR leave-one- 
subject-out 
nested cross 
validation 

Labelled snapshots as 
COVID-19 positive and 
negative 

NA Logistic Regression 
(Supervised machine 
learning) 

NR No 

Miller et al 
(2020) 

WHOOP Overnight RHR, HRV 
and RR 

NR NR Unspecified Meeting or exceeding 
threshold was 
equivalent to 
classifying healthy or 
infected days as 
COVID-19 positive. 

NA Gradient boosted 
classifier (Supervised 
machine learning) 

NR No 

Mishra et al. 
(2020) 

Fitbit HR and steps Feature 
Extraction 

NR NR Dates of symptom 
onset and diagnosis to 
define sick periods 

RHR-Diff, HROS-AD, 
CuSum 

CuSum (Statistical 
Analysis) 

NR No 

Natarajan 
et al. 
(2020) 

Fitbit RR, HR, and HRV NR NR k-fold cross 
validation 

Data from 2nd to 6th 

day of symptom onset 
labelled as sick 

NA CNN (Supervised deep 
learning) 

NR No 

Fitbit NR Yes 

(continued on next page) 
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Table 2 (continued ) 

Author (year) Data Extraction Data Preparation Model Comparisons Best Model (Type) External 
Validation 

Distinguish 
COVID-19 
from another 
ILI 

WT Data Input Feature 
Selection or 
Extraction 

Data 
Augmentation 

Internal 
Validation 

Data Labelling/Data 
Segmentation 

Nestor et al 
(2021) 

Night-time RR, RHR, 
HRV and symptom 
report 

Feature 
Extraction 

Time series 
cross-validation 

Days between self- 
reported symptom 
onset and self-reported 
recovery labelled as 
positive 

XGBoost, XGBoost and 
GRU-D 

XGBoost and GRU-D 
(Supervised machine and 
deep learning) 

Prospective 
evaluation 

Quer et al 
(2021) 

Fitbit, 
Apple 
Watch 

RHR, sleep, activity 
and symptom report 

NR NR Bootstrapping First date of symptoms 
to seven days after 
symptoms considered 
infectious 

RHRMetric, SleepMetric, 
ActivityMetric, 
SymptomMetric, 
SensorMetric, 
OverallMetric 

OverallMetric (Statistical 
analysis) 

NR No 

Sarwar and 
Agu (2021) 

Fitbit RHR and sleep Feature 
Selection 
and 
Extraction 

Synthetic 
Minority Over- 
sampling 
Technique 
(SMOTE) 

k-fold cross- 
validation 

14 days after the 
symptom onset was 
considered as the 
infectious period 

Naïve Bayes, Random 
Forest, Ada Boost, Logistics 
Regression, SVM, Gradient 
Boosting Classifier, LSTM 
Autoencoder 

Gradient Boosting 
Classifier (Supervised 
machine learning) 

NR No 

Skibinska et 
al (2021) 

Fitbit HR and steps Feature 
Extraction 

Synthetic data 
generation with 
the TUTOR 
framework 

k- fold Stratified 
Cross-Validation 

NR XGBoost, k-NN, SVM, 
Logistic Regression 
Decision Tree Random 
Forest 

k-NN (Supervised 
machine learning) 

NR Yes 

Smarr et al. 
(2020) 

Oura Dermal temperature NR NR NR “Symptom window” as 
each individual’s 
window of reported 
symptoms 

NA Minimum and maximum 
temperature threshold 
(Statistical analysis) 

NR No 

Zhu et al 
(2020) 

Huami/ 
Amazfit 

RHR and sleep NR NR NR NR NA CDNet – CatNN and 
DenNN (Supervised deep 
learning) 

NR No 

Note. CAE = conventional convolutional auto-encoder, CNN = conventional neural network, HR = heart rate, HROS-AD = heart rate over steps anomaly detection, HRV = heart rate variability, ILI = influenza-like illness, 
k-NN = k-nearest neighbour, LSTM =Long Short-Term Memory Networks, MLPs = Multilayer Perceptrons, NA = not applicable, NR = not reported, RHR = resting heart rate, RHRAD = resting heart rate anomaly 
detection, RHR-Diff = resting heart rate difference, RR = respiratory rate, SVM = support vector machines, WT = wearable technology 
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aspect requires further improvement. The complete spectrum of COVID- 
19 presentations, especially its differential diagnoses such as influenza- 
like diseases and vaccination side effects, is often overlooked, resulting 
in spectrum bias (Faes et al., 2020). Spectrum bias perpetuates the 
inability to distinguish COVID-19 from illnesses with similar pre-
sentations. Moreover, sample sizes were predominantly small, which 
increased the effect of overfitting, and data augmentation techniques 
were rarely used to counteract this problem (Ying, 2019). 

Validation methods can also mitigate the risk of overfitting (Retel 
Helmrich et al., 2019) and are necessary to evaluate the reproducibility 
and generalizability of ADMs (Ramspek et al., 2021). Internal validation 
can ascertain reproducibility by testing on wearable technology data 
gathered from individuals with characteristics similar to those of the 
training population. External validation can ascertain reproducibility 
and generalizability by testing wearable technology data gathered from 
a separate population with different characteristics (Ramspek et al., 
2021). Given a sufficiently large dataset, the external performance of an 
ADM can be estimated by internal validation alone (Ramspek et al., 
2021), but sample sizes were primarily small. Coinciding with the 
findings of Ramspek et al. (2021), internal validation was conducted 
frequently, but externally validated ADMs were rare. As most ADMs 
involve machine learning, their “black box nature” reinforces the need 
for external validation (Faes et al., 2020). Ramspek et al. (2021) 
cautioned against the use of an ADM without external validation, as poor 
performance can lead to adverse outcomes, such as false reassurance to 
infectious individuals. 

Overall, the reported ADM performance may be overoptimistic due 
to overfitting, and despite being reproducible, the ADMs lacked gener-
alizability. As a result, the ADMs may not perform well in real-world 
settings (Ramspek et al., 2021). Moreover, the lack of device-agnostic 
ADMs limits the types of compatible wearable technology, thereby 
potentially hampering its scalability (Gadaleta et al., 2021). 

4.4. Accuracy 

Based on the AUC values, wearable technology may seem promising 
for the early detection of COVID-19 infection. However, the fair-to- 
excellent performance of such technology (Li and He, 2018) may be 
overestimated owing to inconsistencies in the employed reference tests. 
Using self-reported symptom onset to determine a COVID-19 infection is 
unreliable since asymptomatic individuals will not report any symptoms 
(Sah et al., 2021). Furthermore, the performance of ADMs may be 
inflated due to overfitting, as discussed previously. 

In the context of COVID-19 detection, sensitivity evaluates how well 
an ADM can correctly identify a COVID-19 positive individual, while 
specificity evaluates how well an ADM can correctly identify a healthy 
individual (Kumleben et al., 2020). Low sensitivity values may lead to 
the identification of COVID-19 positive individuals as healthy, resulting 
in the infectious individuals interacting with others. Alternatively, low 
specificity values may lead to healthy individuals being incorrectly 
identified as COVID-19 positive, resulting in unnecessary self-isolation 
(Kumleben et al., 2020). An optimal tradeoff between sensitivity and 
specificity is ideal, but given the severe repercussions, sensitivity should 
be prioritized; however, the contrary was observed (Chubak et al., 
2012). 

Conducting a diagnostic test accuracy systematic review is chal-
lenging, as the accuracy measures presented were disparate, lacking true 
positive, false positive, true negative, and false negative values (Camp-
bell et al., 2015). Moreover, nearly none of the studies adopted a cross- 
sectional study design (Campbell et al., 2015). Similar to Cosoli et al. 
(2020), the accuracy results were difficult to compare owing to the lack 
of uniform validation standards. This lack of standardization was 
evident in the sample characteristics, reference tests, and reported ac-
curacy measures (Cosoli et al., 2020). Thus, due to inadequate validation 
studies and questionable accuracy results, obtaining regulatory agency 
approval for wearable technology for the early detection of COVID-19 
infection would be difficult. Therefore, such technology is not clini-
cally dependable (Radin et al., 2021). 

Fig. 4. Wearable technology mechanism: Anomaly detection model developmental process.  
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4.5. Strengths and limitations 

To the best of our knowledge, this is the first scoping review to focus 
on the actual application of wearable technology for the early detection 
of COVID-19 through remote monitoring. The search for published and 
unpublished literature was systematic and extensive. However, owing to 
the nature of scoping reviews, the quality of the included articles was not 
appraised (Peters et al., 2017). In addition, the lack of a Chinese data-
base may have limited the search results, as COVID-19 was first 
discovered in China and technological solutions could have been 
implemented early in the country. Considering the predominantly small 
sample sizes and study settings favoring the United States, the universal 
applicability of the results is unclear. Furthermore, information on the 
sensor type of some of the wearable technology could not be retrieved 
from the website of the manufacturers. 

4.6. Recommendations for future research 

Validation studies with reliable reference tests are necessary to set 
validation standards and assess the accuracy of wearable technology for 
the early detection of COVID-19. To evaluate diagnostic accuracy across 
different studies, relevant accuracy measures should be reported. Large 
samples of individuals from geographical locations outside the United 
States, with varying COVID-19 presentations and differential diagnoses, 
should be examined to increase the likelihood of successful deployment 
in real-world settings. Different types of wearable technology should 
also be employed to build device-agnostic ADMs. Future research can 
also conduct external validation to assess the generalizability of ADMs 
(Table S8). 

4.7. Implications for practice and policymaking 

Once the performance of wearable technology is proven to be ac-
curate and reliable, healthcare policymakers can mandate the use of 
low-cost SOFTs for remote surveillance of incoming and returning 
travelers, with the easing of border restrictions. This mandate can be 
extended to susceptible populations such as unvaccinated individuals 
and healthcare workers. Employers can also consider requiring em-
ployees to wear low-cost SOFTs to adjust work arrangements for those 
with detected COVID-19 infection and minimize the frequency of swab 
testing. On a small scale, commercial SOFTs can incorporate the ADM in 
existing devices through software updates. This approach will enable 
existing SOFT users to monitor their health by providing real-time 
detection alerts. 

5. Conclusion 

The omnipresence of COVID-19 necessitates an early detection sys-
tem to facilitate early diagnosis and self-isolation. This scoping review 
examined the use of wearable technology as a solution and highlighted 
types, mechanisms, and detection accuracy. The review findings 
revealed that SOFTs were the preferred type of wearable technology 
owing to their comfort and ubiquity. Given the shortcomings in the 
development of ADMs, the reported performance was questionable. 
Moreover, owing to the lack of validation standards, comparing the 
accuracy results was difficult. Conducting a diagnostic accuracy sys-
tematic review was also challenging. Overall, wearable technology is not 
yet clinically reliable for the early detection of COVID-19 infection in 
real-world settings. 
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Table 3 
Accuracy of wearable technology for COVID-19 detection (n = 15).  

Author (year) Reference Test Highest accuracy 

Alavi et al. 
(2021) 

COVID-19 diagnosis for 
asymptomatic cases and self- 
reported symptom for symptomatic 
individuals 

Accuracy: 87.7% 
Sensitivity: 80% 
Specificity: 87.7% 
True negative: 87,124 
False positive: 12,186 

Bogu and 
Snyder (2021) 

Self-reported symptoms Precision: 0.91 (SD 
0.13, 95% CI 
0⋅854–0⋅967) 
Recall: 0.36 (SD 0.295, 
95% CI 0.232-0.487) 
F-beta score: 0.79 SD 
0.295, 95% CI 0.232- 
0.487) 

Cleary et al 
(2021) 

COVID-19 diagnosis AUC: 75% (95% CI: 62- 
89%) 

D’Haese et al 
(2021) 

Self-reported symptoms AUC: 89% 
Accuracy: 82% 
Sensitivity: 79% 
Specificity: 83% 
Precision: 34% 
NPV: 97% 

Gadaleta et al. 
(2021) 

COVID-19 diagnosis AUC: 83% (IQR: 81- 
85%) 

Hassantabar 
et al. (2021) 

COVID-19 diagnosis Accuracy: 98.1% 
False positive rate: 0.8% 
F1 score: 98.2% 

Liu et al (2021) Self-reported symptoms recognised 
as symptoms of COVID-19 

AUC-ROC: 94.4% 
UAR: 95.3%, 
Sensitivity: 100.0% 
Specificity: 90.6% 
MCC: 0.310 

Lonini et al 
(2020) 

COVID-19 diagnosis AUC: 94% (95% CI: 92- 
46%) 

Miller et al 
(2020) 

COVID-19 diagnosis Sensitivity: 36.5% 
Specificity: 95.3% 
PPV: 73.8% 
NPV: 80.6% 

Natarajan et al. 
(2020) 

COVID-19 diagnosis AUC ± SD: 77% ±1.8 
Sensitivity ± SD: 51.3% 
± 3.4 
Specificity: 90% 
FPR ± SD: 9.4% ± 1.1 

Nestor et al. 
(2021) 

COVID-19 diagnosis Sensitivity: 50% (95% 
CI: 0-74%) 
Specificity: 79% (95% 
CI 53- 98%) 

Quer et al 
(2021) 

COVID-19 diagnosis AUC: 80% (95% CI: 73- 
86%) 
Sensitivity: 72% (95% 
CI: 59-83%) 
Specificity: 73% (95% 
CI: 68-78) 
PPV: 35% (95% CI: 29- 
41%) 
NPV: 93% (95% CI: 90- 
96%) 

Sarwar and Agu 
(2021) 

COVID-19 diagnosis AUC-ROC ± SD: 78% ±
2 
Accuracy ± SD: 71% ±
2 
Sensitivity ± SD: 69% 
± 2 
Specificity ± SD: 74% ±
3 
F1-beta: 72% 

Skibinska et al 
(2021) 

COVID-19 diagnosis Accuracy: 78% 
Sensitivity: 77% 
Specificity: 80% 
MCC: 60% 

Zhu et al (2020) NA Average Pearson’s 
Correlation: 0.68 

Note. AUC = area under curve, AUC-ROC = area under receiver operating 
characteristic curve, MCC = Matthew’s correlation coefficient, UAR = un-
weighted average recall, NPV = negative predictive value, PPV = positive 

predictive value, SD = standard deviation, IQR = interquartile range, CI =
confidence interval, FPR = false positive rate. 
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Interpretation of arrhythmogenic effects of COVID-19 disease through ECG. Aging 
Male 23 (5), 1362–1365. 

Park, W.C., Seo, I., Kim, S.H., Lee, Y.J., Ahn, S.V., 2017. Association between resting 
heart Rate and inflammatory markers (white blood cell count and high-sensitivity c- 
reactive protein) in healthy korean people. Korean J. Fam. Med. 38 (1), 8–13. 

Park, H., Pei, J., Shi, M., Xu, Q., Fan, J., 2019. Designing wearable computing devices for 
improved comfort and user acceptance. Ergonomics 62 (11), 1474–1484. 

Peeling, R.W., Olliaro, P.L., Boeras, D.I., Fongwen, N., 2021. Scaling up COVID-19 rapid 
antigen tests: promises and challenges. Lancet Infect. Dis. 21 (9), e290–e395. 

Peters, M., Godfrey, C., McInerney, P., 2017. Chapter 11: scoping reviews. JBI Rev. Man. 
Adelaide 1-24. 

Peters, M.D.J., Marnie, C., Tricco, A.C., Pollock, D., Munn, Z., Alexander, L., 
McInerney, P., Godfrey, C.M., Khalil, H., 2020. Updated methodological guidance 
for the conduct of scoping reviews. JBI Evid. Synth. 18 (10), 2119–2126. 

Radin, J.M., Quer, G., Jalili, M., Hamideh, D., Steinhubl, S.R., 2021. The hopes and 
hazards of using personal health technologies in the diagnosis and prognosis of 
infections. Lancet Digital Health 3 (7), e455–e461. 

Rahman, M.M., Islam, M.M., Manik, M.M.H., Islam, M.R., Al-Rakhami, M.S., 2021. 
Machine learning approaches for tackling novel coronavirus (COVID-19) pandemic. 
SN Comput. Sci. 2 (5), 384. 

Ramspek, C.L., Jager, K.J., Dekker, F.W., Zoccali, C., van Diepen, M., 2021. External 
validation of prognostic models: what, why, how, when and where? Clin. Kidney J. 
14 (1), 49–58. 

Ren, X., Zhou, J., Guo, J., Hao, C., Zheng, M., Zhang, R., Huang, Q., Yao, X., Li, R., et al., 
2022. Reinfection in patients with COVID-19: a systematic review. Glob. Health Res. 
Policy 7 (1), 12. 

Retel Helmrich, I.R., van Klaveren, D., Steyerberg, E.W., 2019. Research note: prognostic 
model research: overfitting, validation and application. J. Physiother. 65 (4), 
243–425. 

Ruffini, K., Sojourner, A., Wozniak, A., 2021. Who's in and who's out under workplace 
COVID symptom screening? J. Policy Anal. Manage. 40 (2), 614–641. 

Sah, P., Fitzpatrick, M.C., Zimmer, C.F., Abdollahi, E., Juden-Kelly, L., Moghadas, S.M., 
Singer, B.H., Galvani, A.P., 2021. Asymptomatic SARS-CoV-2 infection: a systematic 
review and meta-analysis. Proc. Natl. Acad. Sci. U. S. A. 118 (34), e2109229118. 

Saha, P., Sadi, M.S., Islam, M.M., 2021. EMCNet: Automated COVID-19 diagnosis from X- 
ray images using convolutional neural network and ensemble of machine learning 
classifiers. Inform. Med. Unlocked 22, 100505. 

Santos, M.D., Roman, C., Pimentel, M.A.F., Vollam, S., Areia, C., Young, L., 
Watkinson, P., Tarassenko, L., 2021. A real-time wearable system for monitoring 
vital signs of COVID-19 patients in a hospital setting. Front. Digit. Health 3, 630273. 

Sartor, F., Gelissen, J., van Dinther, R., Roovers, D., Papini, G.B., Coppola, G., 2018. 
Wrist-worn optical and chest strap heart rate comparison in a heterogeneous sample 
of healthy individuals and in coronary artery disease patients. BMC Sports Sci. Med. 
Rehabilitation 10 (1), 10. 

Sarwar, A., Agu, E., 2021. Passive COVID-19 assessment using machine learning on 
physiological and activity data from low end wearables. 2021 IEEE Int. Conf. Digit. 
Health ICDH 2021, 80–90. 

Shahroz, M., Ahmad, F., Younis, M.S., Ahmad, N., Boulos, M.N.K., Vinuesa, R., Qadir, J., 
2021. COVID-19 digital contact tracing applications and techniques: a review post 
initial deployments. J. Transp. Eng. 5, 100072. 

Singh, A.K., Singh, A., Singh, R., Misra, A., 2021. Molnupiravir in COVID-19: a 
systematic review of literature. Diabetes Metab. Syndr. 15 (6), 102329. 

Smarr, B.L., Aschbacher, K., Fisher, S.M., Chowdhary, A., Dilchert, S., Puldon, K., 
Rao, A., Hecht, F.M., Mason, A.E., 2020. Feasibility of continuous fever monitoring 
using wearable devices. Sci. Rep. 10 (1), 21640. 

Tamura, T., Huang, M., Togawa, T., 2018. Current developments in wearable 
thermometers. Adv. Biomed. Eng. 7, 88–99. 

Teo, J., 2020. Early detection of silent hypoxia in COVID-19 pneumonia using 
smartphone pulse oximetry. J. Med. Syst. 44 (8), 134. 

The EndNote Team, 2020. EndNote version 20. Clarivate, Philadelphia, PA.  
Tindale, L.C., Stockdale, J.E., Coombe, M., Garlock, E.S., Lau, W.Y.V., Saraswat, M., 

Zhang, L., Chen, D., Wallinga, J., et al., 2020. Evidence for transmission of COVID-19 
prior to symptom onset. Elife 9, e57149. 

Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., 
Peters, M.D.J., Horsley, T., et al., 2018. PRISMA extension for scoping reviews 
(PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169 (7), 467–473. 

Ullah, S.M.A., Islam, M.M., Mahmud, S., Nooruddin, S., Raju, S., Haque, M.R., 2021. 
Scalable telehealth services to combat novel coronavirus (COVID-19) pandemic. SN 
Comput. Sci. 2 (1), 18. 

Vindrola-Padros, C., Singh, K.E., Sidhu, M.S., Georghiou, T., Sherlaw-Johnson, C., 
Tomini, S.M., Inada-Kim, M., Kirkham, K., Streetly, A., et al., 2021. Remote home 
monitoring (virtual wards) for confirmed or suspected COVID-19 patients: a rapid 
systematic review. EClinicalMedicine 37, 100965. 

Whelton, S.P., Narla, V., Blaha, M.J., Nasir, K., Blumenthal, R.S., Jenny, N.S., Al- 
Mallah, M.H., Michos, E.D., 2014. Association between resting heart rate and 
inflammatory biomarkers (high-sensitivity c-reactive protein, interleukin-6, and 
fibrinogen) (from the multi-ethnic study of atherosclerosis). Am. J. Cardiol. 113 (4), 
644–649. 

World Health Organization, 2020. Public health surveillance for COVID-19: interim 
guidance, 7 August 2020. World Health Organization. Retrieve from https://apps. 
who.int/iris/handle/10665/333752.  

Wright, R., Keith, L., 2014. Wearable technology: if the tech fits, wear it. J. Electron. 
Resour. Med. Libr. 11 (4), 204–226. 

Yanamala, N., Krishna, N.H., Hathaway, Q.A., Radhakrishnan, A., Sunkara, S., Patel, H., 
Farjo, P., Patel, B., Sengupta, P.P., 2021. A vital sign-based prediction algorithm for 
differentiating COVID-19 versus seasonal influenza in hospitalized patients. NPJ 
Digit. Med. 4 (1), 95. 

Yang, C.C., Hsu, Y.L., 2010. A review of accelerometry-based wearable motion detectors 
for physical activity monitoring. Sensors (Basel) 10 (8), 7772–7788. 

Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., Butt, H., 2018. 
Wearables in medicine. Adv. Mater. 30 (33), e1706910. 

Ying, X., 2019. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168 (2), 
022022. 

Zeagler, C., 2017. Where to wear it: functional, technical, and social considerations in 
on-body location for wearable technology 20 years of designing for wearability. 
Proc. 2017 ACM Int. Symp. Wearable Comput. 150–157. 

Zebari, R., Abdulazeez, A., Zeebaree, D., Zebari, D., Saeed, J., 2020. A comprehensive 
review of dimensionality reduction techniques for feature selection and feature 
extraction. J. Appl. Sci. Technol. Trends 1 (2), 56–70. 

Zhou, Y., Zheng, Y., Wen, Y., Dai, X., Liu, W., Gong, Q., Huang, C., Lv, F., Wu, J., 2021. 
Radiation dose levels in chest computed tomography scans of coronavirus disease 
2019 pneumonia: a survey of 2119 patients in Chongqing, Southwest China. 
Medicine (Baltimore) 100, e26692. 

S.H.R. Cheong et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0245
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0245
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0245
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0250
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0250
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0250
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0255
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0255
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0255
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0260
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0260
https://doi.org/10.1101/2021.05.11.21257052
https://doi.org/10.1101/2021.05.11.21257052
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0270
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0270
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0270
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0275
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0275
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0275
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0280
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0280
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0285
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0285
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0290
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0290
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0295
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0295
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0295
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0300
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0300
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0300
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0305
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0305
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0305
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0310
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0310
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0310
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0315
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0315
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0315
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0320
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0320
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0320
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0325
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0325
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0330
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0330
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0330
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0335
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0335
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0335
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0340
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0340
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0340
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0345
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0345
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0345
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0345
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0350
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0350
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0350
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0355
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0355
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0355
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0360
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0360
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0365
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0365
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0365
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0370
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0370
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0375
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0375
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0380
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0385
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0385
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0385
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0390
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0390
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0390
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0395
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0395
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0395
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0400
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0400
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0400
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0400
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0405
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0405
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0405
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0405
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0405
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0410
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0410
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0410
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0415
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0415
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0420
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0420
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0420
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0420
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0425
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0425
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0430
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0430
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0435
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0435
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0440
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0440
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0440
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0445
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0445
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0445
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0450
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0450
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0450
http://refhub.elsevier.com/S0091-7435(22)00219-5/rf0450

	Wearable technology for early detection of COVID-19: A systematic scoping review
	1 Introduction
	2 Methods
	2.1 Identifying the research questions
	2.2 Identifying relevant studies
	2.3 Study selection
	2.4 Charting the data

	3 Results
	3.1 Study selection and characteristics
	3.2 Review question 1: What types of currently available wearable technology are used to detect COVID-19 infection early?
	3.3 Review question 2: How do the mechanisms of wearable technology enable the early detection of COVID-19 infection?
	3.3.1 Data extraction
	3.3.2 Data preparation and model training, testing, and comparison
	3.3.3 Best performing models

	3.4 Review question 3: How accurate is wearable technology in detecting COVID-19 infection?

	4 Discussion
	4.1 Summary of results
	4.2 Wearable form and physiological characteristics
	4.3 Anomaly detection models
	4.4 Accuracy
	4.5 Strengths and limitations
	4.6 Recommendations for future research
	4.7 Implications for practice and policymaking

	5 Conclusion
	Funding
	Authors contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


