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Viral Pneumonia in Children 
KellyJ. Henrickson, MD 

Viral pneumonia causes a heavy burden on our society. In the United States, more than one 
million cases of pneumonias afflict children under the age of 5 years, costing hundreds of 
millions of dollars annually. The majority of these infections are caused by a handful of 
common viruses. Knowledge of the epidemiology of these viruses combined with new 
rapid diagnostic techniques will provide faster and more reliable diagnoses in the future. 
Although the basic clinical epidemiology of these viruses has been carefully investigated 
over the last 30 years, new molecular techniques are greatly expanding our understanding 
of these agents and the diseases they cause. Antigenic and genetic variations are being 
discovered in many viruses previously thought to be homogeneous. The exact roles and 
the biological significance of these variations are just beginning to be explored, but already 
evidence of differences in pathogenicity and immunogenicity has been found in many of 
these substrains. All of this information clearly will impact the development of future 
vaccines and antiviral drugs. Effective drugs exist for prophylaxis against influenza A and 
respiratory syncytial virus, and specific therapy exists for influenza A. Ribavirin is approved 
for use in respiratory synctial virus infections, and it alone or in combination with other 
agents (eg, IGIV) may be effective in immunocompromised patients, either in preventing the 
development of pneumonia or in decreasing morbidity and mortality. Many new antiviral 
agents are being tested and developed, and several are in clinical trials. 
Copyright �9 1998 by W.B. Saunders Company 

V iral respiratory infections are the most common diseases 
plaguing humankind. The majority of morbidity and 

mortality accompanying these infections occurs in children 
under the age of 5. However, increasingly these "childhood" 
viruses are causing disease and even death in a significant 
number of normal adults, the elderly, and especially immunocom- 
promised individuals. 1,2 With the advent of new and improved 
techniques in molecular biology, many new diagnostic, therapeu- 
tic, and preventive strategies are now or soon will become 
available. Even our understanding of basic viral epidemiology is 
rapidly changing with these tools. This article will concentrate 
on the viruses that most frequently infect children and cause 
pneumonia. 

Epidemiology of Pneumonia 
Acute respiratory infections (ARI) cause or contribute to the 
death of an estimated 4 to 5 million children each year in 
developing nations. 3-5 The majority of these deaths are in 
children with pneumonia. Approximately 30 to 48 percent of 
these children have had respiratory viruses other than measles 
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isolated during their illnesses, which are frequently complicated 
by bacterial infections of the lower respiratory tract. 3,6-7 

In the United States each year, the number of children 
younger than 5 years of age who have lower respiratory infec- 
tions (LRI) is estimated at greater than 5 million. 8 The 
frequency of LRI in children by age and sex from a private 
practice in Chapel Hill, North Carolina is shown in Figure 1. 
Boys have a higher incidence of LRI for the first 10 years of life 
and one approximately equal to that of girls through adoles- 
cence. 9 The incidence of LRI is highest in the first year of life, 
peaking at between 30 and 35 cases of LRI per 100 children per 
year, then gradually decreasing to about 5 per 100 children per 
year in those 9 to 10 years of age, and staying in this range until 
later in life. l~ 

Pneumonia represents only one of many clinical presenta- 
tions for LRI. It represents on average 29 to 38 percent of 
pediatric inpatient admissions for LRI and is found in 23 percent 
of children with LRI treated as outpatients. 9,1H4 However, the 

age-related incidence of pneumonia does not follow exactly the 
incidence of LRI (Fig 1). In the first year of life, pneumonia 
accounts for only approximately 10 percent of the LRI in 
children observed in an ambulatory care setting. 9 The incidence 
increases until it reaches a peak in the second and third years of 
life (approximately 4 to 5 cases/100 child years), then gradually 
decreases to 2 cases per 100 child years in the 5 to 9 age group 
and to about 1 case per 100 child years thereafter, 9,15-16 In 
children hospitalized for LRI, pneumonia accounts for approxi- 
mately 33 to 50 percent of the causes in the first year of life, then 
declines somewhat until school age, when it increases to become 
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Figure 1. The frequency of 
lower respiratory infection and 
pneumonia in children. 
(Adapted and reprinted with 
permission from Denny FW, 
et al: Acute respiratory tract 
infections: An overview. Pedi- 
atr Res 17:1023-1076, 1983 
and Murphy TF, A m J  Epide- 
miol 113:14, 1981.) 

the major cause for hospitalizations. 15,1%18 However, because the 
majority of LRI in children occurs in their first 5 years of life, as 
previously stated, pneumonia comprises about one-third of the 
total LRI observed in the pediatric age range. 

Boys develop pneumonia at a slightly higher rate than do 
girls, but this rate usually is not significant. 9,15,16 In one study, 
African-American children had significantly more cases of 
pneumonia than did Caucasians (relative risk = 1.85). 16 

Between 3 and 18 percent of admissions to pediatric hospi- 
tals in developed nations can be for LRI, depending on the time 
of year.12,16,19 Approximately 4 percent of all admissions during 
the fall of 1991 at Children's Hospital of Wisconsin were for 
pneumonia in children under the age of 6. The actual cost of 
these respiratory infections has not been calculated, but it is 
staggering in terms of both dollars and time lost from work for 
the parents. In the United States, hospitalization costs for 
infection caused by respiratory syncytial virus (RSV) has been 
calculated at approximately $300,000,000, 2~ and for emergency 
room and hospitalization for human paraintluenza viruses 
1 and 2 (HPIVs-1 and -2), the costs are approximately 
$190,000,000.16 

Signs and Symptoms 

The World Health Organization has developed guidelines for 
defining and managing pneumonia in infants in developing 
nations. A recent evaluation of these guidelines showed that 
using cough and/or rapid (difficult) breathing as an initial 
screen, coupled with a respiratory rate of at least 60 per minute, 
severe chest wall in-drawing, and nonspecific signs (eg, poor 
feeding, fever, etc), identified 83 percent of the cases of 
pneumonia confirmed by chest radiograph. 21 

In older infants and children (the majority of pediatric 
pneumonia cases), the documentation of fever and rales and 
evidence of pulmonary consolidation on physical examination is 
the traditional method of diagnosing pneumonia. Most observ- 
ers also require evidence of radiograph changes sometime 
during the course of the illness to corroborate the physical 
examination findings. 

Viruses 

Depending on the age of the child and the particular respiratory 
symptoms,9,11-13 between 50 and 90 percent of LRI are caused by 
viruses. Viruses have been shown to cause up to 90 percent of 
pneumonias, especially in the first year of life, 9'15'2224 and this 
percentage decreases to approximately 50 percent by school 
age.9,n Viruses cause a decreasing but still significant number of 
pneumonia cases in immunocompetent individuals 9 to 10 years 
of age and older. The percentage of pneumonias with a viral 
cause eventually declines to approximately 12 percent by adult~ 
hood. ~,25 This figure does not include excess bacterial pneumo- 
nias that occur during specific viral epidemics (eg, yearly 
influenza or RSV epidemics) or increased pneumonias in the 
elderly. 26 

The viruses that frequently cause LRI in children are listed 
in Table 1. Also shown is the relative frequency of each 
respiratoryvirus as a cause of total viral LRI. The most frequent 
causes of viral pneumonia in children are listed in Table 2. The 
same viruses that cause LRI also are the causes of pneumonia. 
Several different LRI "syndromes" (eg, bronchiolitis, croup, 
bronchitis), including pneumonia, can occur at the same time or 
progressively in the same child. Usually they are caused by a 
single agent. 

Two or more respiratory viruses can be isolated in 5 to 20 
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Table 1. Causes of Lower Respiratory lnfections in Young 
Children 

Outpatient Inpatient 

% % % % 
Detected Positives Detected Positives 

RSV 6-19 14-44 12-30 32-63 
HPIV 

type 1 2-3 7-8 2-6 5-12 
type 2 1 4 <1-3 2-12 
type 3 1-8 6-19 <1-12 1-23 

Total types 1-3 8-16 16-35 4-21 9-41 
Influenza 

typeA <1-5 <1-10 <1-7 1-13 
type B 1-2 3-9 0-3 0-8 
type C or not typed < 1 < 1-2 

Adenovirus (many types) 2-10 7-35 3-9 5-25 
Rhinovirus (many types) 1-3 3-6 0-12 0-25 
Herpes simplex type I 0-3 0-5 < 1-2 1-4 
Enterovirus (many types) 1 2-6 < 1-2 1-6 
Coronavirus 12" 24* 8* 33* 
Other viruses'~ < 1 2 
Total (average) 33 75~ 41 985 

NOTE: This includes virus isolation, antigen detection, and polymerase- 
chain reaction. 
Abbreviations: RSV, respiratory syncytial virus; HP1V, human parainflu- 
enza virus. 
*Children with chronic asthma. 
tHuman parainfluenza virus type 4, cytomegalovirus, influenza virus 
type C, nontypeable hemadsorbing viruses. 
~:These rates are syndrome and age dependent. 
Data from references 9, 11-16, 77, 134, 156, 257-259 and K.J. Henrick- 
son, unpublished data. 

percent of acute LRI and may increase the severity of disease. 27 
In addition, these viruses routinely cause otitis media, pharyngi- 
tis, conjunctivitis, and coryza (common cold) in combination 
with pneumonia. 

One of the difficulties in trying to summarize incidence data 
on these viruses is that great differences exist in study designs. 

Table 2. Viruses Associated with Pneumonia in Children 

Developed Developing 
Countries (%) Countries (%) 

RSV 29 (24-63) 36 (26-78) 
Parainfluenza 

type 1 9 (3-11) 
type 2 2 
type 3 9 (3-26) 

Total types 1-3 20 5 (3-13) 
Influenza 

type A 4 (3-9) 5 (4-13) 
type B 4 2 (1-6) 

Total types A-B 8 8 
Adenovirus 7 (6-7) 9 (3-48) 
HSV 3 4 
Rhinovirus 5 (2-25) 
Enteroviruses 5 

Abbreviations: RSV, respiratory syncytial virus; HSV, herpes simplex 
virus. 
Data from references 3, 6, 7, 10, 11, 23, 24, 259. 

Also, these numbers are limited by each institution's ability and 
interest in recovering certain viruses, whether an outpatient or 
inpatient population was studied, the number of years or time of 
year studied, the ages of the children, and whether they 
reported or looked for other pathogens or causes for each child's 
lower respiratory symptoms. As an example, in the United 
States, the sum of the reported incidences of LRI caused byRSV 
and HPIV-3 during the first year of life is 33 per 100 children per 
year. 2829 Because this percentage is almost exactly the reported 
incidence for LRI in general, not much room is left for the other 
common pathogens. However, a clear pattern among all of the 
reported data indicates which viruses consistently cause the 
most infections and illnesses in young children. This pattern has 
not changed substantially in over 30 years of observation, and it 
seems to hold true throughout the world. 

Clearly, in developed nations, RSV is the largest single 
pathogen resulting in hospitalization. It also seems to be a major 
cause of pneumonia in developing countries (Table 2). RSV is 
the most common cause of pneumonia in infants and preschool 
age children. In young hospitalized infants, it routinely causes 
about 60 percent of pneumonias, a133,3~ Parainfluenza viruses as 
a group cause at least as many LRI, but they result in lower 
hospitalization rates and less pneumonia than does RSV. 
HPIVs-1 and -3 each cause approximately 10 percent of outpa- 
tient pneumonias. However, HPIV-3 results in a higher rate of 
hospitalization for pneumonia in infants and children and is 
second only to RSV in young infants. HPIVs-2 and -4 both have 
been reported to cause pneumonia, but the exact proportion of 
disease caused by these viruses is unclear. Influenza viruses A 
and B are the next most frequent causes of pneumonia and vary 
significantly from year to year. Adenoviruses and rhinoviruses 
are recovered consistently from children with pneumonia. In 
young infants, enteroviruses play an important role, whereas 
influenza becomes more important during the school years. 
RSV; parainfluenza 1, 2, and 3; influenza A and B; and 
adenovirus together cause the vast majority of all pneumonia in 
preschool children and are the major causes of viral pneumonia 
throughout life.3 t 

A seasonality to the viruses that cause LRI in children has 
been well-documented and presented (Fig 2).9'J2'32 Although one 
virus predominates within a community, overlap always occurs 
(Fig 3). Also, considerable variation takes place in the seventy 
and exact timing of epidemics between years. 

Immunocompromised Hosts 

RSV, HPIV, influenza, and adenovirus all have been reported to 
cause serious and fatal LRI in immunocompromised children 
and adults. Adenoviruses have been associated with pneumonia 
in an agammaglobulinemic patient ~3 and with bronchial necro- 
sis in a patient with thymic disfunction? 4 Giant-cell pneumonia 
with HPIV-2 has been reported in severe combined immunode- 
ficiency syndrome (SCIDS) 35 and with HPIV-3 in SCIDS, 36,3y 
acute myelomonocytic leukemia, 38 and after bone marrow 
transplantation? 9 Many of these patients had dual infections 
with other pathogens. Persistent respiratory tract infection and 
viral excretion by HPIVs-1, -2, and -3 have been described in 
SCIDS, with HPIV-3 in a child with DiGeorge syndrome after 
thymic transplant, 4~ and with RSV and HPIV-3 in children 
infected with HIV. 41,42 The HIV group of children did not seem 
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Figure 2. Major "seasons" of 
viruses causing lower respira- 
tory infections in children in 
North America. Schedule of 
major respiratoryviruses caus- 
ing seasonal epidemics. 

to have more severe disease with these viruses until they were 
significantly deficient in T-cells, but the epidemiology of respira- 
tory viruses in this population still needs to be studied. 43 HPIV-3 
and influenza have been associated with acute rejection epi- 
sodes in renal and liver transplant recipients. 44 Influenza has 
been associated with encephalitis or meningitis in recipients of 
organ transplant. 44 

RSV; HPIVs-1, -2, and -3; and influenzae A and B upper and 
lower respiratory tract infections, including pneumonia, and 
death have been reported in organ and bone marrow transplant 
(BMT) patients. 2,44 Pneumonia occurred in 50 to 78 percent of 
infected adult immunocompromised patients, and 16 to 44 
percent died. The early preengraftment period seems to be a 
particularly dangerous time to become infected with one of 
these viruses. In children, the epidemiology and natural history 
is not well-described. However, 56 percent of 45 children who 
were recipients of solid organ transplants and were infected with 
these respiratory viruses developed pneumonia, and 19 percent 
died. 45 Also, these common respiratory viruses have been shown 
to cause 20 percent of the episodes of fever in children with 
cancer. 46 Adenoviruses have been associated with pneumonia in 

3 of 83 pediatric BMT patients; two of the three patients died of 
respiratory failure and one of hepatic failure. 47 

Viruses as Pathogens 

The basic structural and biological characteristics for each of the 
major pediatric respiratory viruses have been well-described in 
great detail in several recent textbooks. 48,49 

RSV 

RSV is a small pleomorphic enveloped virus with a single strand 
of ribonucleic acid (RNA) (negative polarity). It belongs to the 
large paramyxoviridae family of viruses, and thus it can be 
differentiated morphologically from HPIV, mumps, and measles 
only by its narrower nucleocapsid. 48 This virus is the number one 
cause of pediatric hospital admissions for LRI in most areas of 
the world, 5~ causing almost 100,000 hospitalizations per year in 
the United States alone) I RSV causes yearly epidemics lasting 3 
to 5 months, usually beginning in the early winter or the 
equivalent rainy season in tropical climates. Most severe disease 

Figure 3. Respiratory viruses 
detected by RT-PCR-EHA at 
Children's Hospital of Wiscon- 
sin during 1996-1997. 
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occurs in children under 1 year of age, with a peak occurring 
between 2 and 5 months of age, and, as indicated previously, 
manifests itself as bronchiolitis or pneumonia. Two RSV sub- 
types (A and B) have been determined mostly by antigenic and 
genetic differences found in their surface glycoproteins (G and 
F). 52 Further subgroups of A and B have been described on the 
basis of antigenic changes on the G protein. 52 Both subtypes 
circulate in any one year, although often one type predominates. 
Subtype A strains may be more virulent than are B strains, and 
they may cause more hospitalization, 53,54 but some investigators 
have found no difference between subtype strains in type or 
severity of LRI in children. 55 

H P I V  

Human parainfluenza viruses are separated functionally from 
RSV by their ability to hemagglutinate red blood cells, a 
property they share with influenza viruses. Four major virus 
groups within HP1V (Types 1-4) exist. Further subtypes of 
HPIV-4 56 and subgroups of HP1V- 157-6~ and HPIV-361 have been 
described. 

HP1V-1 usually occurs in biennial epidemics during the fall 
in both hemispheres. 9,12 At least 50 percent of croup cases 
(approximately 250,000 per epidemic) in the United States can 
be linked to this virus. 9 HPIV-1 causes LRI predominantly in 
children 7 to 36 months of age, with a peak incidence in the 
second and third years of life. HPIV-I can cause LRI in young 
infants, but it is rare in children younger than 1 month. In the 
United States, an estimated 35,000 children younger than 5 
years of age are hospitalized each biennium because of HPIV- 
1. 8'9'14'16'61 Infection with HP1V-2 has been reported to occur 
biennially with HPIV-1, alternate years with HPIV-1, and more 
recently in yearly outbreaks. 12,19,62 The majority of respiratory 
tract infections caused by this virus appear in the fall to early 
winter. Croup is the most frequent LRI caused by HP1V-2, but 
all of the respiratory syndromes have been described. LRI 
caused by this virus have been reported much less frequently 
than with HPIV-I and -3, perhaps because of difficulties in 
isolation and detection. The peak incidence of HP1V-2 occurs in 
the second year of life, but significant numbers of infections 
occur in infants under 1 year of age, and approximately 60 
percent occur in a child's first 5 years. Although frequently 
overshadowed by HPIVs- 1 and -3, HPIV-2 can, in any one year, 
be the predominant parainfluenza virus causing LRI in young 
children. 

HPIV-3 is unique among the HPIVs in its propensity to 
infect young infants less than 6 months of age. This virus causes 
the majority of its infections in the first 12 months of life 
(approximately 40%), with bronchiolitis and pneumonia being 
the most common clinical syndromes. It is second only to RSV as 
a cause of LRI in neonates and young infants. Approximately 
20,000 infants and children are hospitalized each year in the  
United States because of LRI caused by HP1V-3. Although 
endemic throughout the world, this virus also occurs in spring 
epidemics in North America. Epidemics may be dependent on 
ambient climate conditions. 63 

HPIV-4 has been isolated from a very small number of 
children and adults, and few reports have been published on the 
epidemiology of this virus. 64"67 Approximately one-third of cases 
have been in infants less than 1 year of age, one-third in 

preschool children, and one-third in school-age children and 
adults. Seroprevalence studies have shown that 60 to 84 percent 
of infants have significant antibody levels after birth (presum- 
ably maternal in origin). These levels drop to 7 to 9 percent by 7 
to 12 months of age and stay low before increasing to about 50 
percent by 3 to 5 years of age. Antibody levels to HPIV-4 
continue to rise throughout childhood until approximately 75 to 
95 percent of adults have antibody. 66 All of the different 
respiratory tract syndromes can be caused by HPIV-4. Severe 
LRI and pneumonia have been associated with hospitalization of 
infants and young children. 68 However, based on the seropreva- 
lence data, because infection with HPIV-4 is almost universal, 
serious disease either is rare or difficult to diagnose. 

Influenza 

This important group of orthomyxoviruses can be separated 
morphologically from its cousins, the paramyxoviruses, by its 
segmented genome. This characteristic also allows for the 
genetic reassortment, which leads to rapid shifts in the antigenic 
characteristics of the influenza viruses and results in pandemic 
disease. The three major types of influenza (A, B, and C) are 
differentiated by stable type-specific ribonucleic acid-associated 
nucleoprotein. Major subtypes infecting humans are deter- 
mined by variation in the two surface glycoproteins hemaggluti- 
nin (H1, H2, and H3) and neuraminidase (N1 and N2). These 
viruses have many minor antigenic subtypes, with antigenic 
variations occurring fastest in type A and slowest in type C. 
Although all three types cause LRI in children, types A and B 
cause the majority of cases. Influenza epidemics occur each year 
during the winter, but they vary greatly in their intensity. Also, 
one type often predominates in anyone year (eg, in 1990-1991, B 
predominated, and in 1991-1992, A predominated). In years in 
which influenza type B predominates, increased morbidity in 
school-age children occurs. 69 

Typically, in the early part of the epidemic, influenza infects 
young school-age children, who then spread it to preschool 
children and the elderly later in the season. These latter two 
groups have the highest rates of hospitalization annually (0.5% 
for infants less than 1 year of age and approximately 0.3% for 
both children 1 to 4 years and adults over 65 years). 7~ The 
contribution of influenza to the total cases of viral pneumonia 
varies year to year and by age, but averages 8 percent. 9,11,12 In 
preschool age children (1 to 4 years of age), influenza causes all 
of the typical respiratory syndromes. Very young infants often 
present with fever only and no specific lower respiratory symp- 
toms. School-age children and adolescents most often present 
with symptoms of classic influenza with cough, which usually is 
the only evidence of possible lower respiratory tract involve- 
ment. 7~ Influenza may cause a large percentage of the cases of 
tracheobronchitis in older children? 

Adenovirus 

This small nonenveloped virus is the only deoxyribonucleic acid 
(DNA) virus to cause frequent LRI in children (Tables 1 and 2). 
Its nomenclature has been confusing in the past, with subgroup- 
ing by hemagglutination patterns (subgroups 1-4) and by the 
newer system of determining each strain's guanine plus cytosine 
content and oncogenic potential in rodents (subgroups AoF). 71"73 
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Distributed throughout these latter 6 subgroups are 47 distinct 
serotypes, approximately one-third of which cause most of the 
disease in humans. 74 In fact, most of the adenoviral LRI in 
children are caused by subgroups B and C, specifically serotypes 
1, 2, 3, 5, and 7. TM 

Adenoviral infection does not seem to have as much seasonal 
variation as do those caused by the ortho- and paramyxoviruses. 
Disease can occur year round and throughout the world, but 
outbreaks and epidemics occur less often in the fall. 75 The 
majority of LRI and pneumonia occur in preschool-age children, 
the most severe disease developing in children younger than 2 
years of a g e .  72 The most common lower respiratory syndrome 
caused by adenoviruses is pneumonia, but all syndromes can 
occur. Unique to LRI caused by adenovirus is a pertussis-like 
syndrome that can mimic clinical pertussis in every way. 76 
Asymptomatic rectal excretion (persistence) of this pathogen 
(as high as 6%) with less then 0.6 percent oral excretion suggests 
that rectal cultures have no place in the diagnosis of pneumonia 
caused by this virus. 77,78 

Rhinovirus 
These very small (pico) ribonucleic acid (RNA) viruses are 
probably the most ubiquitous respiratory pathogens on earth 
(Tables 1, 2, and 3). 79,80 Until recently, rhinoviruses were not 
thought to cause significant numbers of LRI in children, 9 but 
several investigators now have shown that these agents can 
cause up to 12 percent of LRI in young children, 3~ with 
tracheobronchitis and pneumonia being the most common 
clinical syndromes. Why previously reported investigations failed 
to document such high rates of isolation for rhinovirus as a cause 
of LRI is unclear. However, these viruses are difficult to culture 
and antigen detection has not been available widely in the past. 
Many more studies are needed to clarify the roles rhinoviruses 
play in pediatric LRI and pneumonia. Neutralization assays 
currently can differentiate approximately 100 rhinovirus sero- 
types capable of infecting children. 79 These serotypes do not 
seem to circulate widely between different geographic locations 
or recur in any predictable pattern. 79 Multiple rhinovirus sero- 
types may circulate within one community while different 
serotypes are causing disease nearby. Similarly, the following 
year, different serotypes may be in both locations. Rhinoviruses 
can be recovered year round, but they are recovered more often 
during the spring, summer, and fall. 

Table 3. Direct and Indirect Immunofluorescent Assays 
Detection of Common Respiratory Viruses 

Sensitivity (%) Specificity (%) 

RSV 61-93 88-94 
Influenza A 43-86 100 
Influenza B 83 
HPW-3 31-93 72 
HP1V- 1, 2 50-83 88 
Adenovirus 40 

Abbreviations: RSV, respiratory syncytial virus; HPIV, human parainflu- 
enza  virus. 
Data from references 27, 137, 142, 144, 145, 152-157. 

Coronavirus 
This group of viruses is the largest of the RNA viruses found to 
date, with genomes almost twice as large as those of the 
paramyxoviridae. 79 Coronaviruses also are extremely difficult to 
culture, and most studies of LRI or pneumonia in children have 
not attempted to isolate this agent. The two known human 
serotypes (HCV-229E and HCV-OC43) 83 do not cross-react 
with each other. This agent is a frequent cause of URI in 
children and adults, causing as many as 18 percent in one 
study, s4 but its role in LRI is still being investigated. Coronoavi- 
ruses cause significant numbers of LRI in the large group of 
children with chronic respiratory disease (asthma, etc), 83,85 but 
they may play minor roles in other hosts with LRI. 27,86 

T r a n s m i s s i o n / N o s o c o m i a l  Infect ions  

Person-to-person transmissions of the two most common respi- 
ratory virus families (RSV and HPIV) are very similar, but they 
differ from the other common respiratory viruses in the method. 
Studies of RSV and HPIV-1 have shown that transmission by 
small particle aerosols is unlikely. 87,88 Furthermore, studies of 
RSV have shown that aerosolization of large droplets may be 
important for transmission to close contacts and surfaces. The 
secretions on these surfaces allow for contamination of hands, 
which in turn leads to direct self-inoculation, a9 I-IPIVs- 1, -2, and 
-3 all have been shown to survive up to 10 hours on nonporous 
surfaces and for 4 hours on porous surfaces. 9~ However, HP1V-3 
experimentally placed on fingers has been shown to lose greater 
than 90 percent of its infectivity in the first 10 minutes and could 
not be transferred to other fingersfi Therefore, person-to- 
person spread by direct hand contact seems to be an unlikely 
means of transmission. Most common disinfectants or antiseptic 
agents effectively remove RSV or HPIV from surfaces. Alcohol 
and water were least effective. 9~ Influenza, 92 adenovirus, 93 rhino- 
v i r u s ,  94 and coronavirus 95 all are transmitted by small particle 
aerosols. These viruses seem to be spread most efficiently 
without any physical person-to-person contact. Although hands, 
fomites, and secretions may be able to spread these pathogens, 
they are not considered the predominant transmission pathway. 
Influenza and adenovirus show very fast and efficient intrafam- 
ily spread, 96,97 whereas rhinovirus and coronavirus have much 
lower levels of transmission within families. 98,99 

Respiratory viruses frequently are transmitted inside medi- 
cal institutions, including physician offices, hospitals, and chronic 
care facilities. Nosocomial transmission of RSV and HPIV is 
most significant in young preschool-age children and the elderly. 
Transmission to infants varies in direct proportion to the length 
of hospitalization and has been reported as greater than 45 
percent during RSV epidemics. In addition, 50 percent of the 
staff have become infected. 88 Approximately 20 percent of 
previously uninfected control children on the same ward with 
HP1V-3 infected children will excrete virus during their hospital 
stay. m~ In RSV infections, up to one-third of infants will develop 
serious LRI. 88,1~ The majority of nosocomial HPIV infections 
will be asymptomatic, but mild respiratory symptoms will 
develop in about one-third of patients, and some will experience 
serious LRI or even death) 9,1~176 Serious sequelae are most 
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common in patients with underlying medical problems. Even in 
those with only mild symptoms, the mean length of hospitaliza- 
tion usually is increased by many days because of unnecessary 
tests and therapies that are ordered because of their new signs 
and symptoms. Less is known about nosocomial transmission of 
the other common respiratory viruses. Influenza and adenovirus 
also have caused outbreaks within hospitals and wards during 
their peak activity within a community. 63,1~176 

Isolation of all children admitted to hospitals with respira- 
tory signs and symptoms clearly is not practical. However, 
enforcing strict hand-washing among patients, cohorting high- 
risk patients away from those with respiratory infections, and 
limiting potentially-infected visitors (children and adults) or 
staff may help decrease nosocomial respiratory infections. 

Pathogenesis 
Malnutrition, overcrowding, vitamin A deficiency, lack of breast- 
feeding, and environmental smoke or toxins, which occur in 
both developing and developed countries throughout the world, 
may contribute to morbidity and mortality in pneumonia) ,23,1~ 

All of the respiratory viruses described above gain access to 
children via the respiratory epithelia of the eyes, nose, and 
mouth. The eyes and nose usually are the easiest to infect. Most 
viral pneumonia in children is thought to develop by direct 
spread from the upper respiratory tract, with viremia playing no 
or a very minor role. Adenoviruses may be an exception in this 
regard. 1~ 

Local secretory antibody, serum antibody, and cell-mediated 
immunity all play a role in defending the child from LR1. Nasal 
secretory IgA may play roles in preventing or ameliorating 
reinfection with homotypic virus (eg, if challenged with an 
identical strain) during the same respiratory season, but it does 
not seem to play a significant role in preventing heterotypic 
infection or in protecting against spread to the lower respiratory 
tract once infection takes place. 1~ More work in this area is 
needed to fully understand the interaction of nasal antibodies 
with the other parts of the immune system. Serum neutralizing 
antibody directed at the surface glycoproteins or attachment 
proteins is very important in protecting the lower respiratory 
tract.110,112,113 Also, cytotoxic T-cells seem to play a critical role in 
lower respiratory tract protection. 114~116 Besides the more com- 
mon alpha-beta T-cells, gamma-delta T-cells and natural killer 
cells also may be involved. 117,118 Targets for the cytotoxic T-cells 
have included the surface glycoproteins and internal proteins 
(eg, nucleoprotein), but which viral epitopes are most important 
for stimulating this line of defense in children is not known. 
Antibody-mediated cytotoxic T-cell or complement activity may 
have some role in viral clearance from the lower respiratory 
tract, but this remains to be fully elucidated. 119,120 

One of the most important aspects of these respiratory 
pathogens is their ability to escape the immune defenses that 
were just described. RSV and HPIV can reinfect people multiple 
times throughout their lives. However, usually only the first 
encounter with these viruses during infano/and childhood leads 
to LRI or pneumonia. Most often, repeat infections are manifest 
as upper respiratory infections until the immune system de- 

dines with age or becomes deficient. 2,121 RSV and HPIV-3 have 
higher rates of recurrent pneumonia than do other pathogens. 
The exact mechanism by which these viruses continue to infect 
us remains unclear. Maternal antibody, age at exposure, virus, 
heterologous antibodies, and a child's genetic milieu all influ- 
ence the development of protection against pneumonia. Pneumo- 
nia does not occur after sufficient humoral and cell-mediated 
immunities are established. 

Influenza A has overcome immune mechanisms by rapidly 
developing antigenic change. Immunity to different serotypes of 
rhinovirus will develop, but several upper respiratory infections 
may be needed before immunity is complete. Also, repeat 
infections with coronaviruses are common and are usually upper 
respiratory. 122 Very little is known about immune protection 
against LRI and pneumonia caused by these latter two virus 
groups, but presumably it is similar to that just discussed for 
RSV, HPIV, and influenza. Adenovirus is the only DNA virus 
that is a common respiratory pathogen, and it also is the only 
pathogen that appears to give long lasting protection. Reinfec- 
tion with the same s erotype of adenovirus is unusual.123 

Persistent RSV and HPIV infections have been shown in 
chronically ill or immunosuppressed patients. 124126 Adenovirus 
rarely may remain latent (no viral replication) for many 
years 127,128 and perhaps contribute to the development of chronic 
lung disease later in life. 129 

Diagnosis 
The causative agent in pneumonia cannot be diagnosed reliably 
by using clinical, radiologic, or nonmicrobiological laboratory 
tests (eg, C-reactive protein). 13~ Radiograph changes can lag 
behind the dinical diagnosis, both in showing initial pathology 
and resolution. In one recent study, only 19 of 39 patients 
diagnosed clinically with pneumonia had radiographic changes 
compatible with pneumonia. In the same study, 21 children with 
acute respiratory disease and radiographic evidence of pneumo- 
nia had not received a clinical diagnosis of pneumonia. TM In 
addition, significant variability (94%) in the radiographic diagno- 
sis of pneumonia has been reported between radiologists and, 
over time, with the same radiologist) ~2 Indeed, "false" histories 
have been shown to influence the interpretation of "normal" 
chest films in children. 133 

In the United States, use of serological data for the diagnosis 
of LRI caused by viruses is not common. However, serological 
data have been used extensively in other countries as an adjunct 
to diagnosis by culture and antigen detection. TM Young infants 
often do not develop a significant serological response to many 
of these pathogens (eg, RSV). Also, HPIV serotypes, especially 
HPIVs-1 and 3, often cannot be distinguished. 49 Antibodies to 
these pathogens can be detected by enzyme immunoassay 
(EIA), indirect immunofluorescent assay, complement-fixation, 
hemagglutinin-inhibition, radioimmunoassays, Western blot, 
and neutralization assays9 Complement-fixation once was the 
most widely used assay and probably is the most specific for most 
of these viruses, but EIA has proven to be superior in sensitivity 
and is becoming more widely used. 

A detailed understanding of these agents and their seasonal- 
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ity (Figs 2 and 3) helps suggest the most likely pathogen(s), but 
as can be seen, most of these viruses are recovered in most 
months of the respiratory virus "season." Rapid diagnosis of the 
specific pathogen(s) may be very important for initiating antivi- 
ral therapy, cohorting patients, stopping unnecessary antimicro- 
bial therapy (helping to decrease antibiotic resistance), eliminat- 
ing unnecessary diagnostic tests and procedures, decreasing 
hospital stay, and reducing costs. 135 

One of the most important aspects of diagnosing respiratory 
viruses in children is the proper collection and transport of 
samples of respiratory secretions. Throat swabs, nasopharyngeal 
swabs, nasal wash, and nasal aspiration all have been used 
successfully to recover these pathogens. The latter two methods 
have been the most successful. 136-14~ Swabs, brushes, or scrapers 
have been effective in providing epithelial cells (or antigen) for 
IFA or EIA. 139,141,142 Nasal-wash specimens should be trans- 
ported on ice and processed within 8 hours for best virus 
isolation. 

RSV, HPIV, influenza, and adenovirus all can be detected or 
isolated by many methods. Tissue culture isolation is the 
standard against which everything else is compared, although 
rapid antigen detection for RSV without culture confirmation is 
widely practiced. The first three viral groups can be isolated in 1 
to 14 (average, 4 to 5) days in approximately 50 percent of viral 
pneumonias. 49 Adenovirus usually takes longer to isolate. Tissue 
culture isolation is affected dramatically by the different meth- 
ods of obtaining and transporting clinical samples and by cell 
culture conditions. 143 Many clinical isolates cannot be grown 
rapidly, even under the best conditions. Furthermore, even after 
initial identification, additional immunologic assays may need to 
be performed for specific typing (eg, HPIV-1, influenza A, etc). 
Accordingly, standard tissue culture rarely is useful in making 
clinically-relevant decisions. 

Enzyme-linked, radio-, and fluroimmunoassays (ie, EIA, 
RIA, FIA) all have been developed to detect viral antigens from 
each of these four common pathogens, 144-149 although the 
majority of data are on RSV and influenza. In general, these 
assays have good specificity compared with tissue culture (87 to 
100%), but they have decreased sensitivities (74 to 85% range). 
The largest clinical experience is with RSV EIAs, which have 
been reported to have a sensitivity range of 60 to 90 percent, 
with the lowest sensitMties being reported from laboratories 
with the highest yield from tissue culture, 14~ which implies 
that the sensitivity may actually be only about 60 percent. 
Antigen detection for adenovirus has yielded the poorest 
results, with sensitivity as low as 22 percent. 145'148,15~ Assays 
for HPIV are not available commercially at this time in the 
United States. Direct and indirect immunofluorescent as- 
says (DFA/IFA) using monoclonal and polyclonal antibodies 
have been developed for all of these virus groups (Table 
3). 27'142'144'145'151-157 In general, the sensitivity of DFAflFA is 
lower than that ofEIA (--80%), 157 but the specificity usually 
is slightly higher (average, 91%). Once again, the largest 
clinical experience is with assays to detect RSV directly from 
clinical specimens. These studies have shown IFA to be as 
sensitive if not more sensitive than is EIA. 140,141,144,153"155,158,159 

IFA for direct detection of HPIVs-1, -2, and -3 has shown 
highly variable sensitivities, averaging between 60 and 80 

percent and often even much lower. 49 However, with currently- 
available monoclonal antibodies, improved sensitivities as high 
as 80 percent are being reported. 157 Specificities usually have 
been excellent. RSV, HPW, influenza, and adenovirus all have 
shown 5 to 20 percent false-positive rates for EIA and 
IFA. 49'144'153,155'157'159 However, some of these "false" positives 

may be true positives because the tissue culture was "falsely" 
negative. In addition, the majority of these studies have sug- 
gested that DFA/IFA is subjective and needs significant experi- 
ence to obtain the best results. Also, in the majority of these 
studies, 6 to 11 percent of the samples were "uninterpretable" 
and were removed before statistical analyses were performed. 

Centrifugation in tissue culture shell vials coupled with 
DFAflFA for rapid identification has been shown to speed 
recovery of most of these viruses, especially adenovirus. 16~ The 
majority of the data concern RSV and influenza. The published 
sensitivities compared with tissue culture when read at 48 hours 
vary between 48 and 100 percent, depending on the virus. 
Averaging the data indicates that accuracy of adenovirus detec- 
tion is approximately 70 percent, HPIV (mostly type 3) approxi- 
mately 80 percent, RSV approximately 90 percent, and influ- 
enza approximately 95 percent, compared with detection by 
standard tissue culture. 

The development of rapid molecular techniques such as 
polymerase chain reaction (PCR) has allowed for the sensitive 
and specific detection of the majority of these respiratoryviruses 
from clinical specimens. 161"169 A commercial laboratory has 
offered multiplex PCR assays for these viruses for several 
years] 65 A multiplex PCR for HPIVs-1, 2, and 3 was first 
available in 1995, followed in 1996 by a multiplex PCR to RSVA, 
B; influenza A, B, and HPIVs-1, -2, and -3. Figure 3 shows the 
results of this multiplex PCR assay used to diagnose the seven 
most common respiratory viruses from symptomatic hospital- 
ized children. In 318 children, comparison with standard tissue 
culture showed a sensitMty of 97 percent (confidence interval 
0.89 to 1.0) and a specificity of 98 percent (confidence interval 
0.97 to 0.98). This assay takes only about 10 hours to complete, is 
semiquantitative or quantitative, and is less sensitive to factors 
that interfere with other methods (eg, viral viability and han- 
dling of samples). In addition, PCR technology seems to be more 
sensitive than is tissue culture or antigen detection, 17~ suggest- 
ing that PCR assays for the common respiratory viruses may 
become the new gold standard in diagnosis. This new method 
should provide exciting new diagnostic and epidemiological 
information over the next 5 years. 

Rhinoviruses and coronaviruses are difficult to grow in tissue 
culture, even with experience. 84 Coronavirus isolation may not 
even be available commercially at this time. 79 Investigators have 
used standard strains (HCV-229E and OC43) in EIA to detect 
either virus or antibody to these and closely-related viruses with 
good success. 27,83,85fl72 Also, IIVA has been used to detect corona- 
viruses in children. 86 A tissue culture cell line with a cloned 
human receptor to coronavirus has been developed that may 
allow increased recovery of these viruses from clinical samples. 173 
In addition, PCR-based assays are beginning to be used more 
frequently in research studies. Application of this technology 
may provide answers to many important epidemiological and 
clinical questions. 
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Sequelae 
Many of the viruses that cause pneumonia in children cause 
other syndromes or have sequelae not related to the respiratory 
tract (eg, influenza or adenovirus). However, this section will 
deal only with physical and physiological sequelae of pneumonia 
in children (and only from developed nations). Certainly, these 
sequelae are only worse in countries with lower socioeconomic 
development. The greatest portion of morbidity and mortality 
caused by these viruses is in young infants and the immunocom- 
promised and medically-compromised populations. The major- 
ity of deaths caused by RSV each year occur in infants and 
children who have congenital heart disease TM or chronic lung 
disease 175-177 or who are immunocompromisedY 8-~8~ Likewise, 
HPIV causes death usually only in young infants, the elderly, 
and the immunocompromised, but it can cause serious morbid- 
ity in infants with chronic pulmonary disease. 49,18| 

Apnea is a major complication of viral LRI and pneumonia in 
young infants (younger than 6 months of age). RSV causes the 
majority of pneumonia in this age group and, therefore, has 
been implicated most frequently) 82 RSV has not been shown to 
have a specific pathological role in apnea different from other 
respiratory viruses that cause similar diseases (eg, HPIV-3, etc). 
Apnea in infants with RSV infection occurs usually at the 
beginning of the illness, is nonobstruetive, brief in duration, and, 
for most infants, does not cause sequelae. 5~ 

Secondary bacterial infections of the lung can occur with any 
of these pathogens, especially influenza. 184 Bacterial involve- 
ment has been implicated in 31 percent of LRI caused by 
HP1V) 85 Also, as many as 53 percent of children with bacterial 
pneumonia have had a concomitant viral infection. 95 Viruses 
isolated included RSV, HP1V, enterovirus, rhinovirus, and adeno- 
virus. However, the RSV isolation rate has been reported to be 
the same as the controls without bacterial pneumonia, whereas 
a statistical association between bacterial pneumonia and viral 
infection has been noted for HPIV. 95 The exact roles of viral LRI 
as causative agents in bacterial pneumonia still are being 
determined. 

Long-term pulmonary abnormalities found in children after 
having RSV pneumonia include decreased gas exchange, 186 
restrictive lung disease,187 obstructive lung disease, and hyperre- 
activity) 86,188 Even adults have been reported to develop chronic 
lung disease after HPIV LRIj s9 Viral-specific IgE or cytokine 
production (eg, IL-11, TGF-beta-1, etc) in the lung may play a 
role in both acute and recurrent wheezing caused by RSV and 
I-IPlV. 190'191 However, the exact roles of IgE, allergy, cell- 
mediated immunity, and tissue cytokines and the possible 
biased selection of genetic susceptibilities or "at risk" individu- 
als in long-term follow-up studies remain unclear. Parainfluenza 
LRI in animal models have shown persistent changes in lung 
mechanics and hyperresponsiveness, 192 suggesting that viral 
LRI may lead to real pulmonary damage in some people. 

Bronchiolitis obliterans, bronchiectasis, unilateral hyperlu- 
cent lung, and chronic atelectasis all have been described after 
infection by many different viruses. 49 However, adenoviruses 
have been reported more frequently than have the other 
common viruses. The exact roles of viruses in general, or 

adenovirus in particular, in the pathogenesis of these rare 
sequelae are unknown. 

Prophylaxis, Therapy, and Prevention 
Prophylaxis  

Antiviral prophylaxis against pneumonia or other LRI needs to 
be extremely safe, inexpensive, and widely available for long- 
term use in children. So far, these criteria have been successfully 
fulfilled only in preventing influenza A infections. The recently 
approved prophylaxis for severe RSV disease still does not meet 
these criteria because it is very expensive and in limited supply. 

lmmunoglobulin (IGIV). Human plasma with high-micro- 
neutralization titers to RSV has protected mice from challenge 
infections with RSV. 193 Also, human immunoglobulin with 
high-neutralization titers to RSV has decreased viral shedding 
from challenged primates TM and has been shown to be protec- 
tive against other paramyxoviruses) 95 Initial studies using 
standard IGIV to prevent RSV disease in high-risk infants 
showed only minimal benefit; however, after increasing the 
specific RSV-neutralizing antibody titer further, trials were 
successful in showing protection] 96q97 The most recent trial 
showed a 40 to 60 percent reduction in RSV illness, severity, and 
hospitalization. 197 In addition, disease caused by other respira- 
tory viruses also was reduced. The American Academy of 
Pediatrics has recommended the use of RSV-IGIV in children 
younger than 2 years of age with bronchopulmonary dysplasia 
currently or recently (last 6 months) on oxygen therapy or who 
were prematurely born (<32 weeks gestation), but not in 
children with congenital heart disease, especially cyanotic dis- 
ease. 198 

Amantadine/Rimatidine. These two agents have shown use- 
fulness in chemoprophylaxis against influenza A, showing be- 
tween 71 and 100 percent protection against illness. Amanta- 
dine should be considered during influenza season for any child 
who is (1) unimmunized and at high risk (Table 4), (2) any 
unimmunized adult/child with regular prolonged contact with 
high-risk children, (3) immunized high-risk children who were 
immunized late or with vaccine strains that do not match the 
current epidemic strains, and (4) as an adjunct in certain 

Table 4. Children at High Risk for Serious Complications 
From Viral Pneumonia 

Definite Risk 
Primary or secondary immunodeficiencies (including 

human immunodeficiency virus) 
Congenital heart disease (hemodynamically significant) 
Chronic lung disease (including moderate to severe 

asthma, cystic fibrosis, bronchopulmonary dysplasia) 
Residents of chronic-care facilities 
Hemoglobunopathies 

Possible Risk 
Diabetes mellitus 
Chronic renal disease 
Chronic metabolic disease 
Children on long-term aspirin therapy 
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high-risk children not expected to respond well to immuniza- 
tion. 

Vitamin C. Controversy continues about the usefulness of 
vitamin C for prophylaxis against URI, especially with recent 
studies showing protection against rhinovirus infection. 199a In 
addition, previous trials have suggested that vitamin C may 
protect against LRI or pneumonia in children. 199b Further study 
of this issue is warranted. 

Vitamin A. Recent evidence has shown a significant role for 
vitamin A in reducing morbidity and mortality in acute measles 
infections, 2~176176 including pneumonia and croupy ~176 Acute 
infection seems to lower the level of vitamin A in well-nourished 
children with previously normal levels. 2~ Measles, RSV, and 
HPIV are closely related paramyxoviruses, but the role of 
vitamin A in preventing or treating LRI caused by these other 
viruses is unknown. However, evidence that paramyxovirus 
specific B and T cell function may be improved with vitamin A 
supplementation exists, and such could hold true for RSV and 
HPIV as well. 2~ 

Nonspecific immunostimulators have been shown to pro- 
tect against challenge infections with HPIV in animal experi- 
ments. 2~176 They have included interferon-gamma, human 
granulocyte colony-stimulating factor, and human interleukin-1 
beta. Many other agents have shown antiviral activity toward 
these viruses, but none are near clinical application at this time. 

Therapy 
lmmunoglobulin (IGIV). Recent studies have shown some 

benefit when high-titer anti-RSV antibody is administered to 
animals infected with RSV. 2~ Infants treated with IGIV showed 
decreased viral shedding and improved clinical response without 
differences in mortality. 21~ Also, aerosolization of the immuno- 
globulin recently has been shown effective in dramatically 
reducing virus titers in infected cotton rats. TM Anecdotal use of 
immunoglobulin to treat adenovirus disease in immunocompro- 
raised children has been reported with both positive 212 and 
negative results. 213 Similarly, IGIV has been coupled with 
ribavirin anecdotally for the treatment of RSV, HPIV, and 
influenza B pneumonia in immunocompromised patients. 2 Lipo- 
some encapsulation as a means of delivery is being investigated 
for many drugs, including IGIV and antiviral agents. Liposome 
encapsulated antibody has shown effectiveness both in prophy- 
laxis and in treatment of influenza virus A in mice. 214 Evidence 
suggests that specific high-titer antiviral IGIV in some form 
may find a place in the treatment of severe pneumonia in 
children, However, RSV-IGIV recently has been shown not to be 
effective in the treatment of high-risk children hospitalized with 
LRI caused by RSV315 

Interferon. Parenteral interferon causes many systemic side 
effects and, as such, has not been thoroughly investigated as a 
therapeutic agent in children with pneumonia. 216 Furthermore, 
adenovirus antagonizes interferon's antiviral activity; accord- 
ingly, the use of this drug in the treatment of pneumonia does 
not seem promising. 217 

R ~ r i n .  Ribavirin, delivered by small particle aerosol, has 
been shown to be effective in treating influenza in college 
students? 1s-22~ Treated students had decreased symptoms and 
virus excretion. The only published cases of influenza virus LRI 
treated with ribavirin recovered32 Ribavirin should be consid- 

ered as an adjunct to amantadine for the treatment of serious 
LRI with influenza virus. Several clinical trials have shown that 
the use of ribavirin results in clinical improvement in children 
with LRI caused by RSV. 222-224 However, more recent efficacy 
trials have failed to show benefit. At this time, ribavirin should 
be considered in specific clinical situations when RSV is a likely 
pathogen. They include young infants (less than 6 weeks of age) 
and those with severe LR1 or at high risk for serious complica- 
tions, which have been well-described in the Red Book. 225 
High-dose, short-duration therapywith ribavirin has been shown 
to be safe in intubated and nonintubated infants. ~26 This 
therapy consists of 6 g/100 mL administered over 2 hours three 
times each day. Ribavirin has both in vitro and in vivo activity 
against HPIV. Furthermore, anecdotal reports show decreased 
HPIV shedding and clinical improvement when infected immu- 
nocompromised patients have been treated with ribavirin. 

A recent report suggested that ribavirin may be useful in 
treating RSV, influenza B, and HPW pneumonia in adult BMT 
patients. 227 Ribavirin should be considered in these types of 
situations until better drugs become available or controlled 
trials are completed. Ribavirin has some activity against adeno- 
viruses, rhinoviruses, and coronaviruses in vitro, but it has not 
been tested clinically. 228 

Ganeidovir. Ganciclovir seems to have some inhibitory 
effect on adenovirus, both in vitro and in vivo, but it has not been 
studied systematically. 229 

Amantadine/Rimantadine. Amantadine has been approved 
in the United States for over 30 years for the treatment of 
influenza A. A recent review describes amantadine and rimanta- 
dine in great detail33~ Both of these drugs cause a significant 
improvement in clinical signs and symptoms and decreased viral 
shedding. Treatment with amantadine currently is recom- 
mended for children with severe LRI or those at risk to develop 
serious LRI when infected with influenza A. This latter group 
includes immunocompromised children and those with serious 
medical conditions (Table 4). Therapy should be started as soon 
as possible, preferably within 24 hours. 

Although numerous exciting new antiviral agents are being 
developed, most of them are still years away from being 
available clinically. However, two agents may be close to being 
marketed in the United States. The first is zanamivir (GG167), 
which is a potent and highly specific neuraminidase inhibitor for 
both influenza A and influenza B. This drug is currently in phase 
II and HI clinical trials and has shown a decrease of one to two 
days in the length of time symptoms persist, with no significant 
toxicity. 231,232 Another agent, MEDI-493 (RSV monoclonal anti- 
body), has just been shown in a phase III clinical trial to reduce 
RSV hospitalizations by 55 percent. 233 This agent has the 
advantage that it can be administered intramuscularly and can 
be used for outpatients. 

The only vaccines currently available in the United States 
are for influenza A, influenza B, and adenovirus. Live oral 
enteric-coated adenovirus vaccine against types 4 and 7 has been 
used extensively in the military (greater than 10,000,000 doses). 
This vaccine is effective in preventing epidemics of acute 
respiratory disease. Live oral vaccines for strains of adenovirus 
causing LRI in children (types l, 2, and 5) were tested 20 years 
ago and found to be effective in stimulating good immunologic 
responses in seronegative adults, TM but they have not been 
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studied in clinical trials. Problems facing the development of any 
live adenovirus vaccine for use in children include formulation 
problems (to maintain protection from the acid environment of 
the stomach) and the inclusion of the majority of serotypes 
infecting children. No vaccine is nearing clinical application at 
this time, but effort is warranted to protect children from LRI 
caused by this agent, especially among the growing population 
ofimmunocompromised children. 

Influenzae A and B vaccines are widely available, safe, and 
effective. The current vaccines usually contain two type A 
strains and one type B, with inactivated whole virus preparations 
administered to children older than 12 years and "split" vaccine 
(where the membrane antigens are separated from the core) 
being administered to younger children. All of the children 
listed in Table 4 should receive the current vaccine starting at 
about 6 months of age; the vaccine includes two doses during the 
first year that vaccine is administered if the child is younger 
than 9 years of age (see Redbook). Any child over 6 months of 
age may receive the current influenza vaccine (those with 
allergies to chickens or eggs should be skin tested first). 
However, the intramuscular route of vaccination has been an 
impediment to universal vaccination of young children. Live 
cold-adapted intranasal influenza vaccines have proven to be 
safe and immunogenic in infants less than 6 months old and also 
protective in children and adultsf135 These vaccines currently are 
being tested for efficacy and could lead to universal infant 
immunization with the additional benefit of decreased disease 
in adolescents and adults. 

Future Vaccines 

RSV.  Currently, the major immunization strategies for 
RSV involve live cold-adapted (CA) or chemically mutated 
strains, subunit vaccines, and recombinant vectors. The major 
protective immunogens on the surface glycoproteins of RSV 
have been incorporated into vaccinia and adenovirus expression 
vectorsf136 Studies in cotton rats and some species of primates 
have shown good immunologic responses and protection from 
LRI (viral shedding), 2s7,238 whereas results in other species of 
primates have been less promising. 239 Further evaluation of this 
approach will have to include the use of suitable vectors for 
children and efforts to increase immunogenicity. Subunit vac- 
cines containing purified RSV surface proteins have progressed 
to clinical trials in childrenfl 4~ Vaccines tested in humans and/or 
animals have contained mostly G, mostly F, and a recombinant 
chimeric protein F/Gfl 4~ So far, studies have shown poor 
immunogenicity in seronegative humans or chimpanzees, low- 
neutralization antibody titers, suppression of immune response 
in the presence of maternal antibody, and concern over disease 
potentiation as seen with formalin-inactivated vaccine. These 
problems render this approach unlikely to produce a safe and 
efficacious vaccine in the near future. 

Live CA strains of RSV A and B currently are being studied 
and seem to be promising as vaccine candidates. These new 
vaccine strains differ from previous vaccine strains by containing 
multiple mutations (3 or more); they have been shown to retain 
stability against reversion to wild type after replication in 
rodents and primatesf136,245,246 Human trials are in progress. 

HP/V. CA strains of HPIVs-1, -2, and -3 have been devel- 
oped and are at different levels of testing. Most work has been 

on HPIV-3, for which clinical trials are in progress. CA HPIV-3 
vaccines have shown immunogenicity and attenuation in youn- 
ger infants, but symptoms still developed. 247 Additional clinical 
and molecular studies are in progress on CA HPIV-3 strains 
with greater attenuationf148 AJennerian approach using bovine 
PW-3 failed to produce significant immune responses in adult 
volunteers or seropositive childrenY 49 However, initial results in 
a small number of seronegative infants and children indicate 
that BPIV-3 is safe, immunogenic, and phenotypically stable. 25~ 
Further studies are planned using this vaccine. Subunit vaccines 
containing envelope glycoproteins and virus vectors expressing 
these same proteins have been immunogenic in animals, 25m56 
but clinical trials have not been reported. 
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