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Precisionmedicine in the clinical management of cancermay be achieved through the diagnostic platform called
“liquid biopsy”. Thismethod utilizes the detection of biomarkers in blood for prognostic and predictive purposes.
One of the latest blood born markers under investigation in the field of liquid biopsy in cancer patients is circu-
lating tumor DNA (ctDNA). ctDNA is released by tumor cells through different mechanisms and can therefore
provide information about the genomicmake-up of the tumor currently present in the patient. Through longitu-
dinal ctDNA-based liquid biopsies, tumor dynamicsmay bemonitored to predict and assess drug response and/or
resistance. However, because ctDNA is highly fragmented and because its concentration can be extremely low in
a high background of normal circulating DNA, screening for clinical relevant mutations is challenging. Although
significant progress has beenmade in advancing thedetection and analysis of ctDNA in the last fewyears, the cur-
rent challenges include standardization and increasing current techniques to single molecule sensitivity in com-
binationwith perfect specificity. This review focuses on the potential role of ctDNA in the clinical management of
cancer patients, the current technologies that are being employed, and the hurdles that still need to be taken to
achieve ctDNA-based liquid biopsy towards precision medicine.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Cancer is the consequence of deregulation of tumor suppressors and
proto-oncogenes caused by the accumulation of mutations in the
. on behalf of Research Network of C
genome of a normal cell [1,2]. Proto-oncogenes promote cell division
and proliferation, whereas tumor suppressors can induce apoptosis
and are negative regulators of cell proliferation [3]. The identification
of the genetic and/or epigenetic modifications leading to pathogenesis
can be exploited for anticancer therapy management, prediction, and
prognosis [4]. Cancer-related mutations include chromosomal aberra-
tions such as copy numbers alterations (CNAs), inversions,
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translocations, insertions, and deletions, as well as single nucleotide
point mutations [3]. Epigenetics refers to the covalent modification of
DNA resulting in changes to the function and/or regulation of the
affected genes, without altering the primary sequences (a change in
phenotype without a change in genotype). Epigenetic factors such as
DNA methylation and histone modification, play a key role in gene ac-
tivity, cell differentiation, tumorigenesis, X-chromosome inactivation,
genomic imprinting, and other cellular regulatory processes [5].

Metastatic spread is the main cause of cancer-related death and is
the result of colonization of tumor cells from the primary tumor into
distant organs, which may finally be followed by organ failure. The
route of dissemination takes placemainly through the blood circulation,
in which only very few circulating tumor cells (CTCs) are able to survive
[6]. Extravasation of the tumor cells is usually expected to occur in dis-
tant organs such as the brain, bone marrow, lungs, or liver in which the
disseminated tumor cell (DTCs) can stay dormant for many years
(Fig. 1) [7]. The observation of DTCs in bone marrow has been shown
to be highly correlated with recurrence of disease [8].

In order tomolecularly characterize the tumor and identify potential
therapeutic targets, material directly taken from the tumor has to be in-
vestigated. The standard procedure to genotype a tumor is by obtaining
a small piece of tissue using a tissue biopsy, which is a rather invasive
procedure. Furthermore, neoadjuvant treatment may shrink the tumor
to undetectable size, leaving no tissue for further investigation. There-
fore, the procedure to obtain a tissue biopsy is severely hampered by
spatial and temporal limitations; in addition, a single biopsy sample
may not represent the full tumor load's heterogeneity [9,10]. As an al-
ternative to characterize the tumor, blood can be used to obtain
biomolecules or other markers originating from the tumor. One of
these markers is circulating tumor cells (CTCs) that originate from the
currently present tumor and thereby can function as a so-called “liquid
biopsy” (Fig. 1) [11].

The identification of CTCs has been shown to have prognostic and
predictive value in different entities of early-stage cancer [12]. However,
highly sensitive techniques are required to identify the small number of
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Fig. 1. Liquid biopsy markers. Biomarkers that are currently used as liquid biopsy include ce
disseminated tumor cells (DTCs). Cell free nucleotides are released into the blood circulati
genetic material. Cell free DNA (cfDNA) is highly fragmented but is still wrapped around nu
tumor's methylation patterns, chromosomal aberrations, or other mutations.
cells in the extremely high background of normal cells. The different
methods available for obtaining CTCs are either based on specific cellu-
lar makers expressed on the cell surface [13] or on the physical proper-
ties of the cells. Antigens expressed by the tumor cells enable positive
enrichmentwhereas negative enrichment can be achieved by depletion
of white blood cells [6]. Because the half-life time of CTCs is b2.5 hours
[14] and the metastases are also able to shed tumor cells into the circu-
lation, more CTCs can be expected in the advanced stages of the disease
[15]. Other blood-borne biomarkers currently used as liquid biopsy in-
clude platelets, cell-free nucleotides, and extracellular vesicles such as
exosomes (Fig. 1) [11]. Platelets may be altered through confrontation
with tumor cells via transfer of tumor-associated biomolecules [16].
These so called tumor-educated platelets (TEPs) contain a variety of
RNA transcripts and proteins thatmay influence the process ofmetasta-
sis development by enhancing or blocking tumor cells, immune cells,
and stromal cells, either by direct cell-to-cell contact or by releasing
extracellular queues [17,18]. Exosomes are an effective way for cells to
secrete mRNA and miRNA into the circulation that may lead to disease
progression [19]. For example, exosome-mediated transfer of cancer-
secreted miR-105 promotes metastasis in breast cancer [20]. Therefore,
identification of such cell-free miRNAs can be used to serve as a
biomarker for the early stage of metastasis [21]. Besides RNA, cell-free
nucleotides also include cell-free DNA (cfDNA). As a consequence, liquid
biopsy may also include the screening for fetal aneuploidy where the
cfDNA originates either from the fetus or from apoptotic placental
cells, circulating in a pregnant woman's plasma, is investigated [22].
This review will focus on the use of cfDNA originating from the tumor,
i.e., circulating tumor DNA (ctDNA), for the clinical management of can-
cer patients and provide a comprehensive overview of the different
techniques being applied to obtain and characterize ctDNA.

2. Circulating tumor DNA (ctDNA) properties

Two processes are involved in the release of ctDNA into the blood
circulating [23]. The first is a passive release of DNA through cell death
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either by apoptosis or necrosis (Fig. 1). As a consequence of enzymatic
cleavage of DNA during apoptosis, the resulting DNA fragments are
still wrapped around single nucleosomes and the length plus linker is
around 166 bp [24,25]. Larger fragments starting from 320 bp, the
length of DNA wrapped around two nucleosomes, up to N1000 bp are
released from phagocytosis of necrotic cells [23]. The second mecha-
nism of ctDNA release is by active secretion [23]. Secretion of ctDNA
takes place by the release of extracellular vesicles, such as exosomes
and prostasomes, containing pieces of DNA around 150-250 bp [26].
Plasma DNA that originates specifically from tumors (ctDNA) typically
represents 0.01–90% of the total cell-free DNA (cfDNA) found in blood
[27,28]. It is hypothesized that ctDNA is secreted by tumor cells as a sig-
nalingmolecule to drive tumormetastasis [29,30]. For example, two in-
dependent studies demonstrated that ctDNA may be involved in
tumorigenesis and metastasis development. By incubating murine
NIH-3 T3 cells with plasma from patients with KRASmutated colorectal
tumors followed by injection into mice, the development of tumors
could subsequently be observed as well as the detection of human
KRAS mutations in the mice’ plasma [29,30]. Furthermore, it was ob-
served that ctDNA could promote the proliferation of hormone
receptor-positive breast cancer cells by activation of the TLR9-NF-κB-
cyclin D1 pathway in vitro [31]. Finally, a small part of the ctDNA may
originate from CTCs that die in the blood stream [32].

The rate of ctDNA shedding into the circulation depends on the loca-
tion, size, and vascularity of the tumor, leading to a difference in ctDNA
levels among patients [33,34]. The half-life time of ctDNA in the blood
circulation ranges from 16minutes to 2.5 hours [35]. The concentration
of the total cfDNA in healthy individuals is on average 30 ng/ml plasma
and ranges from 0 to 100 ng/ml, whereas in cancer patients this can be
up to 1000 ng/ml [36,37]. In order to extract cfDNA from the blood, dif-
ferent methods have been developed. Magnetic enrichment of cfDNA
can be achieved by positively charged magnetic beads that bind the
negatively charged phosphate backbone of DNA [38–41], whereas silica
column-based enrichment makes use of the binding affinity of DNA
molecules [38–40,42–44]. Furthermore, cfDNA capturing can be per-
formed by polymer mediated enrichment (PME) [39] or by a phenol-
chloroform based extraction procedure in which DNA is not soluble
[42]. Several studies have compared these extraction methods using
DNA yield, fragment size distribution, and the quality of the obtained
DNA in downstream analysis using for instance mutation detection as
a read-out [38,39,42,43]. However, these studies have shown large var-
iations in cfDNA yield and/or fragment size between the different ex-
traction methods. For example, conventional extraction methods
based on phenol-chloroform have shown higher yields than with DNA
extraction kits, but DNA purity and thereby efficiency of downstream
analyses was lower as compared to the magnetic-based method [40].
Some studies have favored the silica-based membrane method due to
the high recovery of 82%–92% cfDNA from serum [45]. However, the
silica-based membrane system has the disadvantages of a low yield
and partial loss of DNA fragments smaller than 150 bp [46,47]. In con-
trast, a magnetic bead-based method seems to be more efficient in the
recovery of short cfDNA fragments as compared to the silica-based
membrane and conventional methods [48].

3. Clinical applications of ctDNA

The investigation of biomarkers that may help to detect cancer in its
early stages before becoming clinically apparent could eventually lead
to a decreasedmortality [49]. The quantification of cfDNA concentration
has been studied to discriminate between healthy individuals and ma-
lignant disease [50,51]. It was demonstrated that the levels of cfDNA
in NSCLC cancer patients are significantly higher than in healthy indi-
viduals [50], in fact, a cutoff level of cfDNA N0.20mg/ml is able to distin-
guish between lung cancer patients and control cases with a sensitivity
of 69–79% and a specificity of 83–89% [50,51]. Furthermore, many stud-
ies have demonstrated that the cfDNA concentration is associated with
tumor volume leading to shorter overall survival (OS) of patients with
breast [52], ovarian [53], lung [54,55], gastric [56], and colorectal cancer
[35,57]. Interestingly, contradictory data have also been reported show-
ing that the concentration of cfDNA did not seem to be associated with
overall or progression-free survival [58]. Although, these data indicate
that cfDNA levels can be used to monitor tumor progression, using
cfDNA for diagnostic purposes is still of limited value.

Quantification of tumor-specific mutations in ctDNA appears to be
more relevant for studying tumor progression. High levels of mutated
PIK3CA in serum DNA of breast cancer patients are associated with
short progression-free and overall survival as compared to patients
with low or no detectable amounts of mutated ctDNA [59]. The analysis
of single nucleotide variants in KRAS, NRAS, PIK3CA, BRAF, and EGFR
using cfDNA has been shown to have N80% concordance when com-
pared to tumor tissue of colorectal [60,61], lung [34,62], and breast
[59,61] cancer patients. However, also the time-point atwhich liquid bi-
opsy is performed in order to track minimal residual disease (MRD)
seem to be important, as the ctDNA concentration may lay below the
detection limit during certain stages of the treatment. For example,
Murillas et al. demonstrated that the detection of ctDNA eight months
after surgery is associated with a high risk of relapse in early-stage
breast cancer patients, whereas this could not be discerned before the
primary surgery based on the detected mutations [63].

ctDNA can also be used to monitor therapy efficiency by detecting
mutation-driven resistance [61,64,65]. For example, early detection of
ESR1mutations,which drive endocrine therapy resistance, may help to
improve the outcome of patients by switching to other treatment before
clinical progression of metastatic breast cancer patients [66]. Likewise,
the detection of KRAS gene mutations in ctDNA of colorectal cancer pa-
tients may indicate resistance to epidermal growth factor receptor in-
hibitors [61]. Furthermore, decreasing sensitivity to tyrosine kinase
inhibitors (TKIs) in patients with gastrointestinal stromal tumors could
be demonstrated by tracking primary and secondary hotspot mutations
in KIT (S821F) and PDGFRA (D842V) [67]. These data demonstrate the
potential of ctDNA to detect and monitor the clonal evolution of cancer
through serial genotyping, giving amore complete picture of thedistinct
genetic subclones that are related to drug resistance [68].

Methylation patterns found on ctDNA can be exploited as bio-
markers to detect epigenetic deregulation of genes. Hypermethylation
of the promoter of RASSF1A, FHIT, and APC found in plasma DNA was
shown to be a useful diagnostic marker for early stage renal cancer
with a sensitivity of 56.8% and specificity of 96.7% [69]. The detection
of hypermethylation of the MLH1 gene promoter in ctDNA could be
employed as a predictive biomarker for acquired resistance in ovarian
cancer andwas associatedwith a poor overall and progression-free sur-
vival [70]. Similarly, the identification of methylation of ESR1 promoter
in ctDNA was found to be associated with a lack of response to everoli-
mus/exemestane therapy in metastatic breast cancer patients [71].
Taken together, ctDNA has a high potential for monitoring clinically rel-
evant cancer-related genetic and epigenetic modifications for discover-
ing more detailed information on the tumor characterization [72].

4. ctDNA detection technologies

cfDNA is highly fragmented DNA and the total amount of ctDNA
might make up as low as 0.01% of the total cfDNA. These extreme low
concentrations make the detection challenging, particularly at the
early stages of tumor development [27,73,74]. Two strategies have
emerged to study the tumor's genomic material by liquid biopsy. First,
targeted approaches in which a single or few tumor-specific mutations
known from the primary tumor are used formonitoring residual disease
in the peripheral blood. Such techniques include Q-PCR, BEAMing, Safe-
SeqS, CAPP-Seq, and TAmSeq [57]. The disadvantage of this strategy is
that it requires detailed information about the tumor genome. However,
targetedmonitoring can be extremely sensitive, asmutations can be de-
tected at an allele frequency of down to 0.01% with high specificity and



373M. Elazezy, S.A. Joosse / Computational and Structural Biotechnology Journal 16 (2018) 370–378
at a fast and cost-effective rate [75–77]. The second strategy to investi-
gate ctDNA involves untargeted screening and aims at a genome-wide
analysis for copy number aberrations (CNAs) [78] or point mutations
by whole-genome sequencing (WGS) or whole exome sequencing
(WES) [79]. Advantages of untargeted strategies include (i) its ability
to identify novel changes occurring during tumor treatment and (ii)
prior information about the primary tumor's genome is not required.
However, a disadvantage is that high concentrations of ctDNA are re-
quired for reliable reconstruction of tumor-specific genome-wide
changes. Furthermore, untargeted approaches show an overall low sen-
sitivity (5%–10%) [79]. Depending on which strategy is required to in-
vestigate the ctDNA or interest, different technologies are currently
available (Table 1).

An additional strategy might be an alternative to “genotype-inde-
pendent approaches” a non-invasive screening approach, which based
on the fragmentation patterns of an individual's cfDNA that can include
an evidence of the epigenetic profile of the origin cells. Such a footprint
of nucleosome-bound cfDNA that can be used to determine the contrib-
uting cell types in the absence of genotypic differences [80].

4.1. Next-generation sequencing (NGS)

NGS has emerged in the past decade as an efficient technique for se-
quencing DNA and obtaining genetic information. NGS is based on the
analysis of several millions of short DNA sequences in parallel followed
by either sequence alignment to a reference genome or de novo
Table 1
Technologies for detecting circulating tumor DNA (ctDNA).

Technology Platform 1-Sensitivity Specificity cfDNA input Num
of tar

NGS Deep sequencing
(N10,000×)

0.02% 80–90% 2 ng Pane

TAm-Seq 0.02% 99.9997% 0.9-20 ng Pane

Safe-SeqS 0.1% 98.9% 3 ng Pane

FASTSeqS N10% 80% 5-10 ng Pane

CAPP-Seq 0.004% N99.99% 32 ng Pane

MCTA-Seq 0.25% 89% 7.5 pg Pane
Bias-Corrected
Targeted NGS

N0.4% 100% Pane

Multiplex-PCR NGS N0.1% 99.6% 2-50 ng Pane

Digital-PCR ddPCR 0.1% 100% 25 ng 1 to 3

BEAMing 0.01% 100% 1 ng 1 to 2

Real-Time PCR AS-PCR 1% 98% 3–50 ng 1

AS-NEPB-PCR 0.1% 100% 20 ng 1

(PNA-LNA) PCR
clamp

0.1–1% 79% 30 ng 1

(COLD-PCR) 0.1% 94.9% 1–10 ng 1–3

MS-PCR 0.62% 100% 20–100 ng 1

Mass-spectrometry
technology

SERS 0.1% 100% 5 ng 3 to 1
UltraSEEK 0.1% 100% 9 pg-4.2 ng Up to

Theperformance of the different technologies for detecting ctDNAusing different platforms. The
targets that can be analyzed in one reaction, and the type of alterations that can be detected. In
sensitivity; TAm-Seq: Tagged-amplicon deep sequencing; Safe-SeqS: Safe-Sequencing System;W
ing; ddPCR: Droplet Digital polymerase chain reaction; BEAMing: Beads, Emulsion, Amplificatio
Extendable Primer Blocker PCR; (PNA-LNA) PCR clamp: Peptide Nuclei Acid-Locked Nucleic Aci
specific PCR; SERS: surface-enhanced Raman spectroscopy.
sequence assembly. Despite its high sensitivity and specificity, NGS
shows a random error rate between 0.1% and 1% depending on the ap-
plied platform [79] making the detection of ctDNA by rare mutations
in the total cfDNA challenging. According to this observation,many pro-
tocols have been modified to improve and expand the detection of rare
mutations [81] (Table 1).

Deep-sequencing is considered the first approach to detect
mutations at an allele-frequency as low as b0.2% by sequencing
the target regions with high coverage (N10,000×) [82–84]. As a
result, the sensitivity of deep sequencing of finding mutations
in cfDNA earlier discovered in tumor tissue can be up to 100%,
although the specificity can be as low as 80% [83]. In early stage
lung cancer patients (stages IA–IIIA), it was shown that deep
sequencing for ctDNA resulted in a low sensitivity of 36.5% in
detecting the EGFR (L858R) mutation present in the tumor tissue,
whereas this increased to 72.7% in metastatic setting (stages IIIB–
IV) [84]. The main advantage of deep sequencing is the ability to
assess multiple biomarkers simultaneously while its disadvantage
is the extreme high read depth that has to be performed in order
to detect mutations at low allele frequency and thereby drastically
increasing sequencing costs.

Bias-Corrected Targeted NGS is adapted tominimize PCR artifacts by
using multifunctional adapters that facilitate read analysis and identify
which probe captured the fragment. Bias-Corrected Targeted NGS was
applied on cfDNA of NSCLC patients resulting in a detection of N0.4%
mutant allele frequency with a specificity of 100% [81]. This technology
ber
gets

Type of alteration Limitations References

l Genome-wide copy number
changes

Unable to detect
rearrangements without
assay customization

[82–84]

l Known point mutations Detects only known
mutations

[89]

l Known point mutations and
copy number variations

Less comprehensive than
WES

[90,91]

l Genome-wide copy number
changes

Low sensitivity and
specificity

[86,87]

l Known point mutations, copy
number variations, and
rearrangements

High cfDNA input; detects
only known mutations

[92–94]

l Known methylation sites [130]
l Known point mutations, copy

number variations, and
rearrangements

[81]

l Known point mutations Detects only known
mutations

[85]

Known point mutations Detects specific genomic
loci; limited in multiplexing

[78,109–111]

0 Known point mutations Detects only known
mutations

[112–115]

Known point mutations Low sensitivity; detects
known mutations

[119–121]

Known point mutations Detects only known point
mutations

[76]

Known point mutations Low specificity; detects only
known point mutations

[122–124]

Known point mutations Detect limited genomic loci;
limited in multiplexing

[77]

Known methylation sites Detects only specific CpG
islands

[71]

0 Known point mutations Detect limited genomic loci [125]
40 Known point mutations Detect limited genomic loci [126,127]

se technologies differ in sensitivity, specificity, theminimum input of cfDNA, thenumber of
addition, the limitations of each technology are indicated. Smallest allele frequencies= 1-
ES:whole exome sequencing; CAPP-Seq: Cancer Personalized Profiling by deep sequenc-

n andMagnetics; AS-PCR: Allele-specific amplification; AS-NEPB-PCR: Allele-Specific, Non-
d; COLD-PCR: co-amplification at lower denaturation temperature; MS-PCR: methylation-
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showed a high specificity in the detection of genomic alterations with-
out producing false positives.

Multiplex-PCRNGS is based on a designed PCR assay panel that facil-
itates amplification of specific target regions. Validation of the
multiplex-PCR NGS platform on the early stage of lung cancer patients
showed a highly sensitive detection of N99% of single-nucleotide vari-
ants (SNVs) at allele frequencies of N0.1% with a specificity of 99.6%
with as less as 20 ng of cfDNA as input material [85].

FAST-SeqS is a simple and efficient method for the detection of an-
euploidy by massive parallel sequencing [86,87]. FAST-SeqS can am-
plify approximately 38,000 amplicons with a single primer pair.
During amplification, degenerate bases at the 5′-end of the primer
are used as molecular barcodes to uniquely label each DNA template
molecule. This ensures that each DNA template molecule is counted
only once [88]. A modified version of FAST-SeqS (mFAST-SeqS) was
established as a prescreening tool to estimate the ctDNA percentage
by using a single primer pair to select and amplify distinct sections
of the genome that occur on every chromosome and estimate a
genome-wide z-score to evaluate the ctDNA percentage [75].
mFAST-SeqS has for example been used to monitor changing levels
of ctDNA in prostate cancer patients before and after treatment, show-
ing a decrease in the genome z-score in patients who responded to
therapy [87]. The advantages of this approach include speed
(b1 day) and it does not depend on prior knowledge of the genetic
composition of tumor samples. Nevertheless, the lowest detection
limit of 10% ctDNA is a clear disadvantage [87].

TAm-Seq (Tagged-amplicon deep sequencing) is based on a combi-
nation of efficient library preparation and statistically-based analysis al-
gorithms. This technique is adapted to sequence, detect, and quantify
tumor mutations across a gene panel including both tumor hotspots,
as well as entire coding regions of selected genes [73]. The precision of
this methods could be shown by the detection limit of 0.02% with
99.9997% specificity for point mutations in EGFR in circulating DNA
[89]. The development of a bioinformatic method is a clear advantage
that has helped to designmore efficient gene panels, improve the detec-
tion sensitivity of mutant alleles, and reduce the detection of false
positives.

Safe-SeqS was designed to further improve the sensitivity of NGS.
Safe-SeqS includes twomain steps, the first is to assign a unique identi-
fier (UID) to each DNA template molecule and the second is to amplify
each uniquely tagged template to create UID families and sequences
[90]. The Safe-SeqS approach has for instance been applied to ctDNA
of patients with metastatic colorectal and gastrointestinal stromal tu-
mors (GIST) for tracking therapy response. Here, Safe-SeqS showed a
highly sensitive detection of a mutant allele with a concentration of
only 0.1% and with a specificity of 98.9% [91,92].

CAncer Personalized Profiling by deep Sequencing (CAPP-Seq) was
developed to detect extremely low concentrations of ctDNA by the use
of “selectors” consisting of biotinylated DNA oligonucleotides that are
complementary to previously defined recurrent mutated areas. Hy-
bridization of the “selectors” on the area-of-interest is followed by
deep sequencing; thereby, multiple mutations can be detected by
CAPP-Seq including single nucleotide variants, rearrangements, and
copy number alterations [93]. Implementing CAPP-Seq on blood sam-
ples of patients with early and advanced stage NSCLC, showed a high
efficiency for detecting an allele frequency of EGFR mutations of down
to 0.02% with N96% specificity [93,94]. Further improving the sensitiv-
ity of the CAPP-Seq, Newman et al. employed an integrated digital
error suppression (iDES), a computational tool that can correct se-
quencing or PCR system error, resulting in a theoretical detection
rate of 0.00025% mutant allele frequency [95]. iDES-enhanced CAPP-
Seq has shown to be highly sensitive in the detection of EGFR muta-
tions with an allele frequency as low as 0.004% with N99.99% specific-
ity using cfDNA of NSCLC patients; furthermore, the required amount
for the library preparation was only 32 ng [95], making it a very prac-
tical test for investigating ctDNA.
Although many advances have been made, NGS is still a relatively
expensive and time-consuming technique. Furthermore, skilled
bioinformaticians are required for data analysis and interpretation.

Bioinformatics are an essential part for the analysis of NGS to enable
the detection of single nucleotide polymorphisms (SNPs), copy number
aberrations (CNAs), insertions and deletions (indels), epigenetic
changes, or to assembling new genomes [96–98]. The lack of standard-
ization thus far, has led to the development of different algorithms
performing essentially similar tasks in analyzing sequencing data, but
using differentmathematics. For instance, Burrows-Wheeler Alignment
tool (BWA) [99], Bowtie [100], STAR [101], TopHap, and Novoalign are
all short reads alignment tools [102]. Furthermore, variant calling can
be performed using, e.g., GATK [103], SAM tools [104], Atlas2 [105],
and FreeBayes [106]. In order to come to a possible consensus, the per-
formance of these different toolsmust be regularly compared under dif-
ferent conditions. To assess the accuracy in variant calls, Bao et al.
evaluated the four variant-calling algorithms, GATK-UnifiedGenotyper,
SAMtools mpileup, Atlas2, and FreeBayes after alignment to the
human genome using BWA, Bowtie2, and NovoalignV3. The authors
used the NIST-GIAB gold standard dataset to demonstrate the sensitivi-
ties of these methods. Variant calls by FreeBayes from Novoalign V3
mapped sequences showed the highest sensitivity and precision rate
for SNV calling of 95.97% and 99.70% and for indel calling 83.39% and
99.57%, respectively [102]. However, using simulated data, conflicting
results were demonstrated by Kockan et al., indicating a low sensitivity
and accuracy by using FreeBayes compared to SiNVICT, MuTect, and
VarScan2 [107]. In the same study, the authors evaluated the sensitivity
and accuracy of SiNVICT in the detection of SNVs and short indels of
cfDNA. By analyzing two different datasets obtained from cfDNA se-
quenced material of castrate-resistant prostate cancer with Ion Torrent
(AmpliSeq) technology and from metastatic castration-resistant pros-
tate cancer patients sequenced with Illumina MiSeq, the SiNVICT dem-
onstrated highly sensitive detection of variant calls at a low variant
allele frequency of 0.5% [107]. These studies show that further investiga-
tion has to be performed in order to determine the most accurate
methods for analyzing ctDNA.

4.2. Digital-PCR platforms

Digital PCR is a robust method to detect point mutations in ctDNA at
low allele fractions. This technique includes droplet-based systems,
microfluidic platforms for parallel PCR such as droplet digital PCR
(ddPCR), and BEAMing (beads, emulsions, amplification, and
magnetics).

Droplet-digital PCR (ddPCR) was developed to provide high-
precision, absolute quantification of copy number variation of target
DNA, such as quantification of somatic mutations [108]. The ddPCR ap-
proach is based on water-oil emulsion droplet technology by the distri-
bution of DNA sample into thousands to millions of droplets. A single
droplet contains a single mutated or non-mutated DNA strand that
can be distinguished by flow cytometry using fluorescent TaqMan-
based probes. ddPCR has been applied in several notable publications
on the detection and quantification of mutations in ctDNA
[78,109,110]. ddPCR demonstrated accurate detection of PIK3CA muta-
tions in early stage breast cancer patients using ctDNA compared to
tumor tissue with 93.3% sensitivity and 100% specificity [78]. Further-
more, Picodroplet digital PCR facilitates simultaneous screening for
multiple mutations in ctDNA from the plasma with a detection rate of
N1% [111]. The advantages of ddPCR are the high sensitivity in detecting
mutations and aswell as it being an inexpensive technology for absolute
quantification. The disadvantages of ddPCR are that only known vari-
ants can be screened and the limited number of variants that can be in-
vestigated within a single reaction.

BEAMing is a digital PCR method that is based on beads, emulsion,
amplification, and magnetics. This technology uses water droplets in
an oil emulsion as reaction vessels containing a mixture of template,



375M. Elazezy, S.A. Joosse / Computational and Structural Biotechnology Journal 16 (2018) 370–378
primers, PCR reagents, and magnetic beads. Fluorescently labeled
dideoxynucleotide terminators are used to discriminate droplets con-
taining sequences that diverge at positions of interest and analyzed by
flow cytometry [112]. This technique can identify genetic variations
present in the original DNA population and precisely quantify their
number in comparison to the number of wild-type sequences [113].
BEAMing has shown a highly sensitive detection rate of 0.02% mutant
allele frequency and a perfect specificity of 100%, with N90% concor-
dance rate between tumor tissue and ctDNA from different patients
with colorectal [35], breast [114], and lung [112,115,116] cancer. Al-
though BEAMing is a highly sensitive and specific, its workflow is com-
plicated and expensive to apply in routine clinical work.

4.3. Real-time PCR-based methods

Real-Time PCR represents a rapid and cheap method for amplifica-
tion of nucleic acid. Its sensitivity to detect mutations in a background
of wildtype DNA is 10–20% allele frequency, with almost no false posi-
tives [117,118]. To overcome the low sensitivity however, several
PCR-based variations have been developed, such as Allele-Specific am-
plification (AS-PCR) [119–121], Allele-Specific Non-Extendable Primer
Blocker PCR (AS-NEPB-PCR) [76], Peptide Nuclei Acid-Locked Nucleic
Acid (PNA-LNA) PCR clamp [122–124], and co-amplification at lower
denaturation temperature (COLD-PCR) [77]. Most of these assays are
based on either using a blocking oligo at the 3′-end to block the ampli-
fication of the normal allele and allowing the amplification of the mu-
tant allele or they make use of a modification step in the PCR protocol
that enriches variant alleles from a mixture of wild-type and
mutation-containing DNA. The AS-PCR is commonly used in clinical set-
ting to detect single nucleotide variation (SNV) or small insertion/dele-
tion in formalin-fixed, paraffin-embedded (FFPE) tumor tissues.
However, as it exhibits 98% specificity and 92% sensitivitywith a concor-
dance of 96% of themutant allele in ctDNA [119], it is not fully adequate
for the detection of rare genetic events. The PNA-LNA PCR clamp
method shows a high sensitivitywith thedetection of 0.1%mutant allele
and a specificity of 79% [122–124]. COLD-PCR is a powerful method to
detect single variants of approximately 0.1% and enables the enrich-
ment of this amount of a mutant allele to improve the sensitivity of mu-
tation detection by up to 100-fold [75,77]. Overall, PCR based assays are
a promising tool for detecting mutations as a low-cost effective can be
feasible in routine clinical practice.

4.4. Mass-spectrometry technology

The limited multiplexing ability of most PCR-based approaches rep-
resents a major limitation when dealing with clinical samples. Alterna-
tive technologies using mass-spectrometry have been developed to
detect ctDNA mutations at low frequency, namely Surface-Enhanced
Raman Spectroscopy (SERS) [125] and UltraSEEK [126,127].

The SERS-PCR detection method is based on using nanotags, which
are nanoparticulate optical detection tags that function through
surface-enhanced Raman Spectroscopy (SERS) for identification and
tracking the binding target. Direct detection of multiple mutations at
the same time using a Raman spectrometer is being enabled by laser ex-
citation resulting in the emission of specific signals [128]. Multiplex
PCR/SERS demonstrated high detection affinity of three hotspot muta-
tions in melanoma showing a high sensitivity detection of b0.1% muta-
tions with a low input amount of 5 ng DNA per reaction [125].

UltraSEEK is a high-throughput multiplex based method, using
primers labeled with biotin that are specifically designed to anneal the
mutant allele only [126]. The UltraSEEK assay panel covering the most
frequentmutations inmelanoma, showed a high sensitivity of detecting
mutations at an allele frequency of b1% and a 100% specificity. More-
over, the minimum amount of cfDNA employed in the UltraSEEK analy-
sis is between 9 pg/μl and 4.2 ng/μl [126]. Recently, the UltraSEEK's
capacity has been further improved to amultiplexing of up to 40 targets
per reaction, with ultrasensitive detection of somatic mutations in
ctDNA [127]. Taken together, the advantages of UltraSEEK are the high
multiplex capability, fast turnaround time of less than a day, and the
low input of DNA required for a single analysis.

4.5. Detection of hypermethylation in ctDNA

Methylation of DNA involves the addition of a methyl group to CpG
dinucleotides at regions of the genomewith a high density of CpG dinu-
cleotides or so-called CpG islands [7]. The most common method for
methylation detection of ctDNA relies on methylation-specific PCR
(MS-PCR), which is based on treating DNA with bisulfite to chemically
modify non-methylated cytosines into uracil [71]. Subsequently, the
methylation profile of the converted DNA can be investigated using a
downstream application such as PCR, NGS [129], or MCTA-Seq [130].
Methylation-specific PCR (MS-PCR) has shown to be highly sensitive
in the detection of ESR1 hypermethylation with a detection rate of
0.1% and a specificity of 100% [71]. Higher sensitivities may be reached
by MCTA-Seq, which is able to detect thousands of hypermethylated
CpG islands in parallel with a sensitivity of detectingmethylated CpG al-
leles down to frequencies of b0.25%, butwith a specificity of 89%. Never-
theless, the input amount of ctDNA of 7.5 pg is a clear advantage [130].
The costs, processing time, and the requirement of prior knowledge of
the region of interest are disadvantages of MCTA-Seq. A genome-wide
bisulfite sequencing for the identification of different methylated re-
gions using N500 ng urinary cfDNA starting material, could show that
the global methylation density in cancer is ranging from 61.1% to
73.5% [129]. However, the relatively large amount of 500 ng cfDNA
that is required for the bisulfite conversion process increases the com-
plexity of the methylation detection using ctDNA from plasma [129].

5. Outlook

As this review indicates, numerous studies have now shown the fea-
sibility of using ctDNA in tracking andmonitoring tumor dynamics, drug
response, and therapy resistance. Although several technologies have
shown an extremely high sensitivity with detection rates going down
to single mutated DNAmolecules, the use of ctDNA as a marker for liq-
uid biopsy still lacks standardization in many aspects. The only tests
thus far approved by the FDA in the USA and China include the DNA
methylation-based test of SEPT9 for the detection of colorectal cancer
[131,132] and the qPCR-based test for mutated EGFR in NSCLC [133].
Further improvement in the standardization of liquid biopsy may in-
clude how the samples are obtained and how the analysis is performed.

Ideally, ctDNA should be investigated in combinationwith CTCs and/
or exosomal miRNA, in order to extract as much biological information
from the tumor as possible from a single blood sample. However, the
type of collection tube and storage conditions may both have an effect
on DNA stability as well as the stability of cells and thereby the amount
of background and the quality of the material. Although fixatives may
stabilize a tube's content required for transport of the material, not
every fixative suitable for subsequent cellular or DNA analysis can be
used in combination with RNA analysis. Also, too harsh fixation condi-
tions can result in DNA interstrand crosslinking and thereby lowering
the specificity of downstream analyses. It needs to be seen whether
there will be one standard tube from which all analyses can be per-
formed, although more likely will be that each biomarker will require
its own dedicated collection tube.

An important aspect ofmutation diagnostics, not limited to the anal-
ysis of ctDNA only, is the sheer amount of data that can be produced by
current technologies such as NGS, which can be overwhelming from a
clinical point of view. However, bioinformatic-based techniques are
usually able to filter out the clinically most important information. Nev-
ertheless, also standardization in regards of bioinformatic analysis
needs to be achieved in order for such diagnostics to be reliably be ap-
plied in the clinic.
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As discussed in this review, one of the hurdles of using ctDNA as liq-
uid biopsy substrate is the usually low yield of material extracted from
plasma. In order to obtain enough starting material for further down-
stream analyses such as deep sequencing, whole genome amplification
(WGA) might be employed. However, further research has to be per-
formed to studywhether the currently availableWGAmethods are suit-
able for highly fragmented DNA, as well as whether the amplification is
perfectly linear so that low frequency alleles are not lost.

Understanding the biological mechanisms of how ctDNA is released
into the bloodstream may further improve the isolation of the tumor
DNA aswell as prognosis and prediction value. For instance, the specific
enrichment of tumor-associated exosomes may provide undiluted in-
formation about potential metastatic sites and the resistance mecha-
nisms of the still viable tumor cells under therapy. Equally important
is to investigate the elimination rate of cfDNA from the bloodstream.
Several mechanisms and organs appear to be responsible for cfDNA
clearance from the bloodstream such as the kidney, liver, and spleen
as well as nuclease degradation, and phagocytes [134–136]. Neverthe-
less, the kinetic dynamics of cfDNA still needs to be further investigated,
as well as the best source of ctDNA, e.g., serum, plasma, urine, or other
body liquids should be standardized.

ctDNA can play a vital complementary role along with other tumor-
derived substrates as predictive biomarker. These other substrates in-
clude circulating tumor cells (CTCs) that provide essential information
on tumor characteristics and metastatic development through investi-
gation of DNA, RNA, or proteins, whereas cell-free nucleotides and
exosomes can be an additional sources of information on tumorigenesis,
possible therapeutic targets, and drug resistance mechanisms. Finally,
platelets can carry information that may help to determine the tumor's
origin. Overall, these tumors-substrates termed as liquid biopsy that can
provide amore comprehensive picture together of the total clonal com-
position of tumor and therapy sensitivity and thereby, improve on clin-
ical management and patient survival.

6. Conclusion

Liquid biopsy can provide valuable information about the biology
and clinical characteristics of a tumor through different biomarkers re-
leased into the blood circulation. ctDNA can be employed to analyze
the entire tumor genome and track drug response and/or therapy resis-
tance. This can be achieved by either quantitative measurement of
ctDNA in a blood sample or by the detection of mutations. A remarkable
advancement in technologies for ctDNAdetection and analysis has been
observed in the last few years such as the significant progress made in
NGS-based approaches in overcomingmany of the challenges to reduce
the error rate and improve sensitivity in ctDNA detection. Nevertheless,
NGS-based approaches are still relatively expensive and consumemuch
time. On the other hand, mass-spectrometry approaches provide a
promising tool for ctDNA screening in terms of the cost, time, and low
amounts of required input material, as well as their high sensitivity
and specificity. Additionally, analysis by Real-Time PCR-based tech-
niques is cost-effective, fast, and can be feasible in routine clinical prac-
tice for a limited number of biomarkers. Further development in the
standardization of these techniques will make ctDNA a valuable sub-
strate in the field of cancer diagnostics.
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