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Abstract

Microbial symbiosis and speciation profoundly shape the composition of life’s biodiversity.

Despite the enormous contributions of these two fields to the foundations of modern biology,

there is a vast and exciting frontier ahead for research, literature, and conferences to

address the neglected prospects of merging their study. Here, we survey and synthesize

exemplar cases of how endosymbionts and microbial communities affect animal hybridiza-

tion and vice versa. We conclude that though the number of case studies remain nascent,

the wide-ranging types of animals, microbes, and isolation barriers impacted by hybridiza-

tion will likely prove general and a major new phase of study that includes the microbiome

as part of the functional whole contributing to reproductive isolation. Though microorgan-

isms were proposed to impact animal speciation a century ago, the weight of the evidence

supporting this view has now reached a tipping point.

Living and evolving in a microbial world

No macroorganism lives in isolation of the microbial world. Indeed, the human body houses

roughly 37 trillion human and microbial cells (as well as viruses), the latter of which span bac-

teria, archaea, fungi, and some protists [1–7]. Across diverse hosts, microbiomes can range

from simple to complex, labile to stable, and with high to weak transmission fidelity. The rec-

ognition of the widespread occurrence of host-associated microbiomes that consist of both

obligate and nonobligate microbial associations has also spurred the growth and development

of the structural terms holobiont and hologenome, which emphasize the multispecies and mul-

tigenomic nature of host–microbiome assemblage, respectively [8–13]. We use these structural

definitions throughout this perspective without implication to any specific process or stability,

as the nature of host–microbiome associations may vary across study systems.

Microbiomes, inclusive of intracellular and extracellular microorganisms, are often distin-

guishable across host body sites within species [14–20]. Within each site, they can act in a con-

text-dependent manner as harmful, helpful, or harmless to hosts—with potentially integrated

metabolisms and interacting gene products (Fig 1). Since the earliest hypotheses of the

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001417 October 26, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Miller AK, Westlake CS, Cross KL, Leigh

BA, Bordenstein SR (2021) The microbiome

impacts host hybridization and speciation. PLoS

Biol 19(10): e3001417. https://doi.org/10.1371/

journal.pbio.3001417

Published: October 26, 2021

Copyright: © 2021 Miller et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by the

Vanderbilt Innovation Center to S.R.B., a Searle

Undergraduate Research Program (SyBBURE)

Fellowship to A.K.M., an NIH Ruth Kirschstein

Postdoctoral Fellowship F32 AI140694-03 to B.A.

L., and an NSF Postdoctoral Research Fellowship

in Biology Grant No. 2010695 to K.L.C. We thank

Mahip Kalra for assistance with figure editing. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-0378-232X
https://orcid.org/0000-0001-7847-8643
https://orcid.org/0000-0001-5618-7642
https://orcid.org/0000-0001-7346-0954
https://doi.org/10.1371/journal.pbio.3001417
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3001417&domain=pdf&date_stamp=2021-10-26
https://doi.org/10.1371/journal.pbio.3001417
https://doi.org/10.1371/journal.pbio.3001417
http://creativecommons.org/licenses/by/4.0/


bacterial nature of mitochondria in eukaryotic cells, microorganisms and their interactions

with hosts have been put forth as an engine of novelty that may spur the origin of new species

[21]. Microbes can facilitate metabolism, cellular growth, fitness, development, behavior, and

competition with other microbes [22–27]. They can also scavenge host nutrients, induce host

inflammation, release microbial toxins, or modify host reproduction [28–32], including modi-

fication of the gametes that can result in embryonic lethality [32–36]. Such reproductive

microorganisms can be relevant to speciation owing to their influences on host gametic

Fig 1. Host of interactions. Diagram depicts the two main parts of the holobiont—the host and associated microbial

community. (1) Each of these components encode transcripts (2) and proteins (3) that, in turn, can function alone or

together either intragenomically or intergenomically. (4) Helpful, harmful, and harmless phenotypes may occur, and

the net outcome of these interactions varies with the hologenotype of the host background and presence of other

microbes. Created with BioRender.com.

https://doi.org/10.1371/journal.pbio.3001417.g001
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integrity and embryonic viability [37,38]. Some microorganisms can also be harmless to their

hosts through passive associations such as when microbes thrive on excess nutrients within the

host environment [39].

Species concepts, microbial transmission routes, and

phylosymbiosis

Before discussing hybridization cases in animals that cause changes in the microbiome compo-

sitions and/or function, it is important to frame the text with a species concept. We adhere to

the Biological Species Concept in which species are reproductively isolated groups comprised

of potentially interbreeding individuals [40,41]. Hybrids are the result of mating between two

species or diverging populations, and the hybrids can suffer from postmating isolation barriers

such as sterility and/or inviability [42–47]. The Biological Species Concept was originally for-

mulated for sexually reproducing host species, including plants and animals that are poten-

tially hybridizable in the laboratory. However, the utility of the concept for microorganisms is

under active consideration for asexual microorganisms that readily exchange DNA via hori-

zontal gene transfer [48].

A central question is how reproductive isolation evolves and leads to hybrid maladies such

as sterility or inviability. Here, we use the Dobzhansky–Muller model to explain this genetic

incompatibility. In the conventional model, hybrid dysfunction between species can arise

when two nuclear alleles of ancestral genes aa and bb independently mutate and evolve into

derived alleles AA and BB in separate lineages (Fig 2) [49]. AA and BB function normally

within species, but their gene products in hybrids negatively interact because the derived alleles

never evolved together within the same host species, thus resulting in hybrid sterility or invia-

bility [40–47,50]. By extending the Dobzhansky–Muller model to include the host-associated

microbiome, one can then ask how do changes in host-associated microbes between the spe-

cies (for instance, by either mutation or horizontal acquisition of new microbes) impact the

number of possible hybrid maladies. Moreover, the impacts of microorganisms on hybrid fit-

ness follow a conceptual continuum to the impacts of macroscopic parasites on hybrid fitness,

which has been previously reviewed [28]. We previously demonstrated that a holobiont-based

model inclusive of the host and microbiome produces more incompatibilities than a nuclear

model alone [38], and these results are in part graphically shown in the schematic below

(Fig 2).

As the schematic shows, host species and their hybrids can acquire and cultivate their

microbiome through vertical and/or horizontal transmission. Early windows of microbiome

exposure and colonization often include the hatching environment, transovarial transmission

of endosymbionts, and birth route [33,51–56]. Subsequent windows of microbiome acquisi-

tion and colonization across development may include transmission events from diet, sociali-

zation, environment, among other factors [57–70] While parental transmission can contribute

to long-term fidelity of host–microbiome associations, recurrent associations between hosts

and microbes can also be established from environmental sources if, for instance, there is a

host selective filter that gardens certain microbes, or vice versa if microbes preferentially colo-

nize and replicate in certain hosts. In other words, vertical transmission is not necessary for

holobiont associations to emerge, as environmental acquisition every generation can establish

the same taxonomic or functional host–microbe associations anew [62]. Host selection mecha-

nisms (such as the host possessing a gene that influences bacterial titers) are commonly studied

[59–62,70].

Without knowing the transmission routes of all members of the microbiome across closely

related species, it is notable that the pattern of phylosymbiosis has emerged as a widespread,
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though not universal, trend in the microbiome sciences. Phylosymbiosis occurs when hosts

harbor less microbiome variation within species than between species, and microbiome com-

positional relationships (i.e., beta diversity) mirror the evolutionary relationships of the host

species [61,62,71–74]. As such, more closely related host species harbor more similar micro-

biomes in parasitoid wasps [75], termites [76], deer [77], mice [73,78], primates [79], and oth-

ers. As noted in the preceding paragraph, vertical and/or horizontal transmission can establish

holobiont compositions underpinning a trend such as phylosymbiosis. Results from interspe-

cific transplants of phylosymbiotic microbiomes between related host species support the

hypothesis that selective pressures shape holobiont compositions and phylosymbiosis. For

example, fitness (for instance, survival) in Nasonia parasitoid wasps and performance (for

instance, digestibility) in Peromyscus deer mice are reduced in an evolutionary-informed man-

ner upon exposure with increasingly different microbiomes from related host species [73,80].

These results are akin to the costs experienced upon mitochondrial introgressions among

related host lineages [81,82] and suggest that natural selection can drive phylosymbiotic

changes within parental species that may, in turn, contribute to the evolution of deleterious

interactions between hybrids and their microbiomes (Fig 2).

Fig 2. The consequences of changes in the host genome and microbiome on hybrid inferiority. (1) The ancestral species nuclear genome (inner white circle) and

microbiome (outer blue circle) can change by descent with mutation in both or horizontal transfer and loss of microbes over time. (2) After splitting into 2 populations,

independent, nuclear mutations accrue in hosts under a standard genetic model of hybrid incompatibility in which separate loci aa and bb mutate and diverge in the 2

populations to AA and BB. Additionally, changes in the microbiome occur due to mutations and horizontal transfer of new microbes. (3) The microbiome can be further

influenced by loss of microbial members. (4) Over evolutionary time, the 2 new holobiont species sufficiently diverged so that they produce sterile or inviable hybrids

because of either negative intragenomic (A nuclear locus negatively interacts with B nuclear locus) and intergenomic interactions between different microbes or between

members of the microbiome and the host. Created with BioRender.com.

https://doi.org/10.1371/journal.pbio.3001417.g002

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001417 October 26, 2021 4 / 14

http://biorender.com/
https://doi.org/10.1371/journal.pbio.3001417.g002
https://doi.org/10.1371/journal.pbio.3001417


Hybridization and host–microbiome interactions

In considering the effects of the microbiome on hybridization and speciation on a case-by-

case basis (Fig 3), the 8 systems highlighted in Box 1 likely only scratch the surface of the

range of results. As such, understanding the impacts of hybridization on microbiomes will

require concerted efforts and exchanges to merge approaches, lexicons, and concepts among

the subdisciplines of the life sciences, namely to integrate microbiology more deeply into the

origin of macrobial species. Below, we illustrate exemplars of the relationships between hybrid-

ization, the microbiome, and microbiome-related metabolites.

Speciation via endosymbiosis is perhaps the most well-appreciated exemplar of microbe-

assisted reproductive isolation in hybrids [83]. For instance, in the Drosophila paulistorum
fruit fly of Central and South America, several semispecies are reproductively isolated in agree-

ment with Haldane’s rule (the heterogametic sex is sterile or inviable). In particular, D. paulis-
torum hybrid males are sterile due to the testes overproliferation of Wolbachia, a widespread

bacterium of the reproductive system of arthropods [84]. Wolbachia’s symbiotic presence in

the germline may result in host selective pressures to cope with the bacterial symbiont, leading

to host accommodation of the bacteria within species and breakdown of that accommodation

in compromised hybrids. Some Wolbachia–host combinations intriguingly cause both hybrid

lethality in the F1 generation and hybrid breakdown in the F2 generation. For instance, in Tet-
ranychus urticae mites, the Wolbachia not only cause cytoplasmic incompatibility (CI) and

thus F1 hybrid reductions, but they also cause F2 hybrid lethality due to an “aneuploidy hang-

over” in which surviving F1 hybrid females pass on CI-associated aneuploidy to F2 haploid

male offspring; these hybrid males die owing to aberrant chromosome configuration [85].

Since CI effects are rarely measured past the F1 generation, the frequency of F2 symbiont-asso-

ciated breakdown is currently unknown and likely more important than currently

appreciated.

Fig 3. Microbiome alterations occur in diverse hybridizations across animals. Illustrative evolutionary tree depicting examples in which microbial community

changes occur in animal hybrids and sometimes impact postmating reproductive isolation. Created with BioRender.com.

https://doi.org/10.1371/journal.pbio.3001417.g003

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001417 October 26, 2021 5 / 14

http://biorender.com/
https://doi.org/10.1371/journal.pbio.3001417.g003
https://doi.org/10.1371/journal.pbio.3001417


Box 1. Eight case systems offer insight into the relationship between
hybridization and the microbiome

• Mites. In the two-spotted mite Tetranychus urticae, Wolbachia cause partial cyto-

plasmic incompatibility (CI) in the F1 generation and hybrid lethality in the F2 males

derived from the surviving F1 females in the CI cross [85]. One hypothesis that singu-

larly explains both generations of lethality relates to CI, which causes paternal chroma-

tin defects that kill embryos created between Wolbachia-infected males and

uninfected females. However, incomplete CI and thus modification of the paternal

chromatin could lead to an “aneuploidy hangover” in which surviving F1 females pass

on CI-associated aneuploidy to F2 haploid male offspring; and these males subse-

quently die owing to the aberrant chromosome configuration [85].

• Wasps. The Nasonia parasitoid wasp system exemplifies the layered effects of different

microorganisms on hybridization. Curable, Wolbachia-induced F1 hybrid lethality

occurs before the evolution of other pre- or postmating isolation barriers [86,99]. In

the F2 hybrid males that are haploid recombinants of the F1 hybrid mothers from the

most distantly related species, Nasonia vitripennis and Nasonia giraulti, the micro-

biome community changes, wasp larvae undergo hypermelanization, and hyperex-

pression of the immune system occurs. These catastrophic events associate with most

of the hybrid offspring dying during larval development [8,38,87]. Notably, when the

Nasonia hybrids are reared germ-free, the F2 hybrid male lethality is rescued [87].

Moreover, a member of the wasp microbiome that dominates in hybrids is genomi-

cally identical to those that occur in parents, thus supporting a tenet of hologenomic

speciation in which resident microbes contribute to hybrid defects following changes

in the host genotype [86].

• Flies. The endosymbiont Wolbachia causes hybrid male sterility in Drosophila paulis-
torum [84]. In select semispecies hybrid crosses, the sterility can be cured by the

administration of antibiotics (toyocamycin nucleoside and gliotoxin) to the parental

mother [100]. Homogenates of sterile males that were injected into recipient adult

females caused sterility in their male progeny, implicating a maternally derived bacte-

ria (later discovered to be Wolbachia) in the induction of male sterility [84,101].

• Carp. In reciprocal F1 hybrids of two invasive species of North American carp,

Hypophthalmichthys nobilis and Hypophthalmichthys molitrix, the bacterial genera

Fusobacteria and Firmicutes were enriched in only one of the hybrid foreguts (female

silver carp H. molitrix x male bighead carp H. nobilis); there were also intermediate

abundances (relative to that of the two parents) of the phyla Cyanobacteria and Bacter-

oidetes in the hybrid foreguts [92]. The hybrid carp also contained higher gut micro-

bial alpha diversity and an elevated amount of gut microbial genes related to putative

cyanophycinase enzymes that may assist digestion of nitrogen/carbon reserve poly-

mers, according to predicted functional capabilities based on the 16S-based taxon data

[92].

• Whitefish. In reciprocal crosses of lake whitefish varieties in Coregonus clupeaformis,
F1 hybrids possess distinguishable microbiomes relative to their parents, and these dif-

ferences are driven by bacterial genera specific to the two hybrid genotypes [102].

While the whitefish fed on a mixed diet of two food types, some individuals were
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In the genus Nasonia, which harbors 4 parasitoid wasp species that diverged between 0.2

and 1.0 Myr ago depending upon the species pair, there are multiple layers of hybridization

impacted by symbiotic bacteria. First, different CI Wolbachia in each of the parental wasp

observed to prefer one food type or both. Within the mixed diet group, a lower abun-

dance of Firmicutes and a higher abundance of Proteobacteria were found in recipro-

cal hybrids when compared to parental whitefish [102]. The opposite trend of a higher

abundance of Firmicutes and a lower abundance of Proteobacteria in hybrid fish was

observed when the hybrids consumed only one particular food type. Another study on

freshwater lunt snout bream Megalobrama amblycephala and carnivorous topmouth

culter Culter alburnus found that hybrids possessed an intermediate gut length relative

to their parental species, and the microbiota composition in hybrids was significantly

different from one of the parental species [91].

• Mice. Subspecies of both lab-reared and wild western house mice (Mus Mus musculus
x Mus musculus domesticus) that diverged 0.5 Myr ago can produce hybrid offspring,

but they suffer from reduced fertility [103,104] and increased gastrointestinal tape-

worm susceptibility. These hybrids also possess distinct gut microbiomes from that of

their parental species, and over a dozen genetic loci explain 14.1% of the total variation

in microbial community structure in the hybrids. Moreover, microbial abundance var-

iation in hybrids associated with differential expression of immune genes and hybrid

gut pathology including ulcerations of the epithelium, accumulation of inflammatory

cells, and appearance of organized lymphoid structure [89]. The abundance of

immune cells, specifically the ratio of CD4+:CD8+ T cells in intestinal immune tissues,

was also different between the parental species, and this ratio in the F2 hybrid mice

had greater variance resulting in a pattern that overlapped across both parental mice

species [89].

• Deer and elk. The most abundant microorganisms of sika deer and elk rumen include

the bacterial phyla Bacteroides and Firmicutes, the archaea Methanobrevibacter spp., a

protozoan Entodinium spp., and the fungi Neocallimastigaceae AL6 and Cyllamyces.
However, when sika deer (Cervus nippon) and elk (Cervus elaphus) produce hybrid off-

spring, the microbiome shifts relative to the parental species, causing an increase in

the abundance of Fibrobacter bacterial species or a decrease in the abundance of Qui-
nella bacterial species, depending on the direction of the host species cross [77]. In all

deer–elk hybrids, the abundance of Acetitomaculum bacterial species significantly

increased, and various microbial taxonomic changes in the rumen microbiome

accompanied shifts in metabolites, especially those involved in carbohydrate, energy,

amino acid, and lipid metabolism [77].

• Equine. Hybrids of ponies and donkeys that were all fed on the same diet exhibit sig-

nificant changes in their fecal bacterial microbiomes and fungal mycobiomes relative

to one or both of the two parental species [93]. For example, in hybrids, the fecal

mycobiome exhibits markedly less variation than both parental species and is resul-

tantly distinguishable from the range of variation in the parental species. The genus

Piromyces was generally more common and abundant in hybrids versus parental spe-

cies. Hybrid fecal bacterial microbiomes were also distinct from donkeys and overlap

with ponies [93].
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species cause strong F1 hybrid lethality, and CI-induced reproductive isolation can evolve

early in the speciation process [86]. Second, once cured of their Wolbachia in the lab, F1

hybrids readily survive and produce F2 hybrids that then succumb to approximately 90%

hybrid lethality during advanced stages of larval development [87]. Reexposing F2 germ-free

hybrids with members of their parental-associated bacteria leads to higher death rates com-

pared to parental species controls, thus emphasizing that interactions in hybrids between the

microbiome and recombinant host genome cause the F2 hybrid lethality [87]. Selective pres-

sures on the hologenome likely contribute to the F2 hybrid breakdown as microbiome trans-

plants between wasp species lead to reduced wasp fitness in an evolutionary-informed manner

[80]. Instances of microbiome-dependent hybrid lethality coupled with evidence of selective

pressures on phylosymbiosis within species are important for contextualizing why hologe-

nomic reproductive isolation evolves within species.

Given the Large Immune Effect on hybrid incompatibilities [38], and the hypothesis that

the vertebrate adaptive immune system evolved to manage more complex microbial commu-

nities [88], vertebrates are an important group to investigate interactions that contribute to

reproductive isolation and speciation. For example, mice hybrids between Mus musculus and

Mus domesticus exhibit increased gut pathology in association with both a compromised

immune system and an altered gut microbiome [89]. In sika deer and elk, as well as their

hybrids, the rumen microbiome facilitates the absorption and metabolism of nutrients [77].

When parentals are compared to their hybrids, several taxonomic changes occur in their

microbiomes. For example, the presence of Acetitomaculum bacteria, which may be associated

with the conversion of lactate to acetate, is notably higher in the hybrids [77,90]. These find-

ings suggest that holobiont hybrids may not metabolize in the same way as nonhybrids due to

the breakdown in the microbiome and host–microbiome metabolic crosstalk. In whitefish,

specific members of the Coregonus clupeaformis microbiome shift in hybrids relative to

parents, suggesting a breakdown in selection on fish–microbiome interactions within species

[91]. Similarly, hybridization of two invasive species of North American carp, Hypophthal-
michthys nobilis and Hypophthalmichthys molitrix, can cause significant differences in micro-

biome composition and functional potential [92]. Finally, hybrids of ponies and donkeys

display a markedly different microbiome than their parentals [93]. The functional implications

of these changes remain to be investigated, but impacts on fiber digestibility, nutrient intake,

and gut disease are candidates for phenotypic consequences in hybrids.

Lessons learned from case studies

This brief synthesis of empirical evidence highlights that microbiomes are altered in hybrids

across animal diversity, and in some cases they directly cause reproductive isolation. Although

the sample of exemplars are not exhaustive, they are not limited to one type of microbe, host

system, or isolation mechanism. Rather, they span specific endosymbionts such as Wolbachia
and diverse microbial communities across the animal phylogeny, impact various stages of ani-

mal development and anatomy, and cause reproductive isolation in the F1 and F2 generation.

Thus, we conclude that hybridization impacts on the microbiome and vice versa will prove

general, and that conclusion raises the stakes on a topic that is arguably among the most

understudied in hybridization and speciation. We do not suggest a necessity to rethink the

whole field, but rather to acknowledge that a eukaryocentric view has dominated animal and

plant speciation studies for the past century. Recent work suggests that the evolution of hybrid

maladies arises from host accommodation of long-term endosymbionts, selfish drives of sym-

bionts, and selection on holobiont compositions that break down with costs on fitness and per-

formance. We must also emphasize that these hybridization exemplars are not encompassing
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of plants, and there are instances of microbiome-mediated impacts on premating isolation and

host adaptation that we and others have previously discussed [94–96].

Concluding remarks

In this perspective, we call attention to literature on the microbiology of animal hybrid hosts

to equip evolutionary biologists, developmental biologists, biochemists, and microbiologists

with case examples of how the microbiome sheds important light on speciation and hybridiza-

tion. We set out to answer the following questions: How does hybridization affect the micro-

biome? Can hybrid maladies be facilitated by changes in the microbiome? And how do hybrid

organisms differ from their parentals? The exemplars presented here offer a steppingstone to

studies that comprehensively interrogate (i) the distinguishable nature of microbiomes across

host species; (ii) the characterization and causes of microbial differences between hybrids and

their parental species; and (iii) the microbial and host components of animal reproductive iso-

lation and speciation.

With the advent of high-throughput, holo-omic technologies for nucleotide and protein

sequencing and metabolomics, there is an emerging need for integratively studying reproduc-

tive isolation and speciation through various scales of taxonomy (bacteria, fungi, viruses,

archaea), anatomy (gut, reproductive tissue, etc.), and host diversity (invertebrates, verte-

brates). Moving forward, there are still several questions outstanding including: What types of

hybrid reproductive isolation are most frequently impacted by microorganisms? Does natural

selection in parental holobionts often lead to divergence in the host genome or microbiome

and ensuing hybrid maladies? How have well-characterized systems of hybrid maladies over-

looked the influences of microbial communities that previously went unmeasured in experi-

ments? How do bacteriophages and viruses impact microbial community changes in hybrids?

More studies, similar to those reviewed here, are necessary to fully appreciate the interplay

between the microbiome and hybridization. Over the past 2 decades, biology has become

invigorated by what evolutionary microbiologist Carl Woese designated as the “sleeping giant”

of biology—the microbial world [97]. Awoken and now conventionally studied, investigations

of the microbiome offer increasing relevance to diverse subfields of biology, yet speciation in

various macrobial systems has lagged behind other fields that have intensively interrogated

and integrated the microbial world. To exclude the host-associated microbiome in experi-

ments, concepts, and theory is to exclude vital parts of the biological system of a holobiont. We

conclude with a suggestion and call to action that studying hybrid microbiomes is likely to be

one of the most fruitful areas of future speciation research based in part on the case systems

outlined above. As Carl Woese also wrote, “Biologists now need to reformulate their view of

evolution to study it in complex dynamic-systems terms” [98]. This call does not translate to a

radical change in paradigm, but rather embraces robust integration across biological hierar-

chies, concepts, approaches, conferences, and teams.
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