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Abstract
Background: Multi-phenotype analysis of genetically correlated phenotypes can in-
crease the statistical power to detect loci associated with multiple traits, leading to 
the discovery of novel loci. This is the first study to date to comprehensively analyze 
the shared genetic effects within different hemostatic traits, and between these and 
their associated disease outcomes.
Objectives: To discover novel genetic associations by combining summary data of cor-
related hemostatic traits and disease events.
Methods: Summary statistics from genome wide-association studies (GWAS) from 
seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor 
[VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen 
activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous 
thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were 
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1  |  INTRODUC TION

Genome-wide association studies (GWAS) have identified dozens 
of loci underlying the variability of plasma levels for individual he-
mostatic traits.1–8 Further, GWAS for venous thromboembolism 
(VTE),9,10 coronary artery disease (CAD)11–13 and ischemic stroke 
(IS),11,14 have discovered 34, 169, and 20 genetic risk loci associated 
with these cardiovascular (CV) events, respectively.

Results from GWAS indicate that several of these hemostatic 
traits are genetically correlated with each other, sharing genetic loci 
that regulate their plasma levels.1,4–8 There are also shared genetic 
loci between hemostatic traits and CV events, again suggesting com-
mon regulators and possibly a causal pathway between the hemo-
static trait and the CV event.4,7–9,12,14  The common regulatory loci 
between traits—even if the traits are not causally associated with 
each other—can be used to advance discovery of novel genetic loci 
common to the traits. This discovery can be accomplished with multi-
phenotype methods that incorporate summary statistics from several 
GWAS, increasing the statistical power to detect loci affecting two or 
more phenotypes by increasing the effective sample size.15–17

In the present study, we used summary statistics of published GWAS 
from 7 hemostatic traits (FVII, FVIII, VWF, FXI, fibrinogen, PAI-1, tPA), 
and 3 CV events (VTE, CAD, IS) to calculate their genetic correlations 
and to conduct multi-phenotype meta-analyses to detect new genetic 
loci not previously known to be associated with these phenotypes.

2  |  METHODS

2.1  |  Study design and resources

The setting of the project is the Cohorts of Heart and Aging 
Research in Genomic Epidemiology (CHARGE) consortium 

Hemostasis Working Group.18 We used GWAS summary statistics 
from seven hemostatic traits (FVII (N = 27 495), FVIII (N = 32 610), 
VWF (N  =  46  354), FXI (N  =  16  169), fibrinogen (N  =  120  246), 
PAI-1 (N = 19 599), tPA (N = 26 929)), and three CV events (VTE (N 
cases = 30 234, N controls = 172 122), CAD (N cases = 172 122, N 
controls = 566 864), IS (N cases = 60 341, N controls = 454 450)) 
to perform multi-phenotype analyses. Summary statistics of FVII,1 
FVIII,4 VWF,4 VTE,9 CAD12,13,19 and IS,14 come from trans-ethnic 
analyses, while summary statistics of FXI,6 fibrinogen,5 tPA8 and 
PAI-17 are European ancestry only (additional information, includ-
ing the sample sizes, detailed ancestry groups, confounders con-
sidered and data access URLs, of the phenotypes that have been 
used, is available in Supplementary Table S1). Summary statistics 
for FVII, FVIII, VWF, FXI, fibrinogen, tPA, PAI-1, were obtained from 
the most recent CHARGE meta-analysis data18 and are available on 
dbGaP20 (Appendix A). Data for VTE was obtained from INVENT9 
consortium and is available on request from corresponding authors 
(Appendix B). Data from IS were obtained from the MEGASTROKE 
Consortium,14 and is available at https://www.megas​troke.org/ 
(Appendix C). For CAD, we used METAL to perform an inverse var-
iance weighted meta-analysis between previously combined data 

combined in 27 multi-trait combinations using metaUSAT. Genetic correlations be-
tween phenotypes were calculated using Linkage Disequilibrium Score Regression 
(LDSC). Newly associated loci were investigated for colocalization. We considered a 
significance threshold of 1.85 × 10−9 obtained after applying Bonferroni correction 
for the number of multi-trait combinations performed (n = 27).
Results: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, 
KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual 
datasets, were not described in previous GWAS for the individual traits, and that pre-
sented a common associated variant between the studied phenotypes.
Conclusions: The discovery of four novel loci contributes to the understanding of the 
relationship between hemostasis and CV events and elucidate common genetic fac-
tors between these traits.

K E Y W O R D S
blood coagulation, cardiovascular diseases, genetic pleiotropy, genome-wide association study, 
hemostasis

Essentials

•	 Multi-phenotype analysis of genetically correlated phe-
notypes may lead to novel discoveries.

•	 Summary statistics of hemostatic traits and cardiovas-
cular events were combined with metaUSAT.

•	 We identified four novel associations with a shared vari-
ant between the studied phenotypes.

•	 Our results shed light on the relationship between he-
mostatic traits and cardiovascular events.

https://www.megastroke.org/
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from CARDIoGRAMplusC4D Consortium19 and UK Biobank data-
sets12 (available at https://data.mende​ley.com/datas​ets/2zdd4​
7c94h/​1), and the Biobank Japan dataset available at https://
human​dbs.biosc​ience​dbc.jp/en/hum00​14-v21 using METAL. All 
the included data have been published between December 2012 
and October 2020. The overlap of individuals observed in our com-
binations of phenotypes ranges between 0 and 0.58. The overlap 
between the CARDIoGRAMplusC4D Consortium and UK Biobank 
datasets that were combined by other authors, and used in this 
project, was estimated to be <0.1 %.12

2.2  |  Study of heritability and genetic correlation

We determined the heritability of each phenotype and genetic cor-
relations (rg) between all pairs of hemostatic traits, between each 
hemostatic factor and the CV events and between all pairs of CV 
events, using linkage disequilibrium (LD) score regression (LDSC).21 
LDSC uses a regression analysis between LD scores and the summary 
statistics of GWAS to provide an estimate of the shared heritability 
between phenotypes.22 We used pre-computed LD scores from the 
European population of 1000G project.23 A subset of the European-
ancestry summary statistics was used in this step for each trait except 
for CAD where the European-only meta-analysis was not available. 
Alleles were merged with the HapMap3 single nucleotide polymor-
phisms (SNPs) list,24 to avoid incompatibilities between phenotypes, 
as recommended by the authors, and missing variants were removed.

For the threshold of statistical significance for each genetic correla-
tion, we applied a Bonferroni correction for multiple comparisons, con-
sidering all pairwise genetic correlations calculated (p <.05/45 = .001).

2.3  |  Multi-phenotype analysis

We performed multi-phenotype analyses using GWAS summary sta-
tistics from different combinations of traits using the metaUSAT R 

package.17 metaUSAT is a statistical approach for testing genetic asso-
ciation with one or more phenotypes simultaneously, using only com-
mon variants between the phenotypes. metaUSAT allows summary 
data as input that includes overlapping samples, which can be a source 
of bias with other methods; further, it does not assume homogeneity 
of trait effects across studies.17 Compared to similar methods, me-
taUSAT performs similarly while requiring less computational time.25

In total, we performed 27 multi-phenotype analyses, consid-
ering all pairs of hemostatic traits that showed significant genetic 
correlations (p <.001) (Supplementary Table  S2), pairs of combi-
nations between each hemostatic trait and each of the three CV 
events, and other combinations included based on biological as-
pects of the analyzed proteins: Fibrinogen-FVII-FXI-tPA were ana-
lyzed because all of them are synthesized in the liver —although tPA 
is mostly produced by endothelial cells, recent studies that focused 
on the basal plasma tPA activity have also demonstrated the ef-
fects of hepatic produced tPA in fibrinolysis—.26 Secondly, tPA was 
combined with FVIII and VWF, that are highly correlated, because 
it is known that these three phenotypes share loci like STXBP5 that 
are involved in endothelial exocytosis.4,8 Finally, the combination 
of fibrinogen and FVII was included to potentially discover genetic 
insights to the antithrombin (AT) pathway. It is known that AT de-
ficiency is a strong risk factor for VTE, and that AT inhibits the 
FVIIa-tissue factor complex's activation of FX.27,28 Moreover, AT 
modifies prothrombin's conversion of fibrinogen to fibrin.29Given 
this evidence, we hypothesize that potential common loci that reg-
ulate AT, FVII and fibrinogen might arise from this combination. 
Figure 1 shows all combinations that were analyzed.

For a metaUSAT p-value (pvaluemultivariate) to be declared sta-
tistically significant, it needed to exceed a Bonferroni correc-
tion of the traditional GWAS statistical significance threshold 
to account for multiple testing for 27 multi-trait combinations: 
5 × 10−8/27 = 1.85 × 10−9. For those variants with statistically signif-
icant metaUSAT p-values, we defined a locus as the genomic region 
+/− 500 kb around the variant with the lowest p-value and any other 
variants that were in LD of r2 > 0.2. We used HaploR R package to 

F I G U R E  1  Schematic representation of the 27 multi-phenotype combinations

https://data.mendeley.com/datasets/2zdd47c94h/1
https://data.mendeley.com/datasets/2zdd47c94h/1
https://humandbs.biosciencedbc.jp/en/hum0014-v21
https://humandbs.biosciencedbc.jp/en/hum0014-v21
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retrieve variants in LD with the lead variant in each locus (the variant 
with the lowest p-value).

In order to identify novel associated loci, we considered the fol-
lowing steps (Figure 2): (1) we identified all loci that were statistically 
significant in the multi-phenotype analysis (p-valuemultivariate <1.85 x 
10−9) (significant loci); (2) among these, we identified all loci with a 
lead variant that was at least nominally significant for two of the in-
dividual datasets used in each combination of phenotypes (lead vari-
ant p-valueunivariate <.005)30–32 (significant loci driven by more than 
one phenotype); (3) among the loci from step 2, we then narrowed it 
down to loci that were new for at least one of the phenotypes used 
in the combination, defined as loci where no other variant in the locus 
had a p-value lower than 5 × 10−8 (p-valueunivariate <5 × 10−8) in the 
GWAS we used, and the locus had not been previously detected in 
another GWAS for the same phenotypes (new loci for one of the phe-
notypes used in the combination); and (4) among the loci from step 
3, we identified loci that were new for all the phenotypes used in the 
combination (new loci for all the phenotypes used in the combination). 
We used the GWAS catalog database,33 (available at https://www.ebi.
ac.uk/gwas/docs/file-downl​oads) to detect loci that were published in 
previous GWAS. We used HaploReg v434 to retrieve previous results 
and biological annotations from the lead variants.

2.4  |  Trait-trait colocalization

For novel loci that were new for all traits, we then performed ad-
ditional colocalization analysis to look for the existence of common 

associated variants across multiple traits. We used COLOC35 for loci 
associated with pairs of traits, and the R package HyPrColoc36 for 
loci associated with more than two traits. We considered windows 
of +/− 500 kb around the lead variant to define loci. For each locus, 
COLOC returns posterior probabilities (PP) for 4 different hypoth-
eses (Hn): PPH0 (the locus is not associated with any of the traits), 
PPH1/PPH2 (the locus is only associated with one of the traits), PPH3 
(the locus is associated with both traits but there is no evidence of 
them sharing a causal variant), PPH4 (the locus is associated with both 
traits and LD patterns suggest the existence of a causal variant). We 
considered pleiotropic loci those that reached a conditional prob-
ability of colocalization (CPC) (PPH4 / (PPH4 + PPH3)) > 0.8, which 
is defined as the conditional probability of colocalization with one 
causal variant, assuming the existence of a signal in both traits. To 
consider pleiotropic loci in multiple traits, we performed colocaliza-
tion using HyPrColoc, where posterior probabilities of colocalization 
> 0.7 were required. Regional plots for significant colocalizing loci 
were done using LocusCompare R package.

2.5  |  Trait-tissues colocalization

In order to prioritize candidate causal genes, we used novel pleio-
tropic loci identified in previous steps and performed an additional 
trait-expression colocalization analysis using RNAseq data from the 
Genotype-Tissue Expression (GTEx) project.37 First, we identified 
the lead variants that were significant expression quantitative trait 
loci (eQTL) and splicing quantitative trait loci (sQTL) for all tissues in 
GTEx V8 (available at https://www.gtexp​ortal.org/home/datasets). 
Then, we performed colocalization with HyPrColoc,36 between the 
two or more phenotypes and the GTEx eQTL and sQTL results, using 
the complete GTEx V8 files (available at https://conso​le.cloud.google.
com/stora​ge/brows​er/gtex-resou​rces), in order to identify the func-
tional tissue and elucidate on the biological mechanism causing the 
associations. We required a probability of colocalization > 0.7 to con-
sider significant colocalization between traits and tissue expression.

We restricted eQTL and sQTL analyses to a subset of GTEx tis-
sues that could be of interest in relation to CV events and hemo-
static traits: vascular tissues (artery aorta, artery coronary, artery 
tibial) lipid metabolism related tissues (adipose subcutaneous, adi-
pose visceral omentum), blood (whole blood) and liver. All loci that 
showed significant colocalization between at least two traits were 
analyzed for colocalization with tissue expression in those tissues.

3  |  RESULTS

3.1  |  Linkage disequilibrium score regression 
(LDSC)

Genetic correlations were calculated for every pair of phenotypes 
used, including hemostatic traits and CV events. In total, 45 ge-
netic correlations were calculated, 24 of which presented nominal 

F I G U R E  2  Schematic representation of the analysis plan for 
multi-phenotype analyses

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.gtexportal.org/home/datasets
https://console.cloud.google.com/storage/browser/gtex-resources
https://console.cloud.google.com/storage/browser/gtex-resources
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significant p-values (p <.05) and seven were significant after applying 
multiple testing correction (p <.001). Among the seven genetic cor-
relations that were significant, three were between hemostatic traits 
(VWF-FVIII (rg = 0.86, p = 1.25 × 10−15), fibrinogen-PAI-1 (rg = 0.4, 
p = 9.29 × 10−5), fibrinogen-tPA (rg = 0.28, p =  0.001)) and were used 
for multi-phenotype analyses, 3 were between a CV event and a he-
mostatic trait (CAD-fibrinogen (rg = 0.19, p = 6.6 × 10−6), CAD-tPA 
(rg = 0.48, p = 4.9 × 10−7), CAD-PAI-1 (rg = 0.52, p = 4.55 × 10−6)) and 
one was between two CV events (CAD-IS (rg = 0.5, p = 2.23 × 10−22)). 
All genetic correlations are shown in a heatmap in Figure 3 and are 
available at Supplementary Table S2.

3.2  |  Multi-phenotype analysis results

Overall, we performed 27 multi-phenotype analyses: three (FVIII-
VWF, fibrinogen-tPA and fibrinogen-PAI-1) based on significant 
genetic correlations between pairs of phenotypes, three (fibrinogen-
FVII-tPA-FXI, fibrinogen-FVII and VWF-FVIII-tPA) due to previously 
known common regulatory biological pathways, and 21 between 
combinations of each of the seven hemostatic traits (FVII, FVIII, 
VWF, FXI, fibrinogen, tPA, PAI-1) and each of the three CV events 
(VTE, CAD, IS).

The number of significant loci remaining in each step is repre-
sented in Figure 2. In total, we found 1 015 significant loci across the 
27 multi-phenotype combinations (Supplementary Table S3). Among 
them, 129 loci were driven by more than one of the phenotypes 
used in the combination (Supplementary Table S4), and 82 of them 
were new associations for one of phenotypes of the combination 
(Supplementary Table S5).

We found four novel associations that were not significant in 
the original individual datasets and had not been described in pre-
vious GWAS of the same traits (Table 1). Additional information on 
these loci, including the complete COLOC and HyPrColoc results 
are available at Supplementary Table S6. Figure 4 contains graphic 
representations of the p-values and regional plots for each of these 
4 loci.

3.3  |  XXYLT1

We detected a newly associated locus, with lead variant rs3796159, 
a 3’ UTR variant in XXYLT1 gene, in the multi-phenotype analysis be-
tween VTE and FVII. Significant colocalization analysis (CPC > 0.8) 
(Figure 4A) in this locus suggested the existence of a common vari-
ant as a regulator of both phenotypes, VTE and FVII. Colocalization 
analysis in tissues indicated that rs3796159 is a significant eQTL 
for XXYLT1 in five different tissues (adipose subcutaneous, adipose 
visceral omentum, artery aorta, artery coronary, artery tibial) and 
HyPrColoc results (Supplementary Table S7) showed a triple sig-
nificant colocalization (Posterior probability > 0.7) in adipose sub-
cutaneous, adipose visceral omentum, artery aorta and artery tibial 
tissues in the XXLYT1 gene.

3.4  |  KNG1

Although previously identified in a candidate gene experiment as 
a risk factor for thrombosis38 and suggestively associated in other 
GWAS for VTE,39 this work represents the first time that the KNG1 
locus, with lead variant rs710446, has been significantly associated 
to risk of VTE and FVIII in GWAS. rs710446 is a missense variant in 
the KNG1 gene that causes an amino acid change at the position 581 
(Ile581Thr).40 Colocalization results between VTE and FVIII (CPC > 
0.8) suggest that rs710446 in KNG1 gene is associated both with 
FVIII and VTE (Figure 4B). Our results could not provide evidence for 
this variant being a significant eQTL or sQTL in any of the analyzed 
tissues which suggest an effect through protein function.

3.5  |  SUGP1/MAU2

CAD and fibrinogen multi-trait analysis resulted in the identifica-
tion of a novel association on SUGP1 gene (lead variant rs10401969, 
intronic). Colocalization analysis between CAD and fibrinogen 
(Figure 4C) implicated that there is a shared associated variant at this 
locus (CPC > 0.8), while the analysis in GTEx tissues (Supplementary 
Table S7) and colocalization using HyPrColoc indicated a significant 
triple colocalization between CAD, fibrinogen and the GTEx dataset 
in blood in MAU2 gene (Posterior probability > 0.7).

3.6  |  TBL2/MLXIPL

The multi-phenotype combination of hemostatic proteins that 
are synthesized in the liver (fibrinogen-FVII-FXI-tPA), revealed a 
new association on TBL2 gene (lead variant rs11974409, intronic). 
Although not reaching the significance threshold for the 4 pheno-
types (Posterior probability > 0.8), significant colocalization results 
(Figure 4D) between FVII and tPA suggest that a shared causal vari-
ant regulates both phenotypes in this locus.

rs11974409 variant is an eQTL in adipose subcutaneous, adi-
pose visceral omentum, artery aorta, and whole blood, and an sQTL 
in adipose subcutaneous and adipose visceral omentum tissues. 
HyPrColoc analysis results suggested the existence of a common 
causal variant that regulates FVII, tPA and the expression of three 
different genes (AC005089.1, MLXIPL, BCL7B) in adipose subcutane-
ous, adipose visceral omentum and blood tissues (Posterior proba-
bility > 0.7) (Supplementary Table S7), and a common causal variant 
that regulates FVII, tPA and the splicing of MLXIPL gene in adipose 
subcutaneous and adipose visceral omentum tissues (Posterior 
probability > 0.7) (Supplementary Table S8).

3.7  |  MYRF/TEMEM258/FADS1/FADS2

Additionally, a novel association on MYRF/TMEM258/FADS1
/FADS2 locus was detected in the multi-phenotype analysis 
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between IS-VWF. Although just below the limit of significance 
(p-valuemultivariate  =  1.64  ×  10−8) (Supplementary Table  S6), 
MYRF/TMEM8/FADS1/FADS2 locus has also been identified in the 
combinations between VWF and the other two CV events (VTE 
and CAD), (lead variant rs174528, intronic in MYRF gene). This as-
sociation was reported for VTE in a previous European GWAS10 
and also for CAD,13 but has not been associated with VWF or IS 
before. The three colocalization analyses between VWF and the 
CV events (Supplementary Table  S6) in this locus suggest the 

existence of a variant regulating all traits (CPC > 0.8). HyPrColoc 
analysis revealed significant colocalization (Posterior probability 
> 0.7) between VWF, VTE and FADS1 gene expression in artery 
tibial and liver tissues (Supplementary Table  S7), while also sug-
gested —not significantly— (0.7 > Posterior probability > 0.5) an 
effect in splicing regulation in adipose visceral omentum in FADS2 
and FEN1 genes with VTE and CAD (Supplementary Table S8). We 
were unable to identify triple colocalizations between VWF, IS and 
gene regulation.

F I G U R E  3  Heatmap of the genetic correlations between the two traits used in the multi-phenotype analyses. * Indicates traits are 
significantly correlated with a p-value <.001.

TA B L E  1  Summary of the four novel associations identified in the 27 multi-phenotype analyses that were not significant in the individual  
datasets and previous GWAS

Marker Name Traits Variant Effect Allele MAF Effect 1 Effect 2 Effect 3 Effect 4 Locus Name p-valuemultivariate p-valueunivariate 1 p-valueunivariate 2 p-valueunivariate 3 p-valueunivariate 4 CPCb

3:194790434 VTE-FVII rs3796159 C 0.2684 0.0605 −0.0112 - - XXYLT1 1.78 × 10−9 6.77 × 10−6 5.15 × 10−6 - - 0.9727

3:186459927 VTE-FVIII rs710446 T 0.4136 −0.0601 −0.012 - - KNG1 4.12 × 10−11 3.71 × 10−7 1.1 × 10−6 - - 0.9962

19:19407718 CAD-FIBR rs10401969 T 0.0768 0.0386 −0.0089 - - SUGP1/MAU2 8 × 10−11 2.22 × 10−5 2.99 × 10−7 - - 0.9827

7:72989390 FIBR-FVII-FXI-TPA rs11974409 A 0.1816 0.0035 0.0154 0.0079 0.023 TBL2/MLXIPL 3.22 × 10−11 .0019 1.87 x 10-7 0.014737 1.71 x 10-5 0.9896a

aPosterior probability FVII-tPA.
bConditional probability of colocalization.
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4  |  DISCUSSION

We performed a multi-phenotype approach using correlated hemo-
static traits and three CV events and detected four novel pleiotropic 
loci that had not been previously described in association with these 
hemostatic traits or CV events.

Given a common locus between two or more phenotypes, three 
scenarios are possible: (1) there are different causal variants asso-
ciated with the different traits, (2) the same variant associates with 
the different traits separately (horizontal pleiotropy), or (3) the vari-
ant associates with one trait, which in turn causes association with 
another trait (vertical pleiotropy).41 While our analyses did not allow 
to differentiate between horizontal and vertical pleiotropy, we have 
found evidence of common variants in the four new pleiotropic loci, 
which agrees with the previous notion that pleiotropy is common be-
tween variants associated with correlated disease traits.42 Common 
genetic regulators, however, do not mean that the associated pheno-
types are causally associated. Causal associations between related 
phenotypes can be explored through Mendelian randomization (MR) 
methods.

We found a total of 1015 significant loci across all the multi-
phenotype combinations. Among these, 129 were driven by more 
than one phenotype, of which 46 were found in combinations with 
CAD, 38 with VTE, 28 in combinations between hemostatic traits, 
and 16 with IS. Finally, among the 82 loci that were new for at least 
one of the phenotypes used in the combination, 30 were identified 
in combinations with CAD, 23 with VTE, 15 between hemostatic 
traits, and 13 with IS.

4.1  |  XXYLT1 and regulation of FVII

XXYLT1 codes for xyloside xylotransferase 1, an enzyme that elon-
gates O-linked glycans in the epidermal growth factor (EGF) repeats 
of O-linked glycosylated proteins like FVII.43 However, the direction 
of the effect of this variant suggests a decrease in FVII levels for 
allele C and an increase in the risk of VTE. In addition, MR analyses 
previously performed between VTE and FVII did not conclusively 
identify FVII as a cause of VTE,1 which suggests that the common 
variant at this locus on xyloside xylotransferase 1 enzyme could be 
affecting both phenotypes independently, through expression of 
XXYLT1 in adipose subcutaneous, adipose visceral omentum, artery 

aorta or artery tibial tissues. In this direction, it is known that other 
coagulation factors, like factor IX, are also glycosylated in the EGF 
repeats.44 It would be plausible to speculate that XXYLT1 could af-
fect FVII levels and also other EGF-glycosylated proteins that would 
eventually modify VTE risk. Therefore, further research in this locus 
is recommended to fully understand the possible relationship be-
tween XXYLT1, FVII and VTE, and the possible effect that other he-
mostatic proteins could have in this association.

4.2  |  KNG1 and risk of VTE through FVIII levels

The protein encoded by this gene, Kininogen-1 (KNG1), is the 
precursor of two other proteins, obtained through alternative 
splicing: high-molecular-weight kininogen (HMWK) and low-
molecular-weight kininogen (LMWK). Through a process facilitated 
by Factor XII (FXII), the peptide bradykinin is cleaved from HMWK 
by the enzyme kallikrein.45

There is strong biological evidence that associate KNG1 gene 
with the coagulation system.40,46,47 HMWK, along with FXII and 
prekallikrein (PK) complex, conform the plasma kallikrein-kinin sys-
tem (KKS), that plays an important role in human physiology. The 
activation of KKS components results in the induction of genes and 
biomolecules that participate in blood coagulation, among other 
processes.48,49 Bradykinin, on its turn, is an important molecule in-
volved in vascular permeability and also in mechanism of pain.45

We have previously shown6,50,51 that the lead variant on KNG1 
(rs710446) is also strongly associated to activated partial thrombo-
plastin time (aPTT), prekallirein, FXI and coagulation activity of FVIII 
in a candidate gene experiment, indicating a pleiotropic effect of this 
gene on regulating the intrinsic pathway of coagulation,52 resulting 
in modified risk of VTE.

Although the association with VTE has been demonstrated in 
candidate-gene studies,38 the combination between VTE-FVIII, 
enhanced the association, suggesting a plausible functional rela-
tionship between KNG1 and FVIII that had never been reported in 
GWAS. This association could be explained by a putative regulation 
of KNG1 also on FVIII, which would imply an effect of KNG1 on 
the common pathway of coagulation. Associations of KNG1 with the 
entire coagulation cascade, and not just the intrinsic pathway, have 
been proposed by others.72 The significant colocalization analysis 
between VTE and FVIII in this locus aligns with previous evidence 

TA B L E  1  Summary of the four novel associations identified in the 27 multi-phenotype analyses that were not significant in the individual  
datasets and previous GWAS

Marker Name Traits Variant Effect Allele MAF Effect 1 Effect 2 Effect 3 Effect 4 Locus Name p-valuemultivariate p-valueunivariate 1 p-valueunivariate 2 p-valueunivariate 3 p-valueunivariate 4 CPCb

3:194790434 VTE-FVII rs3796159 C 0.2684 0.0605 −0.0112 - - XXYLT1 1.78 × 10−9 6.77 × 10−6 5.15 × 10−6 - - 0.9727

3:186459927 VTE-FVIII rs710446 T 0.4136 −0.0601 −0.012 - - KNG1 4.12 × 10−11 3.71 × 10−7 1.1 × 10−6 - - 0.9962

19:19407718 CAD-FIBR rs10401969 T 0.0768 0.0386 −0.0089 - - SUGP1/MAU2 8 × 10−11 2.22 × 10−5 2.99 × 10−7 - - 0.9827

7:72989390 FIBR-FVII-FXI-TPA rs11974409 A 0.1816 0.0035 0.0154 0.0079 0.023 TBL2/MLXIPL 3.22 × 10−11 .0019 1.87 x 10-7 0.014737 1.71 x 10-5 0.9896a

aPosterior probability FVII-tPA.
bConditional probability of colocalization.



1338  |    TEMPRANO-SAGRERA et al.

F I G U R E  4  A: Regional plots for rs3796159 variant on XXYLT1 gene on VTE (top) and FVII (bottom). B: Regional plots for rs710446 variant 
on KNG1 gene on VTE (top) and FVIII (bottom). C: Regional plots for rs10401969 on SUGP1 gene on CAD (top) and fibrinogen (bottom). D: 
Regional plots for rs11974409 on TBL2 gene on FVII (top) and TPA (bottom).
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and suggests that rs710446 affects the regulation of both pheno-
types along with other related hemostatic phenotypes.

4.3  |  SUGP1/MAU2 and CAD risk through 
fibrinogen levels

CAD and fibrinogen multi-trait analysis resulted in the identification 
of a new pleiotropic locus on SUGP1/MAU2 genes, with lead variant 
rs10401969. SUGP1/MAU2 is a pleiotropic locus that has been associ-
ated to lipid's metabolism traits levels (total cholesterol, apoliprotein 
B, triglycerides), liver related proteins levels (alanine transaminase, as-
paratate aminotransferase, alanine aminotransferase), blood-related 
phenotypes (red cell distribution width, mean reticulocyte volume), 
type 2 diabetes and cirrhosis.33 This locus has also been associated 
to CAD in candidate gene studies in Chinese and Caucasian popu-
lations but never in GWAS studies.53,54 SUGP1 codes for a protein 
called SURP and G patch domains-containing protein 1 (SUGP1), that 
it is believed to function in pre-mRNA splicing mechanisms.55 This is 
the first time that SUGP1 is associated with coagulation factors and 
colocalization results suggest that the common variant at this locus 
is regulating both, CAD and fibrinogen. The identification of our lead 
variant, rs10401969, as a significant eQTL for MAU2 gene in blood, 
and the identification of this locus in a significant colocalization be-
tween CAD, fibrinogen and eQTL data in blood, also suggests the ex-
istence of a variant regulating both phenotypes that would take place 
through the MAU2 gene expression. MAU2 codes for MAU2 chroma-
tid cohesion factor homolog and has an important role in loading the 
cohesion complex to DNA.56,57 MAU2 has never been associated to 
coagulation factor levels.

Fibrinogen levels have been found significantly higher in cases of 
CAD in epidemiological studies,58,59 although MR studies have only 
been able to demonstrate a small causal effect using multi-variant 
MR approaches.60,61 Further evidence is needed to clearly eluci-
date if the effect of this variant on SUGP1/MAU2 locus on CAD is 
through fibrinogen levels or if this locus influences both phenotypes 
in parallel.

4.4  |  Liver produced proteins and the 
TBL2/MLXIPL locus

The TBL2/MLXIPL locus has been associated with other phenotypes 
of interest related to lipids metabolism levels (triglycerides, high 
density lipoprotein, low density lipoprotein) and other liver related 
proteins levels (alkaline phosphatase, C-reactive protein, gamma 
glutamyl transferase or alanine aminotransferase),33 but this is the 
first time that a variant located on TBL2 reaches the significance 
threshold in a GWAS involving hemostatic factors. Also, in a pre-
vious candidate gene study for FVII levels, the variant rs7777102, 
located upstream the MLXIPL gene and ~70  kb away rs11974409 
(D’ = 0.85, R2 = 0.44, in 1000G project European population51), was 
found associated to FVII.51 TBL2 codes for an endoplasmic reticulum 

transmembrane protein called transducin (β)-like 2 (TBL2) that, upon 
ER stress, interacts with PERK (PKR-like ER-resident kinase) and is 
able to regulate ATF4 (activation transcription factor 4) translation. It 
has also been demonstrated that TBL2 has a WD40 (beta-transducin 
repeat) domain that is essential for the association with mRNA of 
ATF4.62,63 MLXIPL codes for Carbohydrate response element binding 
protein (ChREBP), a transcription factor highly enriched in the liver 
with a key role in lipids metabolism. ChREBP has also shown a re-
sponse for glucose metabolites that change its cellular location and 
stability and also imply post-translational modifications. ChREBP 
binds to several proteins that are crucial to induce its nuclear trans-
location or biding to nuclear receptors.64 Considering the previous 
results obtained in a candidate gene studies in FVII,51 that associ-
ated this locus to FVII levels, together with the significant colocali-
zation results between FVII and tPA, and the significant results also 
of HyPrColoc with several tissues, all suggest that the TBL2/MLXIPL 
locus has a pleiotropic effect on the expression of several hemostatic 
traits. The colocalization results in tissues suggest MLXIPL gene as a 
good candidate gene, with a common variant in this locus regulating 
MLXIPL expression and splicing in adipose visceral and adipose vis-
ceral omentum tissues, FVII levels, and TPA levels at the same time.

4.5  |  MYRF/TMEM258/FADS1/FADS2 and its effect 
on CV events

MYRF codes for a membrane-associated transcription factor, that 
participates in the activation of myelin genes and that has been 
associated to brain development issues.65,66 Previous GWAS have 
also associated the genomic region of MYRF and TMEM258 genes 
to hematologic and lipid metabolism traits.33 TMEM258 codes for a 
protein with two predicted transmembrane domains, with no clear 
function in vivo, that has been associated with endoplasmic reticu-
lum stress when knocked out and as an important regulator of intes-
tinal hemostasis. TMEM258 has also been described as a potential 
causal gene of cardiovascular traits and as a regulatory site of ab-
dominal visceral fat.67,68

Although not new for VTE and CAD, the identification of 
the same locus in the multi-phenotype analyses with all 3 CV 
events and a hemostatic trait supports the idea that the MYRF/  
TMEM258/FADS1/FADS2 locus is common regulator. Significant 
colocalization results between VWF and the cardiovascular out-
comes, also support this idea. Our effort to prioritize a causal gene 
through the colocalization analysis in different tissues, revealed 
that a common variant at this locus regulates expression of FADS1 
gene in artery tibial and liver and the splicing regulation of FADS2, 
although the colocalization was not significant. FADS1 and FADS2 
code for members of the fatty acid desaturase gene family that 
catalyze several steps in the formation of omega-3 and omega-6 
fatty acids.69 The rs174547 variant located on FADS1, in high LD 
with our lead variant rs174528 (D’ = 1, R2 = 0.84) in the European 
population of 1000 Genomes project,70 has been implicated in the 
risk of suffering multiple CV events, including VTE, CAD and IS, 
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in a previous MR study.71 Our results clearly support a regulatory 
role of this locus on several CV events and suggest the involve-
ment of VWF in the association between FADS1/FADS2 and CV 
events.

4.6  |  Strengths and limitations

This is the first systematic multi-phenotype analysis using summary 
data for hemostatic traits related to CV events to increase power to 
detect loci associated with more than one related phenotype. We 
have leveraged data from the leading consortia worldwide analyzing 
genetics of hemostatic traits, VTE, CAD, and IS, often providing the 
largest datasets currently available. We consider this, one of the most 
major strengths of this work. Moreover, most phenotypes included 
trans-ethnic population, which give a broader transferability of the 
results.

We are aware of the existence of several limitations in this work. 
First, there are notable differences between the sample sizes of the 
hemostatic traits used, the largest one being fibrinogen (N = 120 246 
cases) and the smallest one PAI-1 (N = 19 599), which leads to differ-
ences in statistical power between multi-phenotype analyses. Second, 
we were limited to use summary statistics of mostly European origin 
to calculate genetic correlations, given the lack of good references in 
other populations to generate the LD scores, which implies that these 
results cannot be applied to global populations. LDSC filters out vari-
ants with low sample size. For some phenotypes this information was 
not available, and we used the maximum sample size of the pheno-
type. This could have created some error. Third, we are also aware 
that there are limitations associated with the use of GTEx data. This 
data has limited sample sizes that vary greatly from tissue to tissue. 
For example, the number of liver samples (N = 208) is considerably 
lower than the samples of tissues such as artery tibial (N = 584) or 
adipose subcutaneous (N = 581), which may end up in differences in 
power to detect associations. The lower numbers of liver samples may 
have affected our power to detect some of the identified variants as 
significant eQTL in the liver, and therefore the implication of causal tis-
sues should be interpreted with caution. Finally, we are not providing 
functional validation of these results. Therefore, further experiments 
are needed to confirm the implication of the novel suggested loci in 
disease.

5  |  CONCLUSIONS

We have shown that the multi-phenotype analysis of biologically re-
lated phenotypes expands discovery of newly associated loci. Using 
summary GWAS data from hemostasis and CV events, we identified 
four colocalizing novel loci that were not identified as statistically sig-
nificant in the source datasets and have not been described in other 
GWAS of the phenotypes involved. Although our strategy does not 
allow to unequivocally identify the causal variant or variants at each 

locus, the colocalization results suggest the existence of common 
regulatory variants at the newly identified loci.

Some of these loci appear to represent genes that may simulta-
neously regulate more than one hemostatic trait (horizontal pleiot-
ropy), and some seem to reflect the risk mechanism from a gene to 
one or more CV events through regulation of a hemostatic factor 
(vertical pleiotropy),41 therefore revealing novel biological mecha-
nisms. Both cases of pleiotropy are novel interesting insights that 
will help understand the pathophysiology of clinical CV events.
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