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Many biological systems rely on the ability to self-assemble
different target structures using the same set of components.
Equilibrium self-assembly suffers from a limited capacity in such
cases, due to an increasing number of decoy states that grows
rapidly with the number of targets encoded. Moreover, improv-
ing the kinetic stability of a target at equilibrium carries the price
of introducing kinetic traps, leading to slower assembly. Using a
toy physical model of interacting particles, we demonstrate that
local driving can improve both the assembly time and kinetic sta-
bility of multitarget self-assembly, as well as reduce fluctuations
around the target configuration. We further show that the local
drive can result in a steady-state probability distribution over tar-
get structures that deviates from the Boltzmann distribution in a
way that depends on the types of interactions that stabilize the
targets. Our results illustrate the role that nonequilibrium driv-
ing plays in overcoming tradeoffs that are inherent to equilibrium
assemblies.

nonequilibrium self-assembly | local driving | self-healing |
stored structures

Many biological processes rely on the ability to self-assemble
multiple structures using the same set of components.

Examples range from the variety of protein chaperones, cochap-
erones, and chaperonins that orchestrate protein folding (1–3)
to the protein components of chromatin (mainly histones) whose
modifications regulate gene expression through conformational
changes (4–6). In the former example, the protein quality con-
trol system must handle a huge diversity of denatured protein
products including folding intermediates, amorphous aggregates,
amyloid fibrils, and more, with each case requiring the recruit-
ment of different members of the regulatory system. In the latter
example, different local modifications of the long histone tails
can change the global conformation of the nucleosome, ren-
dering certain genes accessible for transcription. The common
feature of both cases is the flexibility of the components and
their ability to rearrange themselves into different global struc-
tures with desired functions while undergoing conformational
changes. Efforts to mimic nature in this context include the
design of switchable smart materials that can change their shape
and properties in response to external stimuli (7) such as heat
(8), pH (9, 10), and laser irradiation (11–13), with a goal of
allowing for the self-assembly of different structures depending
on the conformation or morphology of the configurable building
blocks (14–17).

Another typical characteristic of biological self-assembly is
self-healing, that is, the ability to correct for a wrong state
on the way to the desired final structure (18). For example,
microtubules, which govern intracellular transport and polarity,
polymerize in the growing phase by binding tubulin dimers to
the positive end and can also self-repair a damaged site by incor-
porating free tubulin dimers into a defect location, with both
processes fueled by guanosine triphosphate (GTP) hydrolysis
(19, 20).

Self-healing is just one of many aspects of self-assembly in
the biological context that operate far from equilibrium while

constantly absorbing work from its environment (21). Nonequi-
librium driving forces fuel the essential hallmarks of life such
as growth, self-replication, and adaptation (22–24), all of which
rely on interactions at the molecular level which allow biolog-
ical building blocks to bind and self-assemble, while discrimi-
nating between right and wrong states (25). At present, it is
accepted that a general understanding of the fundamental trade-
offs governing nonequilibrium self-assembly is much needed,
yet only just beginning to emerge (26–32). For example, sev-
eral studies showed an improvement in a self-assembly outcome
using time-dependent interactions (33–37). Others showed self-
assembly structures that adapt to a particular external drive
of acoustic waves (38), electrical fields (39, 40), or light (41).
Further studies provided design principles for self-assembly pro-
cesses driven by chemical potential excess (29) and suggested
dissipative adaptation as the underlying mechanism governing
self-organization in driven systems (23).

In contrast, equilibrium self-assembly is well understood as a
process of relaxation toward equilibrium, characterized by the
minimization of the free energy (42–45). In this regime, a self-
assembly target can be encoded by specific interactions between
particles and their designated neighbors in the target structure.
An example of such a programmable equilibrium self-assembly
is DNA origami (46, 47). Self-assembly processes of this type are
similar to memory retrieval in associative neural networks with
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specific short-range interactions (48), and a major challenge of
the equilibrium framework from this perspective is the limita-
tion on storage capacity. Just as associative memory models have
a finite number of memories that can be encoded and retrieved
with high fidelity (48–50), so too is there an upper limit to the
possible number of structures that can be encoded by specific
interactions within a shared pool of monomer building blocks
(51, 52).

Inspired by the molecular architecture of living things, we set
out to explore the opportunities and challenges of self-healing
self-assembly in the nonequilibrium regime, using a toy physical
model. Self-assembly goals are encoded through specific inter-
actions between monomers; however, in analogy to different
conformations adopted by proteins, each particle can adopt one
of several internal states. Interparticle interactions are depen-
dent on the internal state of members of the interacting pair.
Within this framework, different target structures are encoded
through the specific interactions between the particles when all
of the components adopt a particular internal state.

A local, self-healing drive is incorporated through the ten-
dency of a particle to adopt an internal state that matches
those of its neighbors. The goal of this type of driving is to
establish assembly targets (memories) as dynamical attractors
which autonomously emerge during the exploration of the con-
figuration space, in a manner loosely inspired by intracellular
signaling cascades (53, 54). A system thus described can be
thought of as an associative memory model of an unsuper-
vised stochastic neural network (55), i.e., a Boltzmann machine,
with added nonequilibrium dynamics which further stabilize the
encoded memories. As such, the system can wander around in
the configuration space, and if a partially assembled seed hap-
pens to form, it can be fully assembled with the help of the
local drive.

In what follows, we discuss equilibrium tradeoffs and con-
straints that can be overcome in the nonequilibrium regime. Our
model highlights global-scale phenomena that arise from a driv-
ing force with a simple local rule. Specifically, we show that the
local driving can accelerate the assembly, increase the stability of
the assembled target, and reduce fluctuations around it, as well
as demonstrate how local minima in the free-energy landscape
are differentially affected by the drive.

Model of Interacting Particles on a Lattice with Multiple
Stored Targets
Our model consists of N distinguishable particles, with m pos-
sible internal states, {sαi |i = 1, ..,N ;α∈{1, ..,m}}, placed on
a 2D square lattice of size L×L, where each site can be
either unoccupied or occupied by a single particle (Fig. 1A).
When two particles, sαi and sβj , occupy adjacent lattice sites,
they exhibit nearest-neighbors (n.n.) interaction of magnitude
Jαβij . The system has m stored targets, corresponding to the m
internal states of the particles, where each target α is defined
as a unique spatial arrangement of the particles positions on
the lattice, all with internal state α (Fig. 1B). The targets are
encoded by the n.n. interactions: Particles of the same inter-
nal state α experience a strong attraction, Js, if they are n.n.
according to a target structure, and a weak attraction, Jw,
otherwise:

Jααij =

{
Js sαi and sαj are n.n. in target α
Jw otherwise . [1]

If, on the other hand, n.n. particles are of different internal states
α 6=β, then

Jαβij = 1
2

(
Jααij + Jββij

)
. [2]

BA

C

Fig. 1. Model system illustration. (A) An example of a lattice of size L = 15,
occupied by N = 25 particles with m = 2 possible internal states identified
by either solid or dashed lines. The particles are distinguishable, denoted
by the unique color of each one. (B) Two target structures corresponding
to all of the particles being in one of the two possible internal states. Each
structure has a unique spatial configuration of the N particles. (C) In each
iteration a physical move on the lattice (Right) followed by an internal state
switching (Left) is attempted. The trial moves are accepted with probability
that depends on the energy differences as described in the main text.

The total energy of the system is thus defined as

E =
∑
<i,j>

Jαβij , [3]

where the summation is over n.n.
The dynamics are simulated using a single-particle Monte

Carlo Metropolis algorithm (56). Initially, the particles are
placed randomly on the lattice. Each iteration, a particle is
chosen at random, as well as a random direction of the four pos-
sibilities: up, down, right, or left (Fig. 1C). If the destination site
is occupied or outside the boundary of the lattice, the move is
rejected. Otherwise, the energy difference between the proposed
and current configurations ∆E is calculated and the attempted
move is accepted with probability p according to the Metropolis
criterion (56)

p = min{1, e−∆E}, [4]

which guarantees detailed balance, where the temperature was
chosen to be T = 1 for all of the simulations, with a Boltzmann
constant kB = 1. After each attempted physical move, a particle
is chosen at random again, along with a new random internal
state, different from its current one (Fig. 1C). The internal state
switch is accepted with probability p according to Eq. 4 as well.

Equilibrium Tradeoffs
Equilibrium assembly faces an unavoidable tradeoff that pits
speed against stability (30); while stronger interactions favor the
target state, interactions that are too strong will slow down the
rearrangements needed to find the target state.

To demonstrate this, simulations were run for m = {1, 2, 3, 4}
targets, with N = 25 particles and lattice size L= 15. The weak
interaction was set to be Jw =−1, and the strong interaction
was varied between Js =−6 and Js =−3. The lattice was ini-
tialized with random positions of the particles, and their initial
internal states were chosen randomly when applicable. During
each realization, we tracked the first time (measured in Monte
Carlo steps) in which one of the targets was assembled, TFAS,
and found particular values for the strong interaction that gave
rise to the fastest assembly, depending on the number of tar-
gets encoded (Fig. 2A). As the number of targets increased,
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Fig. 2. Equilibrium constraints. (A) First assembly time of a target, TFAS, as
a function of the strong interaction energy Js for one, two, three, and four
possible targets (Top to Bottom, respectively). Each circle represents a result
from one realization (20 in total for each interaction value) with random
initial conditions. The black dotted line is the total simulation time, and the
black solid curve tracks the median of the first assembly time as a guide for
the eye. (B) Time spent at the target, Ttarget, for simulations initialized at one
of the target structures (blue crosses, left y axis), and the mean distance from
the target, < d> (orange crosses, right y axis), as a function of the strong
interaction energy Js for one, two, three, and four possible targets (Top to
Bottom, respectively). The data points are averages over 20 realizations with
identical initial conditions. Error bars are 1 SD.

stronger attraction was needed to achieve the fastest assembly.
For interaction energies that are too weak, the system remained
in a homogeneous phase, whereas interaction energies that are
too strong resulted in multiple kinetic traps that hindered a
successful assembly of the target. These results agree with pre-
vious work of multicomponent equilibrium self-assembly (57,
58), guided by designed interactions, showing that high-yield
assembly occurs even in the presence of nonspecific (undesigned)
interactions as long as their scale is sufficiently separated from
the specific interactions and that the distribution of the spe-
cific interactions is narrow (in our case, all of the values of the
specific interactions are identical, Js).

To quantify target stability, we monitored the amount of
time spent at a target and the mean deviation from it along
a realization. We defined a distance measure from the tar-
get, d , to be the normalized Hamming distance (59) between
the current microstate and the target, i.e., the fraction of par-
ticles that are in the correct spatial location according to a
specific target. We initialized the simulations at one of the
targets and tracked the amount of time the system spent at
the initial target state, (d = 0), as well as the average dis-
tance from the target along each realization (Fig. 2B). As

expected, the strong interaction energy value that gave rise to
the fastest assembly was right at the cusp of the melting point,
above which the time spent at the initial target diminished
significantly and the mean distance from the target increased
dramatically.

These results demonstrate some of the constraints in an
equilibrium system of self-assembly, namely, increased stabil-
ity comes at the price of slower assembly. Further, there is not
a single value of the interaction energy that can accommodate
an increasing number of target structures encoded through the
interparticle interaction energies. Given a specific value of Js,
there is a very limited range of number of targets that can be
assembled within a time-limited process.

Next, we set to explore the benefits of nonequilibrium driving
force in this context.

Local Driving Force
We added a local driving force which affects the probabilities
of accepting or rejecting trial moves of switching internal states.
Coupling to the external drive depends only on the local environ-
ment of the randomly chosen particle: If the particle has two or
more neighbors with the same internal state, the drive increases
the acceptance probability of a trial move that results in the par-
ticle flipping to the same state as its neighbors and decreases the
acceptance probability of a trial move that results in the particle
flipping away from the same state as its neighbors to a differ-
ent one (Fig. 3A). In contrast, the physical moves of the particles
remain unaffected.

Effectively, the drive either decreases or increases the barrier
heights between each two microstates in which a particle with
two or more neighbors with the same internal state α is trying
to change its own to α or switch away from α, respectively. Let
us stress that flipping into the same internal state as neighbor-
ing particles is not always energetically favored. For example, if
a particle with an internal state β has two neighbors with inter-
nal states α, which are also its n.n. according to target β, and
it is attempting to switch to internal state α, then ∆E for this
attempted move is positive given that the particles are not n.n.
according to target α. If a particle has four neighbors, two of
which have internal states α, and the other two have internal
states β, the coupling to the drive when trying to flip to or from
state α or β occurs with probability one-half. Such a drive is con-
sidered to be self-healing, as it pushes to “correct” for wrong
internal states.

Compared with Eq. 4, the modified probability q for accepting
an internal state-switching trial move is now

q = min{1, e−∆E±∆µ}, [5]

where the + and − signs in the argument of the exponent
correspond to increased and decreased acceptance probability,
respectively, and ∆µ≥ 0 denotes the value of the drive. For
∆µ 6= 0, detailed balance no longer holds. This driving force can
be thought to result from a chemical potential gradient of a
molecule which catalyzes or suppresses the reaction. An effect
of this kind could potentially relate to an ATPase chaperone-like
activity, such that upon binding to a particular (i.e., nonnative)
conformation of a protein substrate, ATP hydrolysis catalyzes a
conformational change to its native state.

Typical realizations of the simulation with m = 2 targets (and
m = 2 internal states) are shown in Fig. 3 B and C for ∆µ= 0
and ∆µ= 1, respectively. For ∆µ= 0, the system spends most
of the simulation time away from the target structures, as evi-
dent from the high energy and distance values. If a target
is eventually assembled, it is not stable and is immediately
disassembled. For ∆µ= 1, however, not only is the assembly
time shorter, but also the system stabilizes an assembled tar-
get for longer. In addition to the energy and distance values,
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Fig. 3. Local nonequilibrium drive. (A) Illustration of the effect of the driv-
ing force in a cycle that breaks detailed balance. (Top Left) Four neighboring
particles with the same internal state (solid line). (Top Right) One of the
particles was detached from the cluster. (Bottom Right) The detached par-
ticle flipped to a different internal state (dashed line). (Bottom Left) The
particle retuned to its previous location within the original cluster. The
arrows between these transitions represent Metropolis acceptance proba-
bilities. The transitions between Top Left and Bottom Left microstates are
accepted with either increased or decreased probabilities, corresponding
to the thicker and thinner arrows, respectively. (B and C) Typical realiza-
tion of the simulation for m = 2 targets in detailed balance, ∆µ= 0 (B), and
with the local drive ∆µ= 1 (C). B and C, Left show the energy along the
simulation as a function of the Monte Carlo (MC) step number (blue curve,
left y axis) and the entropy production (orange curve, right y axis). B and C,
Right show the distance d from target 1 (purple curve) and target 2 (yellow
curve) as a function of the MC step number. For an assembled target, d = 0.

we also track the entropy production along each realization,
by adding up the log ratio of the probabilities of each move
and its reverse (60–62). For the detailed balance example,
∆µ= 0, the entropy production rate is zero throughout almost
all of the realization, whereas in the driven case, ∆µ= 1, the
total entropy production is constantly increasing, with lower
rates when a target is assembled compared with the explo-
ration phase.

We now turn to quantifying these qualitative effects to
emphasize the benefits of the nonequilibrium driving.

Nonequilibrium Speedup and the Entropic Cost
To test the effect of the local driving force, we ran the sim-
ulations for m = {2, 3, 4} targets (corresponding to m internal
states), with N = 25 particles and a lattice size of L= 15, for var-
ious drive values ranging between 0 and 9, while keeping the
value of the strong interaction energy fixed at Js =−4.
The specific value for Js was chosen owing to being within
the range of values resulting in the fastest assembly time of
a single target (Fig. 2A, Top). Our goal was to accelerate
the assembly time using the local drive and demonstrate it

breaks the built-in tradeoff between speed and structural sta-
bility that is observed in equilibrium self-assembly (30). While
stronger interactions (higher absolute values of Js) increase tar-
get stability, interactions that are too strong compromise the
assembly speed.

In the case of detailed balance (∆µ= 0), there were only a few
assembly events within the simulation duration, which became
rarer to nonexistent for increasing number of targets (Fig. 4A and
SI Appendix, Fig. S1A). This is consistent with the results pre-
sented in Fig. 2, showing that rapid assembly requires stronger
interactions as the number of targets increases. In addition,
our results agree with the analysis of a similar equilibrium self-
assembly system by Murugan et al. (51), estimating the number
of targets that can be encoded and retrieved with high fidelity
of a comparable system to be of order 1 (more details are in SI
Appendix).

When the local drive is introduced, the first assembly time,
TFAS, decreases with increasing drive value, where more tar-
gets require higher forcing for similar assembly times. A com-
parison between the median assembly times as a function of
the driving force clearly shows the higher drive value needed
for the larger number of targets encoded (Fig. 4A). More-
over, targets can be stabilized for longer periods of time with
increasing drive value, where more encoded targets require
higher forcing (SI Appendix, Fig. S2A). Even for binding ener-
gies Js, for which target assembly is the fastest at equilibrium,
the local drive reduces thermal fluctuations around the target
structure (SI Appendix, Fig. S2B). This demonstrates the con-
tribution of an external drive to the feasibility of self-assembly
with shared components encoding several structures. The drive
both accelerates the assembly and increases target stability.
Additionally, stronger drive always leads to a comparable or
better performance. In contrast, although increasing the attrac-
tion energy up to a certain value improves target stability and
accelerates the assembly, further increase would slow down the
assembly.

Looking at the total entropy production up to the first assem-
bly time, σ, normalized by the drive value, as a function of the
drive value, we see a decreasing trend, indicating that fewer
entropy-producing cycles are needed to achieve assembly for
higher driving forces (Fig. 4B and SI Appendix, Fig. S1B). This
occurs despite the fact that the entropy production rate, defined
as σ̇=σ/TFAS, increases as a function of the drive strength even
when normalized by the drive strength (Fig. 4C), indicating a
more efficient assembly for higher driving forces.

In the simulations described so far for N = 25 particles and
lattice size of L= 15, there were only a handful of successful
assemblies within the duration of a single realization. To better
explore the configuration space we reduced the system size for
the following set of simulations.
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Fig. 4. Nonequilibrium gain. (A) Median first assembly time, TFAS, of one of
the encoded targets, as a function of the driving-force value for two (blue),
three (red), and four (yellow) encoded targets. The median was taken over
20 realizations. The total time of each simulation is 5× 107 Monte Carlo
steps. (B) Median of the total entropy production up to the first assem-
bly time normalized by the the driving-force value, σ/∆µ, as a function
of the driving-force value. (C) Median of the entropy production rate nor-
malized by the the driving-force value, σ̇/∆µ, as a function of the driving-
force value.
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Deviation from Boltzmann Ratio
We ran an additional set of simulations for m = 2 targets, N = 9
particles, and a lattice size of L= 9. The smaller system size
allowed us to better sample the configuration space and bene-
fit from better statistics. The two target assemblies were of 3× 3
square shape, with different spatial arrangement of the nine par-
ticles, excluding the central particle that was identical for the two
targets (Fig. 5A).

To study the relative probabilities of the two targets with the
nonequilibrium drive described above, we further introduced a
bias that favored one of the target assemblies over the other.
Our goal here was to understand how the driving affected the
relative populations of local free-energy minima when these min-
ima were stabilized or destabilized with respect to each other by
differing mechanisms.

In one case, we modified the strong binding energy of tar-
get 1, J 1

s , by increasing its strength relative to target 2, which
was kept constant, J 2

s =−4, thus favoring the former (Fig. 5B).
This could correspond to a scenario in which an environmental
change, such as the introduction of a new solute, could alter the
effective attraction among monomers in the assembly. In this sce-
nario, the only difference in the Hamiltonian is the definition of
Jααij given in Eq. 1,

A

C D

B

Fig. 5. Target bias. (A) Two targets of N = 9 particles each. The central
particle is identical for both targets. Corner particles in one target are on
the middle location of the edges in the other one. (B) A bias between
the two targets is introduced, either by modifying the strong attractive
interaction between neighboring particles (Left) or by modifying the inter-
nal energies of the two internal states (Right). (C and D) The normalized
simulation time spent in either target 1 or target 2 (Top) and the ratio
between them (Bottom) for binding-energy bias (C) and internal energy
bias (D). The solid line in C and D, Bottom represents the corresponding
Boltzmann ratio.

Jααij =

{
Jαs sαi and sαj are n.n. in target α
Jw otherwise . [6]

where Jαs denotes the strong attractive interaction for the two
targets,α= 1, 2. A typical realization with different binding ener-
gies bias is shown in SI Appendix, Fig. S3. In the detailed balance
case, ∆µ= 0, there are many assembly events, with an obvious
preference for target 1, which has stronger interaction energy
compared with target 2. In the driven case, ∆µ= 2, the system
spends more time in one of the assembled states compared with
the undriven simulation, again with an obvious preference for
target 1.

In the other case of applying a bias between free energy
wells, we assigned a different internal energy value to the two
possible internal states corresponding to the two targets. Specif-
ically, we lowered the internal energy of being in state 1, h1,
for each particle, relative to the internal energy of being in
state 2 which was kept constant, h2 = 0, thus favoring the for-
mer (Fig. 5B). This mechanism of destabilization could corre-
spond to the introduction of a small ligand that binds pref-
erentially to each monomer in its preferred conformational
state. For this case of assigning an internal energy for each
particle, the total energy of a configuration now includes an
additional term,

E =
∑
<i,j>

Jαβij +
∑
i

hαi , [7]

where hαi is the internal energy of the internal state α of
particle i .

We ran the simulations for the two cases of the applied bias,
for different values of the driving force ranging from ∆µ= 0
to ∆µ= 12. During each realization we tracked the relative
normalized time spent at each of the two targets, p1 and p2,
respectively, to test the joint effect of the bias and the drive
(Fig. 5 C and D). For both cases the total time spent at either
of the targets, p1 + p2, increased with increasing the drive until
a plateaued value. The upper bound of p1 + p2 is controlled by
the strength of the binding interaction, as evident from com-
paring the case of different binding energies (Fig. 5C, Top) to
the case of different internal energies (Fig. 5D, Top), in which
the binding energy was held constant for the two targets. The
upper bound of p1 + p2 stems from the fact that above a cer-
tain drive value, the particles effectively cannot flip their internal
state once they are bound to two or more neighbors with the
same conformation. Hence, the only route of escape from a tar-
get state, or any cluster, is by breaking the strong interaction
energies between the neighbors, while forbidding the path of
first flipping the internal state to reduce the interaction strength
and subsequently leaving the cluster. Thus, the strong inter-
action energy value determines the upper limit of p1 + p2 in
this case.

We now turn our attention to the relative probability between
being at target 2 and being at target 1, i.e., p2/p1, as a func-
tion of the drive for different bias values (Fig. 5 C and D,
Bottom). As expected, when there is no bias, this ratio is one,
p2/p1 = 1, regardless of the drive value (blue curve), whereas
in the presence of a bias toward target 1, the ratio is smaller
p2/p1 < 1 (red and yellow curves). Further, comparing the ratio
p2/p1 to the corresponding Boltzmann factor (solid curves),
e−(E2−E1), where E1 and E2 are the energies of the system
when at target 1 or target 2, respectively, we see an agree-
ment when there is no drive (∆µ= 0). However, when increas-
ing the drive in the presence of the bias toward target 1, we
surprisingly see a deviation from the Boltzmann ratio favor-
ing target 2, p2/p1 > e−(E2−E1). This deviation is more pro-
nounced for the case of different internal energies (Fig. 5D,
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Bottom), compared with the case of different binding energies
(Fig. 5C, Bottom).

To shed light on the mechanism governing the enrichment
of the least-favored target compared with the Boltzmann ratio,
we focus on the lowest energy levels for both cases of different
binding energies, and different internal energies, corresponding
to single-particle fluctuations—internal-state flips or detachment
from the target. While the energy level spacings are similar for
target 1 in both cases, the energy level spacings for target 2 are
smaller in the case of different internal energies compared with
different binding energies (SI Appendix, Fig. S4). This feature is
not limited to the 3× 3 target size studied here, but is generally
manifested for larger systems as well. An intuitive explanation
can be given by inspecting the Hamiltonians corresponding to the
two cases. Let us consider a specific example of the energy gap
between a microstate where all of the particles adopt the internal
state 2 and are spatially arranged according to target 2, referred
to as the ground state, and a similar microstate except for a sin-
gle particle at one of the corners which adopts the internal state
1, referred to as the first excited state. The energy difference
between the ground state and the first excited state originating
from the quadratic term in the Hamiltonian (first term in Eq. 7)
is identical for both cases of different binding energies and differ-
ent internal energies; however, in the latter case, the second term
in the Hamiltonian also contributes, rendering the gap smaller
owing to the lower internal energy of internal state 1 compared
with state 2.

We fitted the data of the deviation from the Boltzmann ratio
according to c1 tanh(c2∆µ) + 1 to find the saturation value, c1

(SI Appendix, Fig. S5). In the interest of describing the deviation
from a unifying perspective, given the different features of the
energy spectra described above, we plotted the deviation value
at saturation, c1, as a function of a factor R which captures the
ratio of the relative populations of single-particle fluctuations
from the target compared with the ground state between the
two targets,

R≡ eE1 [dce
−Ec

1 + dee
−Ee

1 + dbe
−Eb

1 + 2dce
−E∗c

1 + dee
−E∗e

1 ]

eE2 [dce−Ec
2 + dee−Ee

2 + dbe−Eb
2 + 2dce−E∗c

2 + dee−E∗e
2 ]

,

[8]

where E c
α, E e

α, and E b
α denote the energies of the microstates

corresponding to a corner, an edge, or a bulk particle flipping
its internal state to the “wrong” conformation, and dc , de , and
db are the corresponding degeneracies of these microstates, for
targets α= 1 and α= 2, respectively. Further, E∗cα and E∗eα
are the energies of the microstates corresponding to a corner
or an edge particle detaching from the target cluster, for tar-
gets α= 1 and α= 2, respectively (the “2” prefactor associated
with the E∗cα term stems from the fact that a corner particle
can detach from the target in two different directions). The
degeneracies are dc = 4, corresponding to four corner particles
regardless of the total number of particles N ; de = 4(

√
N −

2), corresponding to the number of edge particles excluding
the corners; and db = (

√
N − 2)2, corresponding to the num-

ber of bulk particles. Further simplification of the factor R is in
SI Appendix.

We have found that both data point sets, for different bind-
ing energies and for different internal energies, collapse onto a
single curve when plotting the saturation value, c1, as a func-
tion of R (SI Appendix, Fig. S6). To further validate the scaling
of the saturation value with R, we combined both cases. We
repeated the simulations for different internal energies (simi-
lar to Fig. 5D and SI Appendix, Fig. S5A) in the addition of
a different binding-energy bias; i.e., J 1

s =−4.15 and J 2
s =−4.

The deviation from the Boltzmann ratio was fitted in a similar
way, and the saturation value, c1, was plotted as a function of R

(SI Appendix, Fig. S6). This dataset also follows the same scal-
ing as the datasets from the previous simulations, in support of
our model.

The scaling of R with the total number of particles, N , was cal-
culated for particular values of the binding-energy bias and for
the internal energy bias (SI Appendix, Fig. S7). We found that
R was decreasing with N down to a constant asymptotic value,
correlating to a higher saturation value c1 and stronger devia-
tion from the Boltzmann ratio for larger N . For N � 1, only the
terms with a prefactor that scales as N , i.e., db , contribute to R,
so R

N�1−−−→ e−(Eb
1−E1)/e−(Eb

2−E2).
The difference in the deviation from the Boltzmann ratio be-

tween the cases of different internal energies and different
binding energies can be elucidated by focusing on the first
excited state, corresponding to a single corner particle flip-
ping its internal state. Plotting E c

α−Eα as a function of either
|h1| or |J 1

s | for different internal energies and different bind-
ing energies, respectively, illustrates the difference between
them; namely, it increases for target 1 and decreases for tar-
get 2 in the former case, whereas it increases for target 1
and remains unchanged for target 2 in the latter case (SI
Appendix, Fig. S8). Similar qualitative behavior also appears for
E e
α−Eα and E b

α−Eα (SI Appendix, Eq. S1). Thus, we con-
clude that local nonequilibrium driving leads to stronger devia-
tion from the Boltzmann distribution in cases where the different
free-energy wells’ relative stability is determined by the energies
of monomeric internal states rather than by binding energies
between monomers. The effect originates in the fact that the
drive makes a bigger difference to target stability in instances
where the Boltzmann distribution samples near-target states
more frequently because of small excitation gaps.

Summary
We have demonstrated some of the constraints of an equilib-
rium self-assembly system that can be overcome by introduc-
ing a local driving force. When different targets are encoded
through specific short-range interactions between the same set
of components, there is a limit to how many targets can be
encoded such that an assembly event can take place within a
finite amount of time. When increasing the number of targets,
rapid assembly requires stronger interaction energies to dom-
inate over the entropic contribution to the free energy. Thus,
given a set value of the interaction, too many encoded tar-
gets can lead to frustration, such that making all of the desired
targets more favorable than off-pathway traps becomes impos-
sible. Increasing the attraction between the building blocks,
on the other hand, both accelerates equilibrium assembly and
improves target stability. However, increasing the interaction
strength above the value leading to the fastest assembly pos-
sible, while further reducing fluctuations around an assem-
bled target structure, slows down the assembly process due to
kinetic traps.

Previous studies have shown that fluctuating or reconfigurable
conformation of monomeric building blocks can facilitate the
self-assembly of a particular structure given some external bias
toward one of the internal states of the monomers (7, 14).
Other studies have shown that high-yield self-assembly of a par-
ticular structure encoded by specific interactions between its
(distinguishable) building blocks occurs at a finite regime of the
parameter space (interaction strength, temperature, etc.) (57,
58). In this line of studies, the self-assembly was a relaxation pro-
cess toward equilibrium, obeying detailed balance, or guided by
a global drive (such as a temperature change). In our case, we
combined the approaches and modeled a system of distinguish-
able particles, each of which can switch between several internal
states. Further, instead of having a global external stimulus that
would favor one target structure over the others, we included
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a local driving force that affects the internal state of a particle
based on its local environment.

The local drive pushes particles to adopt the internal state
of their neighbors, to which we refer as a self-healing prop-
erty. Here, we worked with a constant value for the strong
interaction energy which facilitated the fastest assembly of a sin-
gle target at equilibrium, even though this value increased with
increasing number of targets. Nonetheless, we have been able to
demonstrate that when multiple targets are encoded, a driving
force such as the one considered here promoted target retrieval
by accelerating the assembly and reducing fluctuations even
though the interaction energy was not varied with the number
of targets.

We have also shown that, although nonequilibrium mech-
anisms are not always more effective necessarily at meet-
ing their goals when dissipation of energy from an external
drive is increased (63), in this case, a multitarget equilibrium
self-assembly with suboptimally weak interaction energy shows
increased efficiency of self-assembly with increasing external
drive strength. Indeed, the number of entropy-producing cycles
needed for target assembly decreases with increasing drive
strength. This increased effectiveness results from the drive’s
consistent ability to convert external work into local pushes
toward the assembled state. The underlying mechanism of the
drive is its ability to lead the stochastic dynamics to randomly
choose one of the optional target structures, by biasing a clus-
ter of particles to adopt a particular internal state that encodes a
specific spatial arrangement (i.e., a target structure) through the
interparticle interactions.

The self-healing drive also nontrivially affects the relative sta-
bility of different targets when there is an applied bias that
favors one target over the other. We observed, however, that
the strength of this effect depends on the mechanism by which
the relative stability of targets is determined and points to
monomeric conformational stability as the more sensitive case.
These findings may provide guidance to designers of nonequi-
librium self-assembly schemes and inspire the next generation
of reconfigurable smart material. Further, our results may offer
insight into the potential impact of driving on macromolecular
complexes in the living cell.

Materials and Methods
The numerical simulations were run using Matlab parallelized code, where
each realization consisted of 50× 106 Monte Carlo steps. Two sets of param-
eters were used, either {N = 25, L = 15, m = 1, 2, 3, 4} or {N = 9, L =

9, m = 2}. The targets were of square shape, 5× 5 and 3× 3, respec-
tively, such that the central particle was identical in all of the targets in
each of the cases. The central particle was held in place, at the center
of the lattice, throughout the simulations. When calculating the distance
measure d between a specific microstate and a target structure, the nor-
malized Hamming distance was taken to be the minimal value over all of
the members of the target symmetry group generated by a reflection and
a rotation.
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