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Prader-Willi syndrome (PWS) is a rare 
(~1 in 12,000) genetic disorder that 

involves at least six genes on chromo-
some 15q11–q13. Children with PWS 
not only rapidly gain weight and become 
severely obese because of reduced volun-
tary activity and increased food intake, 
but also exhibit growth hormone defi-
ciency, excessive daytime sleepiness, 
endocrine dysregulation and infertility. 
These phenotypes suggest dysfunction of 
the hypothalamus, the brain region that 
regulates short- and long-term energy 
balance and other body functions. The 
physiological basis for obesity in chil-
dren with PWS has eluded researchers 
for decades. Mercer et al. now demon-
strate that Magel2, the murine ortholog 
of one of the PWS genes, is a component 
of the hypothalamic leptin-melanocortin 
pathway that is critical for energy bal-
ance. Most interestingly, disruptions of 
other components of this pathway cause 
obesity in both mice and humans, sug-
gesting a mechanistic link between PWS 
and other rare genetic forms of severe 
childhood-onset obesity.

Obesity and obesity-associated compli-
cations are a leading cause of morbidity, 
mortality and excess health care costs.1 
While the heritability of body mass index 
in adults is estimated at 40–70%,2 genetic 
factors contribute to over 80% of weight 
variation in children and adolescents.3 
Many obesity susceptibility genes act in 
the central nervous system, interacting 
with each other and with an environment 
that provides easy access to cheap, calori-
cally dense and highly palatable food.4-6 
Studies that identify and characterize 

Leptin signaling defects in a mouse model of Prader-Willi syndrome
An orphan genetic obesity syndrome no more?

William F. Colmers1 and Rachel Wevrick2,*
1Department of Pharmacology; University of Alberta; Edmonton, AB Canada; 2Department of Medical Genetics; University of Alberta; Edmonton, AB Canada

novel obesity genes and pathways have 
already been shown to have great potential 
to help us understand, prevent and treat 
obesity.

Most childhood-onset, severe, syn-
dromic or heritable forms of obesity are 
caused by rare mutations in genes impor-
tant in energy balance control circuits in 
the hypothalamus (Fig. 1).7-12 This small 
region of the brain coordinates the ner-
vous and endocrine systems to regulate 
energy balance and other homeostatic 
activities.13 Both rare mutations and com-
mon variants have been found in genes 
encoding proteins that are involved in the 
neural responses to leptin, a key hormone 
produced by adipose tissue. Mutations in 
these genes profoundly affect body weight 
and are not compensated for by other 
genes or pathways, highlighting their 
physiological importance. Further, leptin 
resistance is a hallmark of diet-induced 
obesity.14 The recent report by Mercer et 
al. demonstrating that loss of a protein 
named Magel2 impairs leptin signaling 
in the hypothalamus introduces a new 
member to the cast of characters essential 
for energy homeostasis.15 Magel2 is the 
murine ortholog of MAGEL2,16-23 one of 
the genes that is inactivated in the orphan 
genetic obesity disorder Prader-Willi syn-
drome (PWS).21,24-26 This raises a question 
about this rare and poorly understood dis-
ease: is PWS still an orphan genetic obe-
sity disorder or is it too caused by a defect 
in hypothalamic leptin signaling?

Severely obese children with mutations 
in the genes encoding leptin, its receptor 
and downstream signaling components 
have intractable feelings of hunger (hyper-
phagia) and aggressive behavior around 
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maternal allele of six key genes in this 
region. In this respect, the genetic odds 
have not been in our favor. Multiple 
genes, including at least five protein-
coding genes and a gene that produces a 
long non-coding RNA are simultaneously 
inactivated either by this microdeletion, 
by uniparental disomy or by a mutation 
that disrupts the imprinting process. 
Nature has thrown almost every pos-
sible genetic twist at the PWS region: in 
addition to genomic imprinting, clusters 
of small nucleolar RNAs are encoded in 
the introns of the non-coding RNA that 
also serves as an antisense RNA for the 
UBE3A gene responsible for Angelman 
syndrome.32,33 Other inactivated genes 
encode proteins of unknown function. 
One protein-coding gene located in 
the human PWS region is not found in 
rodents, complicating the studies of ani-
mal models.34 The PWS region is in the 
pericentromeric region of chromosome 
15, so the genomic DNA is littered with 
repeated elements and sequence cover-
age is poor. In spite of this complex-
ity, researchers have been systematically 
investigating the genes involved, one by 

relentless hunger that can lead to morbid 
obesity, as well as reduced voluntary activ-
ity and infertility.24-26 People with PWS 
have been known to steal, hoard and beg 
for food, steal money for food, eat spoiled 
or frozen food and binge on food to the 
point of gastric distension and sometimes 
stomach rupture. For this reason, PWS 
has been described as a genetic model of 
starvation, because parallel food foraging 
behavior and reduced energy expenditure 
are observed in food-deprived animals.31 
In contrast to most human genetic child-
hood onset obesity disorders where the 
causative genes disrupt the leptin, mela-
nocortin, BDNF or related pathways, 
the cause of hyperphagic obesity in PWS 
in unknown. A priori, a genetic defect 
involving the leptin - melanocortin path-
way is the most parsimonious explanation 
for obesity in PWS. However, until now, 
a mechanistic link between any one PWS 
gene and a specific pathway in the brain 
had not been made.

PWS is most commonly caused by a 
microdeletion that occurs on the pater-
nally inherited chromosome 15 and 
genomic imprinting that silences the 

food.27 Likewise, mice lacking leptin or 
its receptor are hypoactive, hyperphagic, 
infertile and obese.28 Other obese chil-
dren carry mutations in genes encoding 
proteins in pathways that intersect leptin 
circuits, such as those involving the down-
stream melanocortin or brain-derived 
neurotrophic factor (BDNF) pathways.29 
For example, variants in the melanocor-
tin-4 receptor (MC4R) gene are the most 
frequent cause of monogenic obesity, and 
disruptions to the SIM1 gene cause syn-
dromic obesity by impairing the hypo-
thalamic leptin-melanocortin pathway. 
Other rare childhood obesity syndromes, 
such as Bardet-Biedl syndrome (BBS) 
are caused by mutations in genes encod-
ing components of cilia, which are highly 
conserved organelles that act as cellular 
antennae to coordinate signal transduc-
tion pathways and control cell growth or 
differentiation.30

Of all the syndromic forms of obe-
sity, Prader-Willi syndrome has been the 
most perplexing to geneticists and obe-
sity specialists. Like children with leptin 
pathway mutations, children with PWS 
have an increased ratio of fat to muscle, 

Figure 1. Genes mutated in childhood obesity act in the hypothalamus to regulate energy balance. mutations that cause rare monogenic or syn-
dromic forms of childhood obesity have been identified in at least 10 different genes, listed on the right. the proteins encoded by these genes act in 
the hypothalamus (gray) and participate in the leptin - melanocortin pathway that regulates appetite and body weight. MAGEL2 is one of the genes 
inactivated in Prader-Willi syndrome, a rare genetic disorder that causes childhood-onset severe obesity. mercer et al. showed that Magel2, the murine 
ortholog of MAGEL2, is essential for the leptin-mediated responses of a specific set of neurons, those that express POmc in the arcuate nucleus of the 
hypothalamus.
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now have a foothold into energy imbal-
ance in one of the last remaining and 
arguably most intriguing rare genetic dis-
orders causing obesity. The new actor on 
this stage—Magel2—will have to find its 
niche in the complex protein network in 
hypothalamic neurons that governs the 
delicate balance between food intake and 
energy expenditure. This discovery also 
adds a new pharmacological target for 
improving hormone sensitivity and acti-
vating pathways downstream of appetitive 
hormones, both promising avenues for 
treatment of the obesity that has become 
rampant in today’s society.
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That is, while POMC neurons are present 
in near normal numbers in the ARC of the 
hypothalamus, they fail to depolarize in 
response to leptin, while normal hyperpo-
larizing responses were detected in AgRP/
NPY cells.
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