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ABSTRACT
Some cardiometabolic risk factors such as dyslipidemia and insulin resistance are known to be 
associated with low gut microbiota richness. A link between gut microbiota richness and the 
diversity of consumed dietary fibers (DF) has also been reported. We introduced a larger diversity 
of consumed DF by using a daily consumed bread in subjects at cardiometabolic risk and assessed 
the impacts on the composition and functions of gut microbiota as well as on cardiometabolic 
profile. Thirty-nine subjects at cardiometabolic risk were included in a double-blind, randomized, 
cross-over, twice 8-week study, and consumed daily 150 g of standard bread or enriched with 
a 7-dietary fiber mixture (5.55 g and 16.05 g of fibers, respectively). Before and after intervention, 
stool samples were collected for gut microbiota analysis from species determination down to gene- 
level abundance using shotgun metagenomics, and cardiometabolic profile was assessed. Multi- 
fiber bread consumption significantly decreased Bacteroides vulgatus, whereas it increased 
Parabacteroides distasonis, Fusicatenibacter saccharivorans, an unclassified Acutalibacteraceae and 
an unclassified Eisenbergiella (q < 0.1). The fraction of gut microbiota carrying the gene coding for 
five families/subfamilies of glycoside hydrolases (CAZymes) were also increased and negatively 
correlated with peaks and total/incremental area under curve (tAUC/iAUC) of postprandial glycemia 
and insulinemia. Compared to control bread, multi-fiber bread decreased total cholesterol 
(−0.42 mM; q < 0.01), LDL cholesterol (−0.36 mM; q < 0.01), insulin (−2.77 mIU/l; q < 0.05), and 
HOMA (−0.78; q < 0.05). In conclusion, increasing the diversity of DF in a daily consumed product 
modifies gut microbiota composition and function and could be a relevant nutritional tool to 
improve cardiometabolic profile.
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Introduction

Cardiometabolic diseases (CMD) are among the 
leading worldwide causes of death. Indeed, 
ischemic heart disease, stroke, and diabetes 
accounted for about 16.8 million deaths in 2019. 
Adiposity, dyslipidemia, and insulin resistance are 
known to increase the risk of developing CMD.1 

Studies focusing on gut microbiota analysis have 
shown that such deleterious phenotypes are asso-
ciated with low gut microbiota gene richness.2 

Furthermore, studies comparing geographically 
distinct populations, both close and distant, have 
shown that an increased consumption of fruits and 

vegetables, thus higher quantity in dietary fiber 
intake, is associated with higher gut microbiota 
diversity.3–7 In overweight and obese subjects initi-
ally presenting a low gene count, a short-term 
energy-restricted diet including an increased quan-
tity of dietary fibers, partly restored gut microbiota 
richness in parallel to improvement of the cardio-
metabolic profile.8 Taken together, this supports 
a key role of diet, particularly dietary fiber, in gut 
microbiota modulation and potentially in cardio-
metabolic risk factor management;9 especially since 
average dietary fiber intake is less than the recom-
mended 25–30 g/day.10,11
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Interestingly, a link between gut microbiota rich-
ness and consumed vegetable diversity has also been 
shown,12 suggesting that beyond quantity, the diver-
sity of dietary fiber intake may also affect gut micro-
biota richness. Moreover, in a pig model, in the 
context of a high-fat diet, an improved control of 
lipid metabolism has been reported following supple-
mentation with a mixture of three dietary fibers.13 

Dietary fibers are mainly composed of resistant starch 
and non-starch polysaccharides (NSPs) from plant 
cell walls, particularly found in legumes, vegetables, 
and cereals. Other types of carbohydrates such as 
oligosaccharides, gums, and sugar-alcohols also 
reach the colon after escaping digestion in the small 
intestine. Fiber NSPs are complex polymers of cellu-
lose, hemicellulose (xylan, xyloglucan, mannans, 
mixed-linkage glucans . . .) and pectins composed of 
a central sugar backbone, some branched with various 
side-chains by different glycosidic linkage patterns to 
form large, diverse molecules. All these polysacchar-
ides are embedded in a complex matrix and represent 
various substrates for the gut microbiota, and parti-
cularly promote fibrolytic and glycolytic microbes 
that are genetically equipped with a panel of enzymes, 
substrate-binding proteins, and transporters to effec-
tively hydrolyze these complex polymers.14 The 
human gut microbiota harbors 80 to 160 families of 
carbohydrate active enzymes (CAZymes) in healthy 
humans from different countries, compared to the 4 
enzyme families of the human genome, which only 
break down starch, trehalose, and sugars in human 
milk.15,16 Thus, the more complex the structure of 
carbohydrates, the more the enzyme systems must 
be diversified to allow bacteria to completely break 
down complex fibers and convert sugar units into 
energy for its maintenance and multiple-host 
benefits.17 In turn, fiber breakdown delivers oligosac-
charides that may feed the overall microbial commu-
nity organized in a trophic network and promote 
a more global functional impact. The diversity and 
characteristics of fibers are thus thought to play a key 
role in this selective or global modulation of commen-
sal bacteria and the host benefits.18

In this cross-over study, we thus aimed at increas-
ing the quantity but also the diversity of dietary fiber 
intake using a daily consumed product such as sour-
dough bread and evaluated the induced effects on gut 
microbiota composition and function as well as on 
cardiometabolic risk profile. For this purpose, we 

defined a mixture of 7 dietary fibers of different mole-
cular structures, with various physiochemical proper-
ties (both soluble and insoluble). We hypothesized 
that this particular mixture of dietary fibers would 
promote efficient fiber degradation by engaging 
a panel of enzymes with complementary modes of 
action. Due to the nature and metabolism of fibers, 
an impact on the cardiometabolic profile is also 
expected in parallel with the modification of the gut 
microbiota composition and functions.

Results

Participants characteristics

Forty-five subjects with cardiometabolic risk profile 
were included and randomized: 39 completed the 
cross-over study (17 men, 22 women) and were ana-
lyzed (Figure 1). Ninety-two percent were dyslipi-
demic (high triglycerides (TG) and/or low high- 
density lipoprotein cholesterol (HDL-C) and/or high 
low-density lipoprotein cholesterol (LDL-C) and/or 
high total cholesterol (TC). They had neither fasting 
hyperglycemia nor diabetes nor elevated hs-CRP 
(high-sensitivity C-Reactive Protein) nor hyperten-
sion (Table 1).

Participants dietary intake and compliance

The mean compliance to the dietary interventions 
(control (CTL) and multi-fiber (MF) bread con-
sumption) was high (99%). Dietary records showed 
that subjects did not modify their energy and macro-
nutrient intakes throughout the study. Likewise, the 
daily dietary fiber intake (without including con-
sumed bread) in quantity and diversity remained 
low (<20 g/day, <3 fiber-rich food group/day) and 
was not modified throughout the study (Table S1). 
Consumed fiber-rich food items were mainly from 
starchy food, vegetables, and fruits (Figure S1).

Impact of dietary interventions on gut microbiota 
composition

Only the multi-fiber bread significantly modified gut 
microbiota composition
The two-month consumption of MF bread altered 
gut microbiota composition by modifying the rela-
tive abundance of specific gut bacterial species. 

e2044722-2 H. RANAIVO ET AL.



Bacteroides vulgatus msp_0069 significantly 
decreased (cliff’s delta (CD), effect size: −0.27, 
small), whereas Parabacteroides distasonis 

msp_0012 (CD: 0.72, large), Fusicatenibacter sac-
charivorans msp_0154 (CD: 0.49, large), the unclas-
sified Acutalibacteraceae msp_0291 (CD: 0.47, 
medium), and the unclassified Eisenbergiella 
msp_0125 (CD: 0.46, medium) significantly 
increased (q ≤ 0.1) (Figure 2). CTL bread did not 
significantly alter gut microbiota composition. 
Consistently, when assessing intra-individual 
changes, of species relative abundance, based on 
Bray-Curtis dissimilarity index before and after 
each bread consumption, we observed that com-
pared to control bread, Bray-Curtis dissimilarity 
index of gut microbiota was larger with multi- 
fiber bread consumption 0.38 ± 0.08 vs 
0.34 ± 0.10 (p = .02) (Figure S2).

The washout period was appropriate. When 
assessing intra-individuals Bray-Curtis dissimi-
larity index between the different visits in the 
group that consumed MF bread and the group 
that consumed CTL bread during the period 1, 
we actually showed that there was no difference 
concerning the dissimilarity between V2 and V5 
in the two groups (p = .75) although the dissim-
ilarity between V2 – V4 was different (p = .06). 
Moreover, the species, which were increased or 

Figure 1. Consort flow diagram of participants.

Table 1. Subjects’ anthropometric, metabolic characteristics and 
habitual dietary fiber intake at baseline (n = 39).

female male

n = 22 n = 17

Age (years) 43.0 ± 10.6 41.6 ± 12.9
Weight (kg) 75.7 ± 8.9 93.9 ± 10.8
Height (m) 1.6 ± 0.1 1.8 ± 0.1
BMI (kg/m2) 28.4 ± 2.6 29.0 ± 3.1
Waist circumference (cm) 97.1 ± 6.6 103.9 ± 7.9
Hip circumference (cm) 110.0 ± 6.0 108.4 ± 6.7
Blood biomarkers

TG (mmol/L) 1.2 ± 0.4 1.3 ± 0.6
TC (mmol/L) 5.8 ± 1.0 5.2 ± 0.7
HDL-C (mM) 1.4 ± 0.3 1.1 ± 0.2
LDL-C (mM) 3.9 ± 0.9 3.5 ± 0.6
Glucose (mmol/L) 4.7 ± 0.3 5.1 ± 0.5
hs-CRP (mg/L) 3.0 ± 3.1 3.7 ± 5.6
HbA1c % 5.2 ± 0.2 5.3 ± 0.4

Blood pressure (mmHg)
Systolic pressure 120.0 ± 13.2 125.1 ± 12.4
Diastolic pressure 71.9 ± 11.0 78.9 ± 9.2

Habitual dietary fiber intake
Quantity (g/d) 17.45 ± 1.6 16.3 ± 2.3
Diversity (food group/d) 3 ± 0.1 3 ± 0.1

Data are expressed as mean ± SD. BMI: body mass index; TG: triglyceride; TC: 
total cholesterol, HDL-C: high-density lipoprotein cholesterol, LDL-C: low- 
density lipoprotein cholesterol; hs-CRP: high sensitivity C reactive protein; 
HbA1c: glycated hemoglobin.
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decreased in abundance with the multi-fiber 
bread showed no significant difference between 
V2 (baseline) and V5 (after wash-out) 
(Figure S3).

All along the dietary intervention, microbiota 
richness in terms of gene count and MSP 
(Metagenomic Species) count did not significantly 
differ (CD: 0.07 and 0.04 negligible respectively) 
(Figure 3).

Impact of dietary interventions on gut microbiota 
functions

Only the multi-fiber bread significantly modified gut 
microbiota functions
The bioconversion potential of dietary fibers 
according to the microbial CAZymes patterns 
was assessed as the fraction of gut microbiota 
carrying a given CAZyme, i.e. the sum of species 
(MSP) with at least one gene annotated with this 

Figure 2. Abundance of the MSP significantly impacted by multi-fiber bread (n=39). Increased MSP (panel 1-5); decreased MSP 
(panel 6). MSP: Metagenomic Species; MF: multi-fiber bread; CTL: control bread. P-values from Wilcoxon signed-rank test are displayed.

Figure 3. Gut microbiota richness throughout the interventions (n=39). Gene and MSP richness (left and right panel, respectively) 
evolution per bread. MSP: Metagenomic Species; MF: multi-fiber bread; CTL: control bread. P-values from Wilcoxon signed-rank test are 
displayed.
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CAZyme (see Methods). Out of the 200 examined 
CAZyme families, MF bread impacted the relative 
abundance of CAZymes from eight different 
families and sub-families, among which six were 
significantly increased and two significantly 
decreased (absolute CD ranging from 0.23, small 
to 0.58, large, q < 0.1), while remaining stable with 
control bread (Figure 4). The increased CAZymes 
belong to glycoside hydrolase (GH) families 
(GH30_2, GH43_8, GH43_28, GH43_33, and 
GH76) and glycosyl-transferase (GT) family 
(GT17), while the decreased CAZymes belong to 
polysaccharide lyase (PL) family (PL26) and 
GH13_29 subfamily. Among the increased puta-
tive GHs, two GH30_2 proteins shared 51% and 
52% aminoacid (aa) identity with a characterized 
β-D-xylosidase from rumen bacterium 
(ADO20355), respectively. One putative GH43_8 
protein has 37% aa identity with a β- 
D-galactofuranosidase from Bacteroides salyersiae 
(EIY66405) and a GH43_33 sequence shared 39% 
aa identity with an α-L-arabinofuranosidase from 
Halothermothrix orenii H168 (ACL70803). Two 
GH76 putative proteins presented 31% and 38% 
aa identity with an endo-α-1,6-mannanase from 
Bacillus circulans (BAA75632), respectively. No 
characterized protein sequence was yet available 
for similarity search to the GH43_28 subfamily. 
Consistently, all the five increased putative GH 
families were found in P. distasonis msp_0012, 
two of them were also found in F. saccharivorans 
msp_0154 (GH43_28) and in the unclassified 
Eisenbergiella msp_0215 (GH76), respectively. 
Furthermore, the protein sequences of GH30_2, 
GH43_8, GH43_28, GH43_33, and GH76 were 
identical to those of several strains of 
P. distasonis already annotated for CAZymes 
(http://www.cazy.org/bP.html). Homologous pro-
teins were also found in numerous P. distasonis 
sequences available in the databases (not shown).

Regarding gut-metabolic modules (GMM), 
only the cysteine pathway of methionine degra-
dation (methionine = > L-homocysteine) chan-
ged significantly during the intervention and 
was increased with MF bread consumption 
(CD: 0.32, small; p = .026) (Figure 4). 
Interestingly, the mercaptan pathway of 

methionine degradation (methionine = > 
methanethiol) showed the opposite evolution 
with similar effect size, non-significantly after 
multiple test, though (p = .04, q = 1). Short- 
chain fatty acids-related GMM were not modu-
lated during the intervention.

Impact of dietary interventions on metabolic 
parameters

The multi-fiber bread significantly improve lipid 
profile and insulin sensitivity
Compared to CTL bread, MF bread significantly 
decreased total cholesterol (TC: −0.42 mM), low- 
density lipoprotein cholesterol (LDL-C:-0.36 mM), 
insulin (−2.77 mUI/l) and homeostasis model 
assessment (HOMA: −0.78) (q < 0.05) (Figure 5). 
There was no significant impact of MF bread on 
anthropometric and inflammatory parameters as 
well as on the postprandial metabolism of glucose 
in response to a standardized test meal challenge 
(Table 2).

Association between gut microbiota composition 
and function, and metabolic parameters

We correlated the delta (after – before multi-fiber 
bread consumption) of impacted metagenomics fea-
tures with those of clinical variables related to cho-
lesterol and glucose metabolisms (Figure 6). We 
showed that a group of features enriched after multi- 
fiber bread consumption, P. distasonis, an unclassi-
fied Eisenbergiella, methionine degradation, and a set 
of GHs (GH30_2, GH43_8, GH43_28, GH43_33, 
GH76) were negatively correlated with the peaks 
and total/incremental area under curve (tAUC/ 
iAUC) of postprandial glycemia and insulin, in 
response to a standardized test meal challenge.

Discussion

To our knowledge, this study investigated for 
the first time the impact of increasing the diver-
sity of the dietary fiber intake, beyond the 
quantity, on the composition and the functions 
of the gut microbiota as well as on cardiometa-
bolic profiles using a daily consumed product 
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such as bread. We demonstrated that in sub-
jects at cardiometabolic risk, such interventions 
alter gut microbiota composition and function 
by modifying the relative abundance of specific 
gut bacterial species, CAZymes and GMM, 
accompanied by a significant improvement of 
cholesterol and insulin sensitivity parameters.

In this study, we showed that in a population of 
subjects at cardiometabolic risk of whom 92% were 
dyslipidemic, 2 months of consumption of multi- 

fiber bread significantly decreased total cholesterol 
(−0.42 mM) and LDL cholesterol (−0.36 mM) com-
pared to 2 months of consumption of standard 
bread. Epidemiological studies have shown an 
inverse association between dietary fiber intake and 
cholesterol levels.19 Dietary intervention trials (2 to 
16 weeks), based on different fiber-enriched diets 
with a dose varying from 5 to 23 g/d and conducted 
in dyslipidemic subjects, consistently showed 
a significant mean decrease of total and LDL 

Figure 4. Gut microbiota function (n=39) Gene abundance of CAZymes (A) and GMM (B) impacted by multi-fiber bread. GMM: gut 
metabolic modules; MF: multi-fiber bread; CTL: control bread. P-values from Wilcoxon signed-rank test are displayed. GH: glycoside 
hydrolase; GT: glycosyl transferase; PL: polysaccharide lyase.
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cholesterol between 0.1 and 0.3 mM and 0.1 to 
0.2 mM, respectively.20–22 Such decrease of LDL 
cholesterol is important in terms of reducing cardi-
ometabolic risks, as 1 mM LDL cholesterol reduction 
was shown to be associated with a 19% lower risk of 
coronary mortality23 and a much greater decrease of 
52% CM risk in case of early intervention.24

Literature suggests that the cholesterol-lowering 
effect of dietary fiber is due to different factors. 
First, the transformation of dietary cholesterol to 
coprostanol by coprostanoligenic bacteria includ-
ing Bacteroides sp. D8 closely related to B. vulgatus, 
based on its morphological and biochemical 
characteristics.25 However, we reported here 
a decrease of B. vulgatus not supporting a major 
impact of this mechanism on the cholesterol- 
lowering effect of the mixture of fibers. Then, fibers 
are also known to affect bile acids. In the colon, 
bacteria can modify bile acids by hydrolyzing them, 
resulting in cholesterol-lowering. Bacteria capable 
of such reactions are those with bile salt hydrolase 
activity including bacteria belonging to Bacteroides, 
Parabacteroides and Clostridium genera26,27 and 

particularly P.distasonis.28,29 Since P.distasonis was 
significantly increased after multi-fiber bread, this 
mechanism could have been involved in the cho-
lesterol-lowering effect of the mixture of fibers.

Interestingly, multi-fiber bread consumption sig-
nificantly improved insulin sensitivity parameters. 
Epidemiological studies have reported a positive 
relation between dietary fiber intake and insulin 
sensitivity.30,31 A clinical study conducted in over-
weight and at cardiometabolic risk subjects has 
reported an improvement of insulin sensitivity esti-
mated by HOMA following diet incorporating 
resistant starch, with an average HOMA decrease 
of 10.4%.32 Other studies all involving at cardiome-
tabolic risk subjects, supported that wholegrain, 
oat-based products, β-glucan extract, and refined- 
grain products had no impact on insulin 
sensitivity.24–26 Here, we demonstrated a much lar-
ger 21%-decrease of HOMA and thus insulin 
resistance.

In this study, we hypothesized that using the 
dietary fiber mixture instead of a single one 
would promote gut microbiota diversity and 

Figure 5. Effects of multi-fiber bread compared to control bread on lipid profile and insulin sensitivity (n=39). Plasma concentrations of 
clinical variables impacted by multi-fiber bread. MF: multi-fiber bread; CTL: control bread. HOMA IR: homeostasic model assessment of 
insulin resistance; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol. EGD: estimated group difference. P-values from 
mixed linear model for repeated measures are displayed.
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functions since it would stimulate the metabo-
lism of a larger number of ecological niches and 
generate a larger variety of by-products usable 
by the entire microbial ecosystem. However, we 
did not detect any change in gut microbiota 
richness in our study. Previously, Cotillard 
et al. showed that in overweight and obese sub-
jects, a short-term energy-restricted diet includ-
ing an increased quantity of dietary fibers partly 
restored the gut microbiota richness, but only in 
the subgroup initially presenting a markedly 
lower gene count (LGC) (compared to a higher 
gene count subgroup (HGC). Due to differing 
sequencing technologies used in this study and 
that of Cotillard et al., it was not possible to 
robustly compare gut microbiota richness 
between the subjects from the two studies. 
However, it has been reported that the body 
mass index (BMI) negatively correlates with gut 
microbiota richness.33,34 As the subjects included 
in this study presented a lower BMI compared to 

those from Cotillard et al. (28.9 ± 2.8 vs 33.2 ± 
0.6), their gut microbiota richness may be 
higher, which could explain why we did not 
impact this parameter. Consistently, when com-
paring our cohort to a nationality- and sequen-
cing technology-matched overweight cohort34 

(our cohort < BMI: 31.4 ± 3.0 < Cotillard et al. 
cohort), richness was 17% higher than for this 
cohort (data not shown). Baseline microbiota 
richness could therefore be an important inclu-
sion criterion to consider for such studies. 
Although we managed to increase both the 
quantity and the diversity of dietary fiber intake 
of included subjects, modifying one component 
of the diet without energy restriction or change 
in macronutrient composition may not have 
been sufficient to significantly alter overall 
microbiota richness in this population. 
However, we observed a significant decrease in 
abundance of B. vulgatus and a significant 
increase of P. distasonis, F. saccharivorans, an 

Table 2. Effects of multi-fiber bread compared to control bread on metabolic parameters (n = 39).
Fiber-enriched bread Control Bread Effect of multi-fiber bread

Baseline Post-Intervention Baseline Post-Intervention EGD 95% IC

Anthropometric parameters
Weight (kg) 84.65 ± 13.7 84.79 ± 13.35 84.59 ± 13.3 84.67 ± 13.43 0.06 (−0.65 to 0.78)
BMI (kg/m2) 29.02 ± 2.76 29.1 ± 2.70 29.03 ± 2.81 29.05 ± 2.72 0.06 (−0.19 to 0.30)
Fat mass (kg) 32.86 ± 8.11 32.7 ± 8.04 32.83 ± 8.19 32.83 ± 8.06 0.11 (−0.48 to 0.69)
Waist circumference (cm) 100.23 ± 8.37 100.28 ± 8.44 99.74 ± 8.24 100.17 ± 8.02 −0.38 (−1.64 to 0.87)
Height circumference (cm) 109.91 ± 5.87 110.05 ± 5.99 109.79 ± 5.88 110.28 ± 6.21 −0.35 (−1.15 to 0.46)
Fasting metabolic parameters
Glucose (mM) 5.35 ± 0.49 5.22 ± 0.40 5.31 ± 0.48 5.29 ± 0.40 −0.11 (−0.26 to 0.04)
NEFA (µM) 446.1 ± 159.15 438.28 ± 163.74 494.1 ± 161.99 484.87 ± 221.14 1.41 (−90.6 to 93.4)
Insulin (mIU/l) 13.41 ± 7.63 10.94 ± 4.37 11.34 ± 4.18 11.96 ± 4.89 −2.77* (−4.79 to −0.74)
HOMA 3.23 ± 1.92 2.54 ± 1.01 2.69 ± 1.04 2.83 ± 1.23 −0.78* (−1.31 to −0.24)
TG (mM) 1.32 ± 0.51 1.26 ± 0.43 1.29 ± 0.59 1.28 ± 0.49 −0.05 (−0.23 to 0.14)
Total cholesterol (mM) 5.29 ± 0.92 5.03 ± 0.86 4.97 ± 0.78 5.13 ± 0.85 −0.42** (−0.64 to −0.20)
HDL cholesterol (mM) 1.24 ± 0.27 1.19 ± 0.30 1.19 ± 0.26 1.20 ± 0.31 −0.05 (−0.11 to 0.00)
LDL cholesterol (mM) 3.46 ± 0.80 3.27 ± 0.72 3.20 ± 0.66 3.36 ± 0.77 −0.36** (−0.55 to −0.17)
CRPus (mg/L) 3.36 ± 6.47 3.41 ± 4.68 4.00 ± 5.69 2.93 ± 4.28 0.28 (−0.22 to 0.79)
RMR (kcal) 1490.27 ± 330.33 1699.97 ± 332.94 1717.04 ± 359.58 1700.98 ± 334 0.01 (−0.02 to 0.05)
CD14 (µg/mL) 1.53 ± 0.42 1.45 ± 0.42 1.57 ± 0.42 1.48 ± 0.32 0.01 (−0.19 to 0.21)
LBP (µg/mL) 16.06 ± 6.94 16.33 ± 5.80 16.20 ± 6.51 15.81 ± 7.49 0.67 (−2.27 to 3.61)
Ratio LBP/CD14 10.81 ± 4.69 12.69 ± 8.75 10.55 ± 4.38 10.96 ± 5.3 1.67 (−1.26 to 4.61)
Postprandial metabolic 

parameters
Glucose tAUC (mM*min) 1031.3 ± 93.8 1024.47 ± 73.46 1048.32 ± 96.24 1043.61 ± 122.98 −2.12 (−40.78 to 36.54)
Glucose iAUC (mM*min) 147.16 ± 118.39 151.14 ± 103.46 197.89 ± 132.42 192.77 ± 151.53 9.10 (−41.02 to 59.23)
Glucose peak (mM) 7.26 ± 1.04 6.99 ± 0.76 7.25 ± 1.09 7.18 ± 1.05 −0.2 (−0.62 to 0.23)
Insulin tAUC (mUI/l*min) 7676 ± 2951.96 7568.86 ± 3181.22 7707.86 ± 3098.25 7694.25 ± 3568.1 24.18 (−1090 to 1139)
Insulin iAUC (mUI/l*min) 5827.22 ± 2804.61 5837.54 ± 2941.38 5991.59 ± 2901.58 5996.27 ± 3252.8 112 (−1085 to 1308)
Insulin peak (mIU/l) 90.28 ± 51.08 87.39 ± 63.01 86.27 ± 41.12 88.26 ± 57.99 −6.44 (−28.88 to 15.99)

Data are expressed as mean ± SD. Effects of multi-fiber bread were analyzed using linear mixed model for repeated measures with heterogeneous Toeplitz or 
autoregressive as covariance structure. MF: multi-fiber bread; CTL: control bread; BMI: body mass index; RMR: resting metabolic rate; HOMA IR: homeostasic 
model assessment of insulin resistance; TC: total cholesterol; HDL cholesterol: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol, 
TG: triglyceride; NEFA: non-esterified fatty acid; hs-CRP: high sensitivity C-reactive protein. EGD: estimated group difference. Adjusted p value *< 0.05 ** <0.01.
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unclassified Acutalibacteriaceae, and an unclassi-
fied Eisenbergiella after 2 months of multi-fiber 
bread consumption. Multi-fiber bread nutritional 
interventions thus more specifically targeted cer-
tain taxa. Previous studies have also evidenced 
an increase in the level of P. distasonis after 
a dietary intervention using either single fiber 
supplementation35,36 or mixtures.37

Most if not all, glycoside hydrolases families 
increased with multi-fiber bread consumption 
have been found in P. distasonis, emphasizing 
the role this species may play in fiber supple-
mentation. Among them, GH43_8/28/33 and 
GH30_2 are thought to be debranching enzymes 
aiding in the degradation of NSPs such as ara-
binoxylan from hemicelluloses, and galactoman-
nan found in gums and pectin, although very 
few information is available in the literature 
regarding these subfamilies (from zero to two 
characterized members). Furthermore, GH43 
are among the most abundant CAZymes found 
in the human gut microbiome and probably 
access to a wide range of complex 

carbohydrates.38 All together, these enzymes 
families are consistent with the nature of plant 
cell wall polysaccharides or gums provided by 
the cereals of multi-fiber bread and locust bean 
gum, respectively. GH76 are putative α- 
1,6-endomannanases dedicated to the degrada-
tion of mannans from yeast glycoproteins. Both 
multi-fiber and control breads are sourdough 
bread, but the presence of various types of fibers 
in the multi-fiber bread during the fermentation 
process with yeasts appeared to enhance bacteria 
bearing enzymes that hydrolyze yeast cell wall 
mannans. By regularly consuming yeast-leavened 
bread and other fermented products, 
Bacteroidetes in the gut microbiota have evolved 
the capacity to metabolize these glycans, in par-
ticular Bacteroides and Parabacteroides.39 Multi- 
fiber bread could therefore have enhanced this 
metabolic function through the increase of 
P. distasonis. Concerning the decreased families, 
GH13_29 includes α-glucosidase and α- 
phosphotrehalases related to the hydrolysis of 
starch and trehalose. Enzymes encoding-genes 

Figure 6. Correlation between metagenomic features and clinical variables (n=39). Heatmap of Spearman’s correlation coefficient 
between deltas (after – before multi-fiber bread) of metagenomics features impacted by MF bread (in rows) and deltas of clinical 
variables related to cholesterol and glucose metabolisms (in columns). The right side bar stands for the metagenomics features Cliff’s 
Delta (red: decreased with MF, green: increased with MF). Black dots stand for correlations that are significant after Benjamini- 
Hochberg correction (q ≤ 0.1). Empty circles stand for correlations that are significant regarding non-corrected p-values (p ≤ 0.05). 
P. distasonis and the modules/CAZymes it carries are denoted with ‘*’ at the end of their name. CD: Cliff’s Delta; GH: glycoside 
hydrolase; GT: glycosyl-transferase; PL: polysaccharide lyase.
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from this subfamily are rather observed in the 
genome of Enterobacteriacea, and lactic acid 
bacteria40,41 but many other GH13 enzymes 
dedicated to the disruption of alpha glycoside 
linkages are found in P. distasonis according to 
the CAZy database, PL26 is thought to degrade 
rhamnogalacturonan from pectins but only one 
fungal enzyme from this family has been char-
acterized so far,42 therefore other functional 
characteristics may exist. Nevertheless, numer-
ous PL26 encoding genes have been found in 
Bacteroides species including B. vulgatus43 

which is also significantly decreased with MF 
bread consumption. B. vulgatus has been 
reported to be associated with alteration of insu-
lin resistance.44 Thus, its observed decrease 
could partly explain the improvement of insulin 
sensitivity. Moreover, we showed a significant 
increase of Parabacteroides distasonis whose 
involvement in type 2 bile acid production and 
farnesoid X receptor (FXR) pathway activation 
resulting in insulin sensitivity improvement has 
recently been shown.45 Moreover, the methio-
nine degradation to L-homocysteine was the 
metagenomics features that displayed the highest 
number of significant correlations with the post-
prandial glycemia and insulinemia parameters. 
Both methionine and homocysteine have been 
related to insulin resistance.46–51 Hence, the 
modulation of methionine metabolism through 
the increase of P. distasonis could be a possible 
mechanism to explain the decrease of insulin 
observed in this study.

It is well known that studying the impact of 
dietary interventions on human microbiota has 
some limitations, such as a limited number of par-
ticipants like in our study, and the fact that studies 
normally provide fecal samples reflecting the 
microbiota of the distal colon, but do not allow 
access to the microbiota of the actual site of food 
fermentation (cecum and proximal colon).52 

Beyond the effects on gut microbiota functions 
mediated by the modulation of the microbiome, 
we would expect observing effects on the 
metabolome.

In conclusion, increasing the diversity of dietary 
fibers in a daily consumed product modified gut 
microbiota composition and promoted GH families 
involved in the degradation of plant 

polysaccharides and locust bean gum found in the 
seven selected dietary fibers. The parallel improve-
ment of lipid and insulin sensitivity parameters 
suggests that such intervention could be a relevant 
nutritional approach to improve cardiometabolic 
profile and further prevent cardiometabolic risk.

Materials and methods

Study participants

Forty-five subjects with CMR profile were included 
in this study between November 2017 and 
July 2018. Inclusion criteria included age: 18– 
70 years old, body mass index (BMI): 25–35 kg/ 
m2, waist circumference >80 cm for women and 
>96 cm for men, daily bread consumption <200 g/ 
day, low dietary fiber intake <20 g/day, stable 
weight and moderate physical activity, no known 
gastrointestinal disease, no previous bariatric sur-
gery, no use of antibiotics or other drugs interfering 
with microbiota composition in the 3 months prior 
and during the study.

Study design

This study was a single-center, randomized, dou-
ble-blind crossover trial conducted at the Human 
Nutrition Research Center of Rhône-Alpes 
(CRNH-RA) and carried out in accordance with 
the Second Declaration of Helsinki and French 
Jardé’s law. It was reported and registered on 
http://www.clinicaltrials.gov (NCT03875898). All 
participants received and signed informed consent 
approved by the Scientific Ethics Committee of 
Bordeaux Sud-Ouest and Outre-Mer III.

After a 1-week run-in period (150 g/day of stan-
dard sourdough bread (control CTL)), subjects 
received two 8-weeks dietary interventions in 
a random order according to randomization. The 
two dietary interventions were: 1) 150 g/d of sour-
dough bread enriched with a mixture of 7 selected 
dietary fibers (multi-fiber; MF) and 2) 150 g/d of 
CTL. Group A started with MF, whereas group 
B started with CTL. A 4 to 6-weeks washout period 
and another run-in separated the two interventions 
(Figure S4). CTL and MF bread were structurally 
matched (color, size, and texture), although had 
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different dietary fiber content (Table S2). 150 g of 
MF bread contained 16.05 g of 7 selected fibers with 
a 1:1 ratio of insoluble to soluble fiber.

Every week, baked and frozen breads were 
directly delivered to the subjects in individual 
sealed pack of 3 × 50 g and stored in their freezer 
until consumption. Compliance was checked by the 
number of returned empty packs.

During the intervention periods, subjects were 
asked to maintain the same diet in terms of caloric 
and macronutrients content and were ordered to 
fill in a 3-day dietary record. Data from this 3-day 
dietary record were processed using NUTRILOG© 
which allowed to estimate energy and macronutri-
ent intake. In parallel, the subjects also completed 
a questionnaire concerning 128 fiber-rich food 
items to evaluate their dietary fiber intake in 
terms of diversity.12 A fiber-rich food group (break-
fast and biscuits, starchy food, dried vegetables, 
vegetables, fruits, nuts, chocolate, and probiotics) 
is made of different items (for example, apple is an 
item belonging to fruits). For each subject, fiber- 
rich food group was taken into account when he/ 
she ate at least one item/day of this group on 2 days 
out of three.

At the beginning and the end of each nutritional 
intervention period, metabolic assessment days 
were scheduled to evaluate CM risk factors (V2, 
V4, V5, and V7).

During the 3 days before metabolic assessment 
days, subjects were ordered to collect a stool sample 
at ambient temperature using a specific kit contain-
ing RNAlater® as stabilizing solution, following the 
International Human Microbiome Standards 
(IHMS, SOP 05) (http://www.human-microbiome. 
org/index.php?id=Sop&num=005) and send it to 
the French National Research Institute of 
Agriculture, food and Environment (INRAE) 
MetaGénoPolis (mgps.eu) for analysis. 
Intermediate visits with dietician were also sched-
uled to ensure a good compliance (V3 and V6).

On metabolic assessment days, subjects arrived 
at CRNH-RA after an 8 h overnight fast following 
the ingestion of a standard low dietary fiber evening 
meal (one serving of lean meat or fish, rice, a dairy 
product and fruit compote). Body weight, fat mass 
percentage, height, and waist circumference were 
measured using standardized methodologies with 

a calibrated weighing scale, a Bodystat Quadscan 
4000 (BQ4000; Bodystat Ltd. Douglas, UK) stadi-
ometer and non-elastic tape, respectively. BMI was 
calculated as weight/height2. The resting metabolic 
rate (RMR) was measured by indirect calorimetry 
using a QUARK calorimeter (Cosmed, Rome, 
Italy). Subjects were served a breakfast at T0 (the 
study product (multi-fiber or control bread), hot 
drink, jam, and butter) and a standardized chal-
lenge test meal at T240. Fasting and postprandial 
blood (T0, T15 T30 T45 T60 T90 T120 T180 T210 
T240 T255 T270 T300 T330 T360 T390 T420) were 
collected using an antecubital vein catheter.

Biochemical blood analyses

Collected blood was centrifuged immediately for 
10 min at 4,500 rpm. Plasma was stored at −20°C 
until the assays were conducted.

Glycemia was measured by spectrophotometry 
according to Architect Abbott Hexokinase method; 
C-reactive protein (CRP) by immunoturbidimetry; 
Non-esterified Fatty Acid (NEFA) by colorimetric 
technic; total cholesterol (TC), HDL-cholesterol 
(HDL-C) and triglyceride (TG) by spectrometry 
using Architect Module Chimie Abbott method; 
insulin by radio immunoassay (RIA) according to 
RIA CisBio IBA method, LBP and sCD14 by sand-
wich ELISA according to CliniSciences instructions. 
LDL-cholesterol was calculated using Friedwald for-
mula and HOMA as plasma glucose (mmol/L) × 
plasma insulin (mUI/L)/22.5.

Microbiota analysis

DNA extraction of stool samples and shotgun 
sequencing
DNA extraction from aliquots of fecal samples was 
performed following the IHMS SOP 07 V2 (http:// 
www.human-microbiome.org/index.php?id= 
Sop&num=005). DNA was quantitated using Qubit 
Fluorometric Quantitation (ThermoFisher 
Scientific, Waltham, US) and qualified using DNA 
size profiling on a Fragment Analyzer (Agilent 
Technologies, Santa Clara, US). Three µg of high 
molecular weight DNA (>10 kbp) was used to build 
the library. Shearing of DNA into fragments of 
approximately 150 bp was performed using an 
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ultrasonicator (Covaris, Woburn, US) and DNA 
fragment library construction was performed 
using the Ion Plus Fragment Library and Ion 
Xpress Barcode Adapters Kits (ThermoFisher 
Scientific, Waltham, US). Purified and amplified 
DNA fragment libraries were sequenced using the 
Ion Proton Sequencer (ThermoFisher Scientific, 
Waltham, US), with a minimum of 20 million high- 
quality reads of 150 bp (in average) generated per 
library.

Microbial gene count table
To create the gene count table, the METEOR 
software was used: first, reads were filtered for 
low-quality by AlienTrimmer (https://forgemia. 
inra.fr/metagenopolis/meteor).8 Reads that 
aligned to the human genome (identity > 95%) 
were also discarded. Remaining reads were 
trimmed to 80 bases and mapped to the 
Integrated Gut Catalog 2 (IGC2),53,54 comprising 
10.4 million of genes, using Bowtie2.55 First, the 
unique mapped reads (reads mapped to a unique 
gene in the catalog) were attributed to their 
corresponding genes. Second, the shared reads 
(reads that mapped with the same alignment 
score to multiple genes in the catalog) were 
attributed according to the ratio of their unique 
mapping counts of the captured genes. The 
resulting count table was further processed 
using the R package MetaOMineR v1.31.2 It 
was downsized to 14 million mapped reads to 
take into account differences in sequencing 
depth and in mapping rate across samples. 
Then the downsized matrix was normalized for 
gene length and transformed into a frequency 
matrix (fragments per kilobase of exon model 
per million reads mapped) (FPKM) normaliza-
tion). Gene count was computed as the number 
of genes detected (i.e., whose abundance is 
strictly positive) in a given sample after 
downsizing.

Metagenomic Species (MSP) profiles
The IGC2 catalog was organized into 1990 
Metagenomic Species (MSP), clusters of minimum 
100 genes, using MSPminer54 MSP taxonomy was 
assigned with the Genome Taxonomy Database.56 

Relative abundance of an MSP was computed as the 
mean abundance of its 100 ‘marker’ genes (that is, 
the genes that correlate the most altogether). If less 
than 10% of ‘marker’ genes were seen in a sample, 
the abundance of the MSP was set to 0. Relative 
abundances at higher taxonomical ranks were com-
puted as the sum of the MSP that belong to a given 
taxa. MSP count was assessed as the number of 
MSP present in a sample (that is, whose abundance 
is strictly positive).

Microbiome functional potential
Genes from the IGC2 catalog were mapped with 
diamond57 onto KEGG orthologs (KO) from the 
KEGG database (version 8.9).58 Each gene was 
assigned to the best-ranked KO among hits with 
e-value <10–5 and a bit score >60. For a given 
sample, we assessed the abundance of a KEGG 
module or a Gut-Metabolic Modules (GMMs)59 

with the following procedure:

● We restricted the gene content of each MSP 
detected in the sample to its genes also detected 
in the sample, plus the core genes of the MSP;

● We computed the fraction of the module pre-
sent in the restricted set of genes for the pair 
sample/MSP;

● We considered that an MSP carried a module 
in a given sample if the computed fraction was 
above 90%;

● We summed the abundance of all MSPs that 
carried the module for a given sample.

The IGC2 was also annotated on the 
Carbohydrate-Active enZYmes Database 
(CAZy, November 2018) (http://www.cazy. 
org/60).54 The abundance of each CAZYme 
group (glycoside hydrolases (GH), glycosyl- 
transferases (GT), polysaccharide lyases (PL), 
and carbohydrate esterases (CE)) was computed 
using the same process as KEGG modules 
and GMM.

The abundance of each CAZyme group (gly-
coside hydrolases (GH), glycosyl-transferases 
(GT), polysaccharide lyases (PL), and carbohy-
drate esterases (CE)) was computed using the 
same process as KEGG modules and GMM.
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Statistics

The primary outcome of this study was an increase 
of 20% of gut microbiota richness which corre-
sponds to 76 000 genes according to the distribu-
tion of gut microbiota richness of two cohorts of 
obese and overweight subjects.2,8 An increase of 76 
000 genes allowed the individuals to move from 
Low Gene Count (LGC) status to High Gene 
Count (HGC) status. LCG and HGC individuals 
significantly differed on metabolic profile, HGC 
individuals presenting a better metabolic profile. 
Assessing the impacts on cardiometabolic profile 
was actually the secondary outcome of this study.

According to these data, to achieve a significance 
of p < .05 and a power (type II error) of 95%, a size 
of 40 subjects was required.

All statistical analyses and graphs were per-
formed with R software v3.6.0 and SAS software 
9.4 TS Level 1M6.61

To assess if a given metagenomic feature was 
impacted by the multi-fiber bread, we used the 
R package nparLD62 to perform non-parametric 
analysis of the longitudinal data. P-values from 
the interaction of the factors “bread” and “visit” 
were corrected for multiple test with the 
Benjamini–Hochberg procedure. A feature was 
considered significant when corrected p-values 
≤0.1. Finally, Wilcoxon signed-rank test were per-
formed on each bread separately (i.e., before/after 
multi-fiber bread, and before/after control bread) 
to assess which bread impacted the feature. Effect 
size was computed using the Cliff’s Delta with the 
R package effsize.63 This measure gives an informa-
tion similar to log-fold change, but is comprised 
between −1 and 1. (0: no effect; +1 or −1: large 
effect). The magnitude of the effect size d is assessed 
as negligible if |d| <0.147, small if |d| <0.33, med-
ium if |d| <0.474, and large otherwise.64

For clinical variables, the effect of multi-fiber bread 
was evaluated by calculating the estimated group dif-
ference, i.e., the difference between the changes 
induced by each of the two breads. A linear mixed 
model for repeated measures, with Toeplitz or auto-
regressive structure (AR) as covariance structure, was 
used to determine whether the difference between the 
changes induced by each of the two breads was statis-
tically significant. Bread, time, period, and sequence 
were included as fixed variables. In order to account 

for variability between subjects and to adjust for any 
nonspecific differences, subjects were included as ran-
dom effects. When the normality of the model resi-
duals was not assumed, a logarithmic transformation 
of the data has been done.

Correlations between variables were performed 
using Spearman’s correlations. All p-values were 
adjusted for multiple testing with the Benjamini 
Hochberg Procedure. Unless stated otherwise, 
a corrected p-value is considered significant if 
inferior to 0.1; a non-adjusted p-value is significant 
if inferior to 0.05.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

This study was funded by Bridor and in part by Metagenopolis 
grant Agence Nationale de la Recherche ANR-11-DPBS-0001. 
JD acknowledges funding from the European Research 
Council (ERC) under the European Union’s Horizon 2020 
research and innovation programme (Grant agreement ERC- 
2017-AdG No. 788191 - Homo.symbiosus). We thank all the 
subjects who participated in this study. We thank Bernard 
Henrissat who annotated the IGC2 with CAZy.

ORCID

Martine Laville http://orcid.org/0000-0002-6252-9853
Julie-Anne Nazare http://orcid.org/0000-0003-3545-3264

Data availability
The raw sequencing data are deposited into the European 
Nucleotide Archive (ENA) of EBI (https://www.ebi.ac.uk/ 
ena/browser/home) under PRJEB48663. The study protocol 
and the datasets generated during and/or analyzed during 
the current study, including deidentified participant data 
will be available from the corresponding author on reason-
able request.

References

1. Risk factors [Internet]. World Heart Federation. 
Accessed 19 February 2021. https://www.world-heart- 
federation.org/resources/risk-factors/ 

GUT MICROBES e2044722-13

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.world-heart-federation.org/resources/risk-factors/
https://www.world-heart-federation.org/resources/risk-factors/


2. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, 
Falony G, Almeida M, Arumugam M, Batto J-M, 
Kennedy S, et al. Richness of human gut microbiome 
correlates with metabolic markers. Nature. 2013 Aug 
29;500(7464):541–546. doi:10.1038/nature12506.

3. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, 
Poullet JB, Massart S, Collini S, Pieraccini G, and 
Lionetti P. Impact of diet in shaping gut microbiota 
revealed by a comparative study in children from 
Europe and rural Africa. Proc Natl Acad Sci U S A. 
2010 Aug 17;107(33):14691–14696. doi:10.1073/ 
pnas.1005963107.

4. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez- 
Bello MG, Contreras M, Magris M, Hidalgo G, 
Baldassano RN, Anokhin AP, et al. Human gut micro-
biome viewed across age and geography. Nature. 2012 
May 9;486(7402):222–227. doi:10.1038/nature11053.

5. Schnorr SL, Candela M, Rampelli S, Centanni M, 
Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, 
Severgnini M, et al. Gut microbiome of the Hadza 
hunter-gatherers. Nat Commun. 2014 Apr;15(5):3654. 
doi:10.1038/ncomms4654.

6. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, 
Wang B, Magris M, Hidalgo G, Contreras M, Noya- 
Alarcón Ó, et al. The microbiome of uncontacted 
Amerindians. Sci Adv. 2015 Apr 3;1(3). doi:10.1126/ 
sciadv.1500183.

7. Kong LC, Holmes BA, Cotillard A, Habi-Rachedi F, 
Brazeilles R, Gougis S, Gausserès N, Cani PD, Fellahi 
S, and Bastard JP. Dietary patterns differently associate 
with inflammation and gut microbiota in overweight 
and obese subjects. PloS One. 2014;9(10):e109434. 
doi:10.1371/journal.pone.0109434.

8. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le 
Chatelier E, Almeida M, Quinquis B, Levenez F, 
Galleron N, et al. Dietary intervention impact on gut 
microbial gene richness. Nature. 2013 Aug 29;500 
(7464):585–588. doi:10.1038/nature12480.

9. Makki K, Deehan EC, Walter J, Bäckhed F. The Impact 
of Dietary Fiber on Gut Microbiota in Host Health and 
Disease. Cell Host Microbe. 2018; Jun 13;23(6):705–715. 
doi:10.1016/j.chom.2018.05.012.

10. EFSA. Scientific Opinion on Dietary Reference Values 
for carbohydrates and dietary fibre. EFSA J. 2010;8 
(3):1462.

11. Actualisation des repères du PNNS: révision des repères 
de consommations alimentaires [Internet]. Accessed 22 
June 2021. https://www.anses.fr/fr/system/files/ 
NUT2012SA0103Ra-1.pdf 

12. Tap J, Furet J-P, Bensaada M, Philippe C, Roth H, 
Rabot S, Lakhdari O, Lombard V, Henrissat B, 
Corthier G, et al. Gut microbiota richness promotes its 
stability upon increased dietary fibre intake in healthy 
adults. Environ Microbiol. 2015 Dec;17(12):4954–4964. 
doi:10.1111/1462-2920.13006.

13. Mohamed AB, Rémond D, Chambon C, Sayd T, 
Hébraud M, Capel F, Cohade B, Hafnaoui N, 
Béchet D, and Coudy-Gandilhon C. A mix of dietary 
fermentable fibers improves lipids handling by the 
liver of overfed minipigs. J Nutr Biochem. 2018Dec, 
8(65), 72–82.

14. Mirande C, Kadlecikova E, Matulova M, Capek P, 
Bernalier-Donadille A, Forano E, Béra-Maillet C. 
Dietary fibre degradation and fermentation by two xyla-
nolytic bacteria Bacteroides xylanisolvens XB1A T and 
Roseburia intestinalis XB6B4 from the human intestine. 
J Appl Microbiol. 2010 Aug;109(2):451–460. 
doi:10.1111/j.1365-2672.2010.04671.x.

15. El Kaoutari A, Armougom F, Leroy Q, Vialettes B, 
Million M, Raoult D, Henrissat B. Development and 
validation of a microarray for the investigation of the 
CAZymes encoded by the human gut microbiome. 
PloS One. 2013;8(12):e84033. doi:10.1371/journal. 
pone.0084033.

16. Kaur K, Khatri I, Akhtar A, Subramanian S, Ramya TNC. 
Metagenomics analysis reveals features unique to Indian 
distal gut microbiota. PloS One. 2020;15(4):e0231197. 
doi:10.1371/journal.pone.0231197.

17. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 
Microbial degradation of complex carbohydrates in 
the gut. Gut Microbes. 2012; Jul 14;3(4):289–306. 
doi:10.4161/gmic.19897.

18. Cantu-Jungles TM, Hamaker BR. New View on Dietary 
Fiber Selection for Predictable Shifts in Gut Microbiota. 
mBio. 2020;11(1):e02179–19. doi:10.1128/mBio.02179-19.

19. Wu K, Bowman R, Welch AA, Luben RN, Wareham N, 
Khaw K-T, Bingham SA. Apolipoprotein 
E polymorphisms, dietary fat and fibre, and serum 
lipids: the EPIC Norfolk study. Eur Heart J. 2007 
Dec;28(23):2930–2936. doi:10.1093/eurheartj/ehm482.

20. Plb H, Ross AB, Kristensen M. Whole-grain and 
blood lipid changes in apparently healthy adults: 
a systematic review and meta-analysis of randomized 
controlled studies. Am J Clin Nutr. 2015 Sep;102 
(3):556–572.

21. Zhu X, Sun X, Wang M, Zhang C, Cao Y, Mo G, Liang J, 
Zhu S. Quantitative assessment of the effects of 
beta-glucan consumption on serum lipid profile and 
glucose level in hypercholesterolemic subjects. Nutr 
Metab Cardiovasc Dis. 2015; Aug 1;25(8):714–723. 
doi:10.1016/j.numecd.2015.04.008.

22. Bazzano LA, Thompson AM, Tees MT, Nguyen CH, 
Winham DM. Non-Soy Legume Consumption 
Lowers Cholesterol Levels: a Meta-Analysis of 
Randomized Controlled Trials. Nutr Metab 
Cardiovasc Dis NMCD. 2011 Feb;21(2):94–103. 
doi:10.1016/j.numecd.2009.08.012.

23. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, 
Pollicino C, Kirby A, Sourjina T, and Peto R. Efficacy 
and Safety of Cholesterol-Lowering Treatment: 

e2044722-14 H. RANAIVO ET AL.

https://doi.org/10.1038/nature12506
https://doi.org/10.1073/pnas.1005963107
https://doi.org/10.1073/pnas.1005963107
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/ncomms4654
https://doi.org/10.1126/sciadv.1500183
https://doi.org/10.1126/sciadv.1500183
https://doi.org/10.1371/journal.pone.0109434
https://doi.org/10.1038/nature12480
https://doi.org/10.1016/j.chom.2018.05.012
https://www.anses.fr/fr/system/files/NUT2012SA0103Ra-1.pdf
https://www.anses.fr/fr/system/files/NUT2012SA0103Ra-1.pdf
https://doi.org/10.1111/1462-2920.13006
https://doi.org/10.1111/j.1365-2672.2010.04671.x
https://doi.org/10.1371/journal.pone.0084033
https://doi.org/10.1371/journal.pone.0084033
https://doi.org/10.1371/journal.pone.0231197
https://doi.org/10.4161/gmic.19897
https://doi.org/10.1128/mBio.02179-19
https://doi.org/10.1093/eurheartj/ehm482
https://doi.org/10.1016/j.numecd.2015.04.008
https://doi.org/10.1016/j.numecd.2009.08.012


prospective Meta-Analysis of Data from 90,056 
Participants in 14 Randomised Trials of Statins. Lancet 
Lond Engl. 2005 Oct 8;366(9493):1267–1278.

24. Ference BA. Causal Effect of Lipids and Lipoproteins on 
Atherosclerosis: lessons from Genomic Studies. Cardiol 
Clin. 2018; May 1;36(2):203–211. doi:10.1016/j. 
ccl.2017.12.001.

25. Gerard P, Lepercq P, Leclerc M, Gavini F, 
Raibaud P, Juste C. Bacteroides sp. Strain D8, the 
First Cholesterol-Reducing Bacterium Isolated from 
Human Feces. Appl Environ Microbiol 2007 Oct;1 
(73):5742–5749.

26. Chand D, Avinash VS, Yadav Y, Pundle AV, Suresh CG, 
Ramasamy S. Molecular features of bile salt hydrolases 
and relevance in human health. Biochim Biophys Acta 
BBA - Gen Subj. 2017; Jan 1;1861(1, Part A):2981–2991. 
doi:10.1016/j.bbagen.2016.09.024.

27. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, 
Kalavagunta PK, Liao J, Jin L, Shang J, et al. 
Taxonomic profiling and populational patterns of bac-
terial bile salt hydrolase (BSH) genes based on world-
wide human gut microbiome. Microbiome. 2019 Jan 
23;7(1):9. doi:10.1186/s40168-019-0628-3.

28. Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, 
DiBenedetto N, Mina AI, Banks AS, Bry L, Devlin AS. 
A selective gut bacterial bile salt hydrolase alters host 
metabolism. eLife. 2018 Jul;17(7):e37182. doi:10.7554/ 
eLife.37182.

29. Ridlon JM, Devendran S, Alves JM, Doden H, 
Wolf PG, Pereira GV, Ly L, Volland A, Takei H, 
Nittono H, et al. The ‘ in vivo lifestyle’ of bile acid 
7α-dehydroxylating bacteria: comparative genomics, 
metatranscriptomic, and bile acid metabolomics ana-
lysis of a defined microbial community in gnotobio-
tic mice. Gut Microbes. 2020 May 3;11(3):381–404. 
doi:10.1080/19490976.2019.1618173.

30. Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino 
Jr RB, Mayer-Davis EJ. D’Agostino Jr RB, Mayer-Davis 
EJ. Whole-grain intake and insulin sensitivity: the Insulin 
Resistance Atherosclerosis Study. Am J Clin Nutr. 2003; 
Nov 1;78(5):965–971. doi:10.1093/ajcn/78.5.965.

31. Breneman CB, Tucker L. Dietary fibre consumption and 
insulin resistance – the role of body fat and physical 
activity. Br J Nutr. 2013 Jul;110(2):375–383. 
doi:10.1017/S0007114512004953.

32. Robertson MD, Wright JW, Loizon E, Debard C, 
Vidal H, Shojaee-Moradie F, Russell-Jones D, 
Umpleby AM. Insulin-Sensitizing Effects on Muscle 
and Adipose Tissue after Dietary Fiber Intake in Men 
and Women with Metabolic Syndrome. J Clin 
Endocrinol Metab. 2012; Sep 1;97(9):3326–3332. 
doi:10.1210/jc.2012-1513.

33. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, 
Dao MC, Verger EO, Hedjazi L, Bouillot J-L, 
Chevallier J-M, et al. Major microbiota dysbiosis in 
severe obesity: fate after bariatric surgery. Gut. 2019 Jan 
1;68(1):70–82. doi:10.1136/gutjnl-2018-316103.

34. Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron- 
Wisnewsky J, Chakaroun R, Forslund SK, Assmann K, 
Valles-Colomer M, Nguyen TTD, et al. Statin therapy is 
associated with lower prevalence of gut microbiota 
dysbiosis. Nature. 2020 May;581(7808):310–315. 
doi:10.1038/s41586-020-2269-x.

35. Kiewiet MBG, Elderman ME, Aidy SE, Burgerhof JGM, 
Visser H, Vaughan EE, Faas MM, and De Vos P. Flexibility 
of Gut Microbiota in Ageing Individuals during Dietary 
Fiber Long-Chain Inulin Intake. Mol Nutr Food Res. 
2021;65(4):2000390. doi:10.1002/mnfr.202000390.

36. Deehan EC, Yang C, Perez-Muñoz ME, 
Nguyen NK, Cheng CC, Triador L, Zhang Z, 
Bakal JA, Walter J. Precision Microbiome 
Modulation with Discrete Dietary Fiber Structures 
Directs Short-Chain Fatty Acid Production. Cell 
Host Microbe. 2020; Mar 11;27(3):389–404.e6. 
doi:10.1016/j.chom.2020.01.006.

37. Feng G, Mikkelsen D, Hoedt EC, Williams BA, 
Flanagan BM, Morrison M, Gidley MJ. In vitro fermen-
tation outcomes of arabinoxylan and galactoxyloglucan 
depend on fecal inoculum more than substrate 
chemistry. Food Funct. 2020; Sep 23;11(9):7892–7904. 
doi:10.1039/D0FO01103G.

38. Mewis K, Lenfant N, Lombard V, Henrissat B, Nojiri H. 
Dividing the Large Glycoside Hydrolase Family 43 into 
Subfamilies: a Motivation for Detailed Enzyme 
Characterization. Appl Environ Microbiol. 2016; Jan 
4;82(6):1686–1692. doi:10.1128/AEM.03453-15.

39. Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, 
Pudlo NA, Porter NT, Urs K, Thompson AJ, 
Cartmell A, et al. Human gut Bacteroidetes can utilize 
yeast mannan through a selfish mechanism. Nature. 
2015 Jan;517(7533):165–169. doi:10.1038/nature13995.

40. Jiang J, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, 
Chen W. Comparative Genomics of Pediococcus pen-
tosaceus Isolated From Different Niches Reveals 
Genetic Diversity in Carbohydrate Metabolism and 
Immune System. Front Microbiol. 2020;11:253. 
doi:10.3389/fmicb.2020.00253.

41. Chen Y, Li N, Zhao S, Zhang C, Qiao N, Duan H, 
Xiao Y, Yan B, Zhao J, Tian F, et al. Integrated 
Phenotypic–Genotypic Analysis of Latilactobacillus 
sakei from Different Niches. Foods. 2021 Aug;10 
(8):1717. doi:10.3390/foods10081717.

42. Iwai M, Kawakami T, Ikemoto T, Fujiwara D, 
Takenaka S, Nakazawa M, Ueda M, Sakamoto T. 
Molecular characterization of a Penicillium chryso-
genum exo-rhamnogalacturonan lyase that is structurally 
distinct from other polysaccharide lyase family proteins. 
Appl Microbiol Biotechnol. 2015 Oct;99(20):8515–8525. 
doi:10.1007/s00253-015-6600-7.

43. Xu J, Mahowald MA, Ley RE, Lozupone CA, 
Hamady M, Martens EC, Henrissat B, Coutinho PM, 
Minx P, Latreille P, et al. Evolution of symbiotic bacteria 
in the distal human intestine. PLoS Biol. 2007 Jul;5(7): 
e156. doi:10.1371/journal.pbio.0050156.

GUT MICROBES e2044722-15

https://doi.org/10.1016/j.ccl.2017.12.001
https://doi.org/10.1016/j.ccl.2017.12.001
https://doi.org/10.1016/j.bbagen.2016.09.024
https://doi.org/10.1186/s40168-019-0628-3
https://doi.org/10.7554/eLife.37182
https://doi.org/10.7554/eLife.37182
https://doi.org/10.1080/19490976.2019.1618173
https://doi.org/10.1093/ajcn/78.5.965
https://doi.org/10.1017/S0007114512004953
https://doi.org/10.1210/jc.2012-1513
https://doi.org/10.1136/gutjnl-2018-316103
https://doi.org/10.1038/s41586-020-2269-x
https://doi.org/10.1002/mnfr.202000390
https://doi.org/10.1016/j.chom.2020.01.006
https://doi.org/10.1039/D0FO01103G
https://doi.org/10.1128/AEM.03453-15
https://doi.org/10.1038/nature13995
https://doi.org/10.3389/fmicb.2020.00253
https://doi.org/10.3390/foods10081717
https://doi.org/10.1007/s00253-015-6600-7
https://doi.org/10.1371/journal.pbio.0050156


44. Pedersen HK, Gudmundsdottir V, Nielsen HB, 
Hyotylainen T, Nielsen T, Jensen BAH, Forslund K, 
Hildebrand F, Prifti E, Falony G, et al. Human gut 
microbes impact host serum metabolome and insulin 
sensitivity. Nature. 2016 21;535(7612):376–381. 
doi:10.1038/nature18646.

45. Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, Wang 
Y, Liu C, Wang W, and Wang J. Parabacteroides dis-
tasonis Alleviates Obesity and Metabolic Dysfunctions 
via Production of Succinate and Secondary Bile Acids. 
Cell Rep. 2019 Jan 2;26(1):222–235.e5. doi:10.1016/j. 
celrep.2018.12.028.

46. Lees EK, Król E, Grant L, Shearer K, Wyse C, Moncur E, 
Bykowska AS, Mody N, Gettys TW, Delibegovic M, 
et al. Methionine restriction restores a younger meta-
bolic phenotype in adult mice with alterations in fibro-
blast growth factor 21. Aging Cell. 2014 Oct;13 
(5):817–827. doi:10.1111/acel.12238.

47. Orgeron ML, Stone KP, Wanders D, Cortez CC, 
Van NT, Gettys TW. The Impact of Dietary 
Methionine Restriction on Biomarkers of 
Metabolic Health. Prog Mol Biol Transl Sci. 
2014;121:351–376.

48. Yang N, Yao Z, Miao L, Liu J, Gao X, Fan H, Hu Y, 
Zhang H, Xu Y, Qu A, et al. Novel Clinical 
Evidence of an Association between Homocysteine 
and Insulin Resistance in Patients with 
Hypothyroidism or Subclinical Hypothyroidism. 
PloS One. 2015;10(5):e0125922. doi:10.1371/jour-
nal.pone.0125922.

49. Ying Z, Zhang H, Su W, Zhou L, Wang F, Li Y, Zhang L, 
and Wang T. Dietary Methionine Restriction Alleviates 
Hyperglycemia in Pigs with Intrauterine Growth 
Restriction by Enhancing Hepatic Protein Kinase 
B Signaling and Glycogen Synthesis. J Nutr. 2017Oct, 
147(10), 1892–1899.

50. Ebrahimpour A, Vaghari-Tabari M, Qujeq D, 
Moein S, Moazezi Z. Direct correlation between 
serum homocysteine level and insulin resistance 
index in patients with subclinical hypothyroidism: 
does subclinical hypothyroidism increase the risk of 
diabetes and cardio vascular disease together? 
Diabetes Metab Syndr. 2018 Nov;12(6):863–867. 
doi:10.1016/j.dsx.2018.05.002.

51. Jiang X-C, Liang Z-D, Chen D-L, Jia J-P, Hu J-R HL. 
Correlation of Homocysteine, AHSG, CRP with Insulin 
Resistance, 25-(OH)2-VitD, Blood Lipids in Gestational 
Diabetes Patients. Clin Lab. 2021 Feb 1;67:2. 
doi:10.7754/Clin.Lab.2020.200609.

52. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, 
Saarela M, and Watzl B. Contribution of diet to the 
composition of the human gut microbiota. Microb 
Ecol Health Dis. Internet]. 2015 Feb 4cited 2019 Apr 
26];26. Available from. https://www.ncbi.nlm.nih.gov/ 
pmc/articles/PMC4318938/ 

53. Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le 
Chatelier E, He Z, Zhong W, Fan Y, Zhang L, 
et al. Quantitative metagenomics reveals unique gut 
microbiome biomarkers in ankylosing spondylitis. 
Genome Biol. 2017 Jul 27;18(1):142. doi:10.1186/ 
s13059-017-1271-6.

54. Plaza Onate F, Pons N, Gauthier F, Almeida M, 
Ehrlich SD, Le Chatelier E Updated Metagenomic 
Species Pan-genomes (MSPs) of the human gastroin-
testinal microbiota [Internet]. Portail Data INRAE; 
2021 [cited 2021 Jun 22]. Available from: https://data. 
inrae.fr/dataset.xhtml?persistentId=doi:10.15454/ 
FLANUP 

55. B L SS, Salzberg SL. Fast gapped-read alignment with 
Bowtie 2. Nat Methods. 2012; Mar 4;9(4):357–359. 
doi:10.1038/nmeth.1923.

56. Parks DH, Chuvochina M, Waite DW, Rinke C, 
Skarshewski A, Chaumeil P-A, Hugenholtz P. 
A standardized bacterial taxonomy based on genome 
phylogeny substantially revises the tree of life. Nat 
Biotechnol. 2018 Nov;36(10):996–1004. doi:10.1038/ 
nbt.4229.

57. Buchfink B, Xie C, Huson DH. Fast and sensitive pro-
tein alignment using DIAMOND. Nat Methods. 2015 
Jan;12(1):59–60. doi:10.1038/nmeth.3176.

58. Kanehisa M. KEGG: Kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 2000; Jan 1;28(1):27–30. 
doi:10.1093/nar/28.1.27.

59. Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, 
Garcia Yunta R, Okuda S, Vandeputte D, Valles- 
Colomer M, Hildebrand F, and Chaffron S. Species- 
function relationships shape ecological properties 
of the human gut microbiome. Nat Microbiol. 
2016 Jun 13;1(8):16088. doi:10.1038/nmicrobiol. 
2016.88.

60. Lombard V, Golaconda Ramulu H, Drula E, 
Coutinho PM, Henrissat B. The carbohydrate-active 
enzymes database (CAZy) in 2013. Nucleic Acids Res. 
2014 Jan;42(Database issue):D490–495.

61. R: a language and environment for statistical computing 
[Internet]. Accessed 26 March 2021. https://www.gbif. 
org/fr/tool/81287/r-a-language-and-environment-for- 
statistical-computing 

62. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: 
an R Software Package for the Nonparametric Analysis of 
Longitudinal Data in Factorial Experiments. J Stat Softw. 
2012; Sep 18;50(1):1–23. doi:10.18637/jss.v050.i12.

63. Torchiano M Effsize: Efficient Effect Size Computation. 
2014.

64. Appropriate statistics for ordinal level data: Should we 
really be using t-test and Cohen’sd for evaluating group 
differences on the NSSE and other surveys? BibSonomy 
[Internet]. Accessed 22 June 2021. https://www.bibson 
omy.org/bibtex/216a5c27e770147e5796719fc6b68547d/ 
kweiand

e2044722-16 H. RANAIVO ET AL.

https://doi.org/10.1038/nature18646
https://doi.org/10.1016/j.celrep.2018.12.028
https://doi.org/10.1016/j.celrep.2018.12.028
https://doi.org/10.1111/acel.12238
https://doi.org/10.1371/journal.pone.0125922
https://doi.org/10.1371/journal.pone.0125922
https://doi.org/10.1016/j.dsx.2018.05.002
https://doi.org/10.7754/Clin.Lab.2020.200609
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318938/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318938/
https://doi.org/10.1186/s13059-017-1271-6
https://doi.org/10.1186/s13059-017-1271-6
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/FLANUP
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/FLANUP
https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/FLANUP
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1038/nmicrobiol.2016.88
https://www.gbif.org/fr/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/fr/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/fr/tool/81287/r-a-language-and-environment-for-statistical-computing
https://doi.org/10.18637/jss.v050.i12
https://www.bibsonomy.org/bibtex/216a5c27e770147e5796719fc6b68547d/kweiand
https://www.bibsonomy.org/bibtex/216a5c27e770147e5796719fc6b68547d/kweiand
https://www.bibsonomy.org/bibtex/216a5c27e770147e5796719fc6b68547d/kweiand

	Abstract
	Introduction
	Results
	Participants characteristics
	Participants dietary intake and compliance
	Impact of dietary interventions on gut microbiota composition
	Only the multi-fiber bread significantly modified gut microbiota composition

	Impact of dietary interventions on gut microbiota functions
	Only the multi-fiber bread significantly modified gut microbiota functions

	Impact of dietary interventions on metabolic parameters
	The multi-fiber bread significantly improve lipid profile and insulin sensitivity

	Association between gut microbiota composition and function, and metabolic parameters

	Discussion
	Materials and methods
	Study participants
	Study design
	Biochemical blood analyses
	Microbiota analysis
	DNA extraction of stool samples and shotgun sequencing
	Microbial gene count table
	Metagenomic Species (MSP) profiles
	Microbiome functional potential

	Statistics

	Disclosure statement
	Funding
	ORCID
	Data availability
	References

