
HYPOTHESIS AND THEORY ARTICLE
published: 31 October 2014

doi: 10.3389/fcimb.2014.00157

Reconceptualizing the chlamydial inclusion as a
pathogen-specified parasitic organelle: an expanded role
for Inc proteins
Elizabeth R. Moore and Scot P. Ouellette*

Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA

Edited by:

Rey Carabeo, University of
Aberdeen, UK

Reviewed by:

Scott Grieshaber, University of
Idaho, USA
Maria Teresa Damiani, National
Scientific and Technical Research
Council, Argentina

*Correspondence:

Scot P. Ouellette, Division of Basic
Biomedical Sciences, Sanford
School of Medicine, University of
South Dakota, 414 E. Clark Street,
Vermillion, SD 57069, USA
e-mail: scot.ouellette@usd.edu

Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole
termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a
parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen
interactions thus draining nutrients from the cell and negatively impacting it. While
Chlamydia orchestrates some aspects of cell function, recent data indicate host cells
remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies
on the host cell for necessary metabolites, the overall function of the host cell, during
chlamydial growth and development, is not grossly disturbed. This is consistent with
the obligate intracellular organism’s interest to maintain viability of its host. To this
end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular
markers for the inclusion membrane. Incs also contribute to the physical structure of the
inclusion membrane and facilitate host-pathogen interactions across it. Given the function
of Incs and the dynamic interactions that occur at the inclusion membrane, we propose
that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen.
We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified
parasitic organelle. This representation integrates the inclusion within existing subcellular
trafficking pathways to divert a subset of host-derived metabolites thus maintaining host
cell homeostasis. We review the known interactions of the chlamydial inclusion with the
host cell and discuss the role of Inc proteins in the context of this model and how this
perspective can impact the study of these proteins. Lessons learnt from the chlamydial
pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This
will increase our understanding of how intracellular pathogens engage the host cell to
establish their unique developmental niches.
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INTRODUCTION
Bacteria that seek refuge from host defenses within a cell
encounter a hostile intracellular environment. Toll-like recep-
tors and other pattern recognition receptors (PRRs) recognize
pathogen-associated molecular pattern molecules (PAMPs) such
as lipopolysaccharide and peptidoglycan. Recognition of PAMPs
leads to the activation of various signaling pathways that typ-
ically lead to either cell death via apoptosis or engulfment of
the “foreign” bodies via autophagy with subsequent fusion of
the vacuole with lysosomes. To this end, intracellular bacteria
have devised various strategies to avoid or subvert these innate
immune responses.

Most intracellular bacteria have intrinsic mechanisms for
entering host cells, often through actin-mediated processes that
ultimately lead to encapsulation of the invading bacterium within
a membrane-bound compartment. Some bacteria, for example
Rickettsia and Listeria, lyse this compartment and reside within
the cytosol whereas others, including Mycobacterium, Legionella,
Salmonella, Coxiella, Anaplasma, and Chlamydia, reside within it.

For the latter type, these vacuoles are specifically suited to pro-
viding their resident bacteria an ideal environment to promote
growth and development, but the vacuole must necessarily be
remodeled by the bacterium to serve these purposes and to avoid
the innate immune responses of the cell.

Not surprisingly, these parasitophorous vacuoles are typically
envisioned as an isolated compartment acting to subvert host cell
processes and to favor pathogen growth by grossly imbalancing
cellular functions. However, if a bacterium favors intracellular
growth over growth in other environments, then it is more rea-
sonable to expect that the relationship between such a bacterium
and its host may be less destructive than commonly viewed. In
this review, we use an obligate intracellular pathogen, Chlamydia,
to illustrate this by showing how a parasitophorous vacuole may
be better envisioned as a pathogen-specified parasitic organelle.

CHLAMYDIAL EPIDEMIOLOGY
Chlamydia trachomatis is the chlamydial organism most com-
monly associated with human disease and one of the most
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common human pathogens. C. trachomatis serovars cause either
blinding trachoma (Schachter, 1999) or the most common bac-
terial sexually transmitted disease (STD) (Datta et al., 2007).
Primary chlamydial infections in women are often innocuous,
which increases the likelihood that they will go untreated. This in
turn leads to the ascension of Chlamydia from the cervix into the
upper genital tract and the development of pelvic inflammatory
disease, ectopic pregnancy, and/or infertility. The pervasiveness of
this problem is illustrated by CDC surveillance numbers, which
estimate that 10% of women between the ages of 15 and 19 test
positive for Chlamydia (Prevention, 2013). In the US, the CDC
estimates that the cost of chlamydial genital infections exceeds
700 million dollars annually (Satterwhite et al., 2011). A hallmark
of chlamydial infection is the ability of the pathogen to thrive
within the host while limiting host immunological responses and
obvious signs of inflammation (Darville and Hiltke, 2010). In
fact, 80% of women who have a single incidence of a chlamy-
dial infection do not develop clinical complications (Paavonen
and Eggert-Kruse, 1999; Van Valkengoed et al., 2004), which is
consistent with the initial chlamydial infection not being overtly
detrimental to the host. However, chronic or recurrent chlamy-
dial infections are quite common, especially in women, increasing
the risk of ascending genitourinary infections and damage to
the oviducts (Burstein et al., 1998; Molano et al., 2005; Darville
and Hiltke, 2010). These data support the “cellular paradigm of
chlamydial pathogenesis,” which states that, upon infection, non-
immune cells mount a cytokine response which is both necessary
and sufficient to exact tissue damage (Stephens, 2003). With
chronic or recurring infections, this cytokine response will be
sustained with increasing likelihood that Chlamydia will ascend
within the female genital tract. Current prevention and treat-
ment strategies fail to reduce the incidence of new infections and
subsequent sequelae.

THE CHLAMYDIAL DEVELOPMENTAL CYCLE
Chlamydia are obligate intracellular bacterial pathogens that
utilize a developmental cycle to alternate between infectious,
metabolically quiescent elementary bodies (EBs) and non-
infectious, metabolically-active reticulate bodies (RBs) during a
productive growth cycle (see Abdelrahman and Belland, 2005
for review). The two forms of Chlamydia reflect their distinct
roles within the developmental cycle: the EB mediates attach-
ment and internalization into a susceptible host cell and the RB
grows and divides similarly to other bacteria. The developmental
cycle occurs within a vacuole termed the inclusion. The molecu-
lar events required for differentiation between these morphologic
forms are not fully understood. However, genome-wide microar-
ray and targeted transcriptional studies have helped define genes
that may be important at critical stages such as the EB-to-RB
(early) and RB-to-EB (late) transition (Shaw et al., 2000; Belland
et al., 2003; Nicholson et al., 2003).

The normal progression of chlamydia through the develop-
mental cycle can be blocked by host immune effectors, β-lactam
antibiotic treatment, and nutrient deprivation (Beatty et al., 1993,
1994). This leads to the establishment of persistent forms of
the organism that are impaired in division but remain viable
(Beatty et al., 1993). These persistent forms may be connected

to the development of chronic infections and the sequelae with
which they are associated (Thejls et al., 1991; Campbell et al.,
1993; Bragina et al., 2001; Hjelholt et al., 2011). Reactivation of
chlamydial growth and completion of the developmental cycle
occurs upon removal of the stress (Beatty et al., 1994, 1995).
How Chlamydia maintain the integrity of the inclusion during
persistent growth is not well-understood.

As an obligate intracellular pathogen, Chlamydia must neces-
sarily engage host cell membranes. It is well-characterized that
the EB interacts and locally modifies the plasma membrane to
promote endocytosis (Zeichner, 1982; Wyrick et al., 1989; Zhang
and Stephens, 1992; Carabeo and Hackstadt, 2001; Carabeo et al.,
2002, 2004; Davis et al., 2002; Conant and Stephens, 2007). For
the RB, it is the inclusion membrane (IM) that serves as the means
by which the bacterium communicates with the host cell (Ward,
1988). It is well-established that chlamydial protein synthesis and
type III secretion are necessary for the early remodeling of the
plasma membrane-derived IM (Fields et al., 2003; Scidmore et al.,
2003). Chlamydial proteins that are type III secreted and remodel
the IM are called Incs (Subtil et al., 2001; Dehoux et al., 2011).

THE INCLUSION EVOLVES DURING THE CHLAMYDIAL
DEVELOPMENTAL CYCLE
Inherent to the survival of all chlamydial species is the avoidance
of the inclusion from the lysosomal pathway and other innate
immune defenses. Hence, specific interactions with the host cell
are orchestrated by the pathogen via the IM. Not surprisingly,
this coincides with shifting nutrient sources as the organism posi-
tions itself to obtain nutrients without triggering a stress response
from the host cell. For example, Ouellette et al. demonstrated
that Chlamydia is dependent on lysosomal degradation products
earlier in its developmental cycle whereas it preferentially uti-
lizes free amino acids later in the cycle (Ouellette et al., 2011).
Further, species and strains that grow faster are less dependent
on these lysosomal degradation products as they more effectively
utilize free amino acids from the host cell (Ouellette et al., 2011).
Similarly, lipids may be supplied through direct recruitment of
host cell enzymes early in the cycle [e.g., CERT (Derre et al.,
2011; Elwell et al., 2011)] and vesicular-derived sources later in
the cycle [e.g., via interactions with SNAREs (Kabeiseman et al.,
2013)]. One likely result of these changes in nutrient availabil-
ity/competition is that the IM is continually modified by Incs that
are expressed at different stages of the chlamydial developmental
cycle. We propose that, by altering the protein content of the IM
and shifting acquisition of nutrient pools, Chlamydia is engaging
a strategy to limit gross stress to the host cell. To accomplish this,
the inclusion must be integrated within the host cell as opposed
to existing in an isolated compartment that is unresponsive to
changes in the host cell.

CHLAMYDIA IS A HIGHLY EVOLVED PATHOGEN
In adapting to the obligate intracellular lifestyle, Chlamydia has
significantly reduced its genome size as it relies on the host cell
for most of its metabolic needs (McClarty, 2004). For exam-
ple, C. trachomatis encodes 895 open reading frames (ORFs) in
1.04 Mbp (1.16 kbp/ORF) with little evidence of pseudogenes
(Stephens et al., 1998). For comparison, Rickettsia prowazekii,
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another obligate intracellular pathogen, encodes 835 ORFs in 1.11
Mbp (1.33 kbp/ORF) yet contains many pseudogenes (Andersson
et al., 1998). This indicates that R. prowazekii is still undergoing a
reductive evolutionary process as it adapts to obligate intracellular
life in its host and reduces its genome size. Chlamydia, meanwhile,
is already highly adapted to this niche. These genomic data, along
with the observation that Chlamydia transcribes most, if not all,
genes, suggest that every ORF is important to Chlamydia (Belland
et al., 2003; Nicholson et al., 2003).

THE CHLAMYDIAL INCLUSION AND INC PROTEINS
Early studies attempting to identify components of the inclu-
sion revealed the presence of chlamydial proteins inserted into
the IM (Bannantine et al., 1998; Scidmore-Carlson et al., 1999).
These proteins are referred to as Inc proteins. Incs have one key,
identifying motif: a large hydrophobic region encoding two trans-
membrane domains. With the publication of the first chlamydial
genome and using this key characteristic, bioinformatics stud-
ies have estimated that C. trachomatis encodes greater than 50
inc genes (Lutter et al., 2012). This represents approximately 6%
of the coding capacity of the organism (Stephens et al., 1998).
Given the genome reduction previously described, this indicates
that the Incs serve an important function. Further, many Incs
are expressed at distinct times during the developmental cycle
suggesting temporally orchestrated functions (Shaw et al., 2000;
Belland et al., 2003; Nicholson et al., 2003). Other studies have
shown that Incs encode a type III secretion signal that allows the
bacterium to secrete these proteins to be subsequently inserted
into the IM (Fields et al., 2003). Type III secretion systems are vir-
ulence factors of Gram-negative pathogens (Hueck, 1998) and,
in Chlamydia, are linked to chlamydial survival and virulence
(Betts-Hampikian and Fields, 2010). Because of this, Incs are
likely virulence proteins, playing a key role in chlamydial growth
and development. Topological analyses indicate that both the N-
and C-termini of Incs are exposed on the cytoplasmic side of the
IM, and a recent study, using an anti-FLAG antibody, showed that
the C-terminus of IncD-FLAG is indeed exposed to the cytoplasm
(Agaisse and Derre, 2014; Bauler and Hackstadt, 2014). In spite of
the large number of Incs, only a few have been shown to interact
with a host cell component (Scidmore and Hackstadt, 2001; Derre
et al., 2011; Lutter et al., 2013).

The expression of Incs can be broadly divided into two tem-
poral categories: those expressed early (i.e., soon after infection)
and those that are expressed mid-cycle (i.e., once the inclusion is
established). In these contexts and related to shifting nutritional
needs, one would predict that early functioning Incs are essen-
tial for establishing the nascent inclusion and therefore essential
to the organism. In contrast, later functioning Incs are dispens-
able, as they are predicted to impact the efficiency of nutrient
acquisition thus affecting only the growth rate of the organism
but not necessarily its ability to complete the developmental cycle.
Indeed, only one Inc mutant has been characterized to date: IncA
(Suchland et al., 2008). IncA is expressed mid-cycle and has been
extensively studied and shown to contain two SNARE-like motifs
that likely promote homodimeric interactions (Delevoye et al.,
2008; Ronzone and Paumet, 2013). When host cells are infected
with multiple EBs, IncA wild-type inclusions will fuse whereas

mutant inclusions fail to fuse, thus IncA is not essential to chlamy-
dial growth (Suchland et al., 2008). However, the IncA mutant did
show a reduced rate of production of infectious progeny probably
due to competition between the non-fused inclusions (Suchland
et al., 2008). Overall, these observations suggest that Chlamydia
modifies the IM to meet its evolving needs during the develop-
mental cycle and that Incs are central to the function of the IM as
a whole.

Although molecular mechanisms for inclusion biogenesis are
lacking, many studies have described various characteristics of
the inclusion. The nascent inclusion is rapidly diverted from the
endocytic pathway after completion of the chlamydial-specified
phagocytosis process and neither acquires markers such as Rab5
and EEA1 that identify early endocytic compartments nor mark-
ers such as Rab7 and LAMP1 that identify late endocytic com-
partments (Taraska et al., 1996; Scidmore et al., 1996b, 2003).
The inclusion is trafficked to the microtubule organizing cen-
ter where it selectively interacts with various host cell pathways
(Grieshaber et al., 2003). For example, Chlamydia will intercept
fluorescent, exocytically-derived, sphingomyelin (Hackstadt et al.,
1996; Moore et al., 2008). More recent work by Moore et al. has
shown that Chlamydia intercepts the exocytic SNAREs, syntaxin
6, and VAMP4 (Moore et al., 2011; Kabeiseman et al., 2013). For
these reasons, the chlamydial inclusion is typically referred to as a
parasitophorous vacuole that resides within a specialized exocytic
compartment.

THE INCLUSION AS A PATHOGEN-SPECIFIED PARASITIC
ORGANELLE
An organelle is defined as a specialized subcompartment of a
cell that serves a specific function. It is usually membrane-bound
and is identified through various specific surface, cytoplasmically
exposed markers. Proteins and/or vesicles destined for a particu-
lar organelle also contain a specific trafficking signal that allows
the protein/vesicle to be targeted to the organelle. Given these
characteristics of an organelle, we hypothesize that the chlamydial
inclusion is a pathogen-specified parasitic organelle (Figure 1).
In this context, the “chlamydial” organelle (i) serves the spe-
cific function of promoting chlamydial growth and development,
(ii) is membrane-bound and identified through specific surface,
cytoplasmically exposed markers: the Incs, and (iii) intercepts
proteins/vesicles with specific trafficking signals (e.g., YGRL)
(Moore et al., 2011; Kabeiseman et al., 2014). The inclusion-as-
an-organelle model incorporates the dynamic characteristics of
the inclusion that allow it to minimize its impact on host cell
functions while promoting growth of the pathogen. The pre-
vailing inclusion-as-a-parasitophorous-vacuole model is being
challenged by current data in the field since it fails to account for
the dynamic interactions that occur between this compartment
and the host cell. A parasitophorous vacuole implies a one-sided
relationship with the host cell that is detrimental to the host.
Importantly, Chlamydia-infected cells are generally healthy until
the end of the cycle when the EBs are ultimately released from the
host cell. Nevertheless, even this process does not always result in
cell death (Beatty, 2007; Hybiske and Stephens, 2007).

The inclusion clearly interacts, in a selective manner, with
the exocytic pathway (Hackstadt et al., 1996; Scidmore et al.,
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FIGURE 1 | Model of the function of the chlamydial inclusion. In (A), there
are two representations of the chlamydial inclusion: the classical paradigm of
the chlamydial inclusion as a parasitophorous vacuole and our concept of the
chlamydial inclusion as a pathogen-specified parasitic organelle, which is
more consistent with recent data. In (B), the composition of the inclusion

membrane is represented with Inc proteins serving as scaffolds to organize
the membrane by creating microdomains to support host-chlamydial
interactions and organize the inner leaflet of the chlamydial inclusion
membrane. In our model, microdomains are collections of discrete subsets
of Inc proteins as described in Mital et al. (2010) and Alzhanov et al. (2009).

1996a; Moore et al., 2008). Yet, it has also been shown to inter-
act with transferrin receptor, late recycling endosomes, and other
compartments, like multivesicular bodies (Rzomp et al., 2003,
2006; Beatty, 2006; Ouellette and Carabeo, 2010; Ouellette et al.,
2011). Importantly, trafficking of glycoproteins to the cell sur-
face of chlamydial infected cells is unimpeded (Scidmore et al.,
1996a; Taraska et al., 1996; Ouellette and Carabeo, 2010), indi-
cating that Chlamydia minimizes its impact on exocytic events.
Similarly, only a small proportion (approximately 10%) of trans-
ferrin and transferrin receptor traffics to the inclusion, via the
slow recycling pathway (Ouellette and Carabeo, 2010), and trans-
ferrin receptor recycling is not generally altered in chlamydial
infected cells (Scidmore et al., 1996a; Taraska et al., 1996; Vanooij
et al., 1997; Ouellette and Carabeo, 2010). Rab GTPases, mem-
bers of the Ras superfamily of monomeric, low molecular weight
G proteins, are well-established markers of specific subcellular
organelles (Stenmark, 2009; Jean and Kiger, 2012). The chlamy-
dial inclusion formed by C. trachomatis, for example, recruits
Rabs 1, 4, 6, 11, and 14 (Rzomp et al., 2003, 2006; Capmany
and Damiani, 2010), indicating that the inclusion interfaces with
ER to Golgi transport pathways (Rab 1) (Allan et al., 2000;
Moyer et al., 2001; Stenmark, 2009), recycling endosomes (Rabs 4

and 11) (McCaffrey et al., 2001; Zhang et al., 2004), Golgi and
trans-Golgi networks (Rabs 6 and 14) (Goud et al., 1990; Antony
et al., 1992; Junutula et al., 2004), and the cytokinetic apparatus
(Rab 11) (Hehnly et al., 2012). More recent work from the Moore
lab suggests that Chlamydia may intercept SNAREs trafficked
from the plasma membrane rather than those being delivered to it
(Kabeiseman et al., 2014). Further studies have shown that “mem-
brane contact sites” form between the chlamydial IM and the
endoplasmic reticulum, likely through IncD (Derre et al., 2011).
Combined, these data indicate that the ultimate composition and
identity of the chlamydial inclusion rely on its ability to interact
with multiple subcellular pathways. This is consistent with “fit-
ting in” within a network of organelles that engage in cross-talk
to effectively orchestrate host cell functionality.

The view of the inclusion as an isolated parasitophorous vac-
uole also prevails when considering the function of Incs at the
IM. Incs are commonly thought to function as mediators of host
cell interactions by binding host cell components. Specifically,
within the parasitophorous vacuole model, Incs sequester host
cell components, effectively removing them from canonical traf-
ficking pathways. Because of this prevailing model, little thought
has been given to potential contributions of Incs to the structure
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and function of the IM itself. For example, what protein-protein
or protein-lipid interactions are required to form this membrane?
Hence, many Incs may function by organizing and providing
structure to the IM. This is an especially important considera-
tion given that a quarter of putative Inc proteins have very limited
cytoplasmic domains (< 30 amino acids), coupled with the fact
that only a limited number of Incs have been shown to interact
in vitro with host cell proteins (Scidmore and Hackstadt, 2001;
Delevoye et al., 2008; Derre et al., 2011; Lutter et al., 2013). Most
of these encode coiled-coil domains that are commonly used
motifs in protein-protein interactions thus increasing the likeli-
hood of detecting potential interacting partners. Therefore, we
hypothesize that Incs have one of two functions: (i) to construct
the IM itself and promote interactions between Incs or (ii) to
selectively interact with host cell components (Figure 2).

One likely function of the smaller Inc proteins is thus to serve
as a scaffold within the IM to both give it structure and cre-
ate microdomains to facilitate interactions between Inc proteins.
C. trachomatis IncB, for instance, co-localizes with Ct101, Ct222,
and Ct850 at later times during infection, and this complex is
thought to recruit Src family kinases (Mital et al., 2010). Yet IncB
must have another function given its early expression pattern and
small size. This function may be to create microdomains, or col-
lections of specific proteins to promote a specific function, within
the IM to facilitate interactions between Incs as well as with host
cell proteins. The view of the inclusion as a pathogen-specified
parasitic organelle integrates the developmental expression of
Incs with temporal characteristics of the inclusion and the bacte-
ria themselves in ways that allow the inclusion to have a minimal
impact on the health of the host cell.

LIMITATIONS OF STUDYING THE INCLUSION MEMBRANE
When studying an organelle, it can typically be purified from
the host cell and, subsequently, membranes from this organellar
fraction can be isolated to determine the protein and lipid com-
position of the organelle in question. In the case of the chlamydial
inclusion, the membrane is highly fragile and typically falls apart
upon cell lysis, regardless of the conditions. Further, because of
the fragility of the inclusion, the IM is refractory to biochemical
purification (Saka et al., 2011). Therefore, purification of chlamy-
dial inclusions or IM fractions is not possible. Once the integrity
of the IM is compromised, organisms freely associate with var-
ious organelles. In fact, when purifying chlamydial organisms
from host cells, two density gradient steps are required to elim-
inate host cell debris from the purified organisms (Caldwell et al.,
1981; Scidmore, 2005). The inability to purify intact chlamydial
inclusions from host cells precludes any attempts at characteriz-
ing the proteome and interactome of this compartment. Hence,
specific molecular events that occur and are responsible for IM
composition and integrity are unknown.

Despite the dearth of knowledge surrounding the composi-
tion of the IM, 50 + Inc proteins have been characterized to
reside in the IM (Bannantine et al., 1998; Scidmore-Carlson et al.,
1999; Li et al., 2008), indicating that Inc proteins are good tools
for studying the chlamydial IM. However, Inc proteins are mem-
brane proteins, and membrane proteins are notoriously difficult
to study due to their hydrophobicity. Prior studies searching
for interacting partners of Incs have typically relied on express-
ing the cytosolic domains of a given Inc in yeast two-hybrid
systems or purifying a recombinant version of the cytosolic
domain for pull-downs and then ascertaining if the identified

FIGURE 2 | Hypothetical model for temporal changes in the inclusion

membrane with proposed functions. Boxed and circled proteins are
known host-cell derived proteins that localize to the inclusion. Unboxed

proteins or letters represent Incs. The only interaction to be validated by
multiple biochemical assays demonstrating in-cell interactions is IncD and
CERT (Agaisse and Derre, 2014).
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host binding partners co-localize to the chlamydial inclusion via
indirect immunofluorescence (Scidmore and Hackstadt, 2001;
Delevoye et al., 2008; Derre et al., 2011; Lutter et al., 2013). With
regard to yeast two-hybrid systems, this method of testing inter-
actions is lacking a contextual link to chlamydial biology (i.e.,
the Inc is expressed by eukaryotic machinery and must interact
in the nucleus of the yeast cell with its binding partner). With
regard to pull-downs, the cytosolic domains that have been stud-
ied contain coiled-coil domains (e.g., IncA, Ct228, Ct229), which
are commonly used motifs in protein-protein interactions thus
increasing the likelihood of a positive hit. A single publication
exists examining expression of an Inc and recruitment of host
proteins in vivo (Agaisse and Derre, 2014). Further, only a sin-
gle publication exists that biochemically examines interactions
between Incs (Mital et al., 2010).

IS THE PATHOGEN-SPECIFIED PARASITIC ORGANELLE
UNIQUE TO CHLAMYDIA?
Many intracellular pathogens, both obligate and facultative,
establish a compartment in which they replicate. These are often
referred to as a pathogen-containing vacuole (e.g., the SCV of
Salmonella is the Salmonella-containing vacuole). Inevitably, the
pathogen modifies the compartment in ways that ensure its
growth and survival, and this is accomplished by the secretion
of effectors into the host cell-whether the membrane of the
compartment or the cytosol. The Gram-negative pathogens typ-
ically encode multiple secretion systems, such as the Type III
secretion system similar to what is found in Chlamydia or the
Type IV system used by Legionella. Salmonella type III effectors
ensure the stabilization and maintenance of the SCV (Figueira
and Holden, 2012). The obligate intracellular Anaplasma phago-
cytophilum recruits cholesterol to its intracellular vacuole and
employs Type IV secretion to modulate autophagy (Lin and
Rikihisa, 2003; Truchan et al., 2013). Mycobacterium also relies
on secreted effectors to delay the maturation of its compart-
ment along the endocytic pathway. Mycobacterium tuberculosis
thrives within alveolar macrophage and dendritic cells. Key to
its intracellular survival is the ability to prevent acidification of
its phagosome (known as the MCV, Mycobacterium containing
vacuole) to circumvent its destruction via autophagy (Sturgill-
Koszycki et al., 1994). Carefully orchestrating the fate of the
organelle includes secreting effectors such as SapM, which con-
sumes phosphatidylinositol-3-phosphate from the host to alter
endosomal maturation (Vergne et al., 2005). Additionally, the
organism incorporates the lipid sulfatide into its cell wall to
inhibit macrophage production of radical oxygen species or to
increase phagocytosis (combined, a process known as “priming”)
(Pabst et al., 1988). Additionally, sulfatide within the mycobacte-
rial cell wall acts as a repellant to prevent fusion with lysosomal or
autophagosomal compartments (Goren et al., 1976). From within
the MCV, M. tuberculosis inhibits apoptosis as a direct means to
avoid effectorcytosis, which is the clearance of apoptotic cells by
uninfected macrophages (Keane et al., 2000). Hence, the ability of
the MCV to function as an organelle depends on a very carefully,
well-adapted choreography between host and microbe. Indeed,
all of these examples are considering the pathogen as exploiting
the host—as in the pathogen (the aggressor) is taking advantage

of the host cell (the victim). However, the best way to sustain an
infection is not to dominate or weaken the host but to achieve
a plane of equilibrium. This equilibrium is achievable by coopt-
ing space and resources in the context of a pathogen-specified
parasitic organelle.

One of the earliest examples of a pathogen-specified parasitic
organelle was the observation that Legionella pneumophila cre-
ates an endoplasmic reticulum-derived niche within macrophages
(Horwitz and Silverstein, 1980; Horwitz, 1983a,b). Considered an
opportunistic pathogen, L. pneumophila coexists within amoeba
in the environment and, when accidentally acquired by a human,
creates a similar relationship with the amoeba-like macrophage.
Critical to the identity of an organelle is the engagement of
very specific trafficking machinery. For example, L. pneumophila
recruits the low molecular weight GTPase Rab1 to the LCV or
Legionella containing vacuole (Derre and Isberg, 2004; Kagan
et al., 2004). It is well-established that Rab proteins are “mark-
ers” for distinct organelles (Stenmark, 2009; Jean and Kiger,
2012). For example, Rab1 is a marker for the ER (Allan et al.,
2000; Moyer et al., 2001; Stenmark, 2009). To manipulate Rab1
function at the LCV, two Type IV effectors are produced: LepB,
which switches Rab1 “off” by acting as a GTPase activating pro-
tein (GAP) (Ingmundson et al., 2007; Goody et al., 2012) and
DrrA, which switches Rab1 “on” by acting as a guanine nucleotide
exchange factor (GEF) (Machner and Isberg, 2006; Murata et al.,
2006). By modulating Rab1 activity at the LCV, Legionella ulti-
mately orchestrates the recruitment of specific syntaxin/SNARE
machinery to the LCV to maintain an ER-like identity by pro-
moting fusion of ER-derived vesicles with the LCV (Arasaki et al.,
2012). Further, Legionella produces an effector, VipD, which binds
to Rab5 and Rab22 specifically to prevent these Rabs from traf-
ficking and recruiting endosomal membranes to the LCV (Ku
et al., 2012).

CONCLUSIONS AND FUTURE DIRECTIONS
Clearly, the term “pathogen-specified parasitic organelle” is not a
definition solely applicable to the chlamydial inclusion. From this
perspective, rather than looking at families of effectors for com-
monalities between intracellular organisms, we can instead exam-
ine similar mechanisms of pathogen-specified parasitic organelle
establishment. The exploitation of Rab proteins (as an example
of host cell machinery) is an excellent example of this. While
Rab proteins are specific for different subcellular compartments,
a given Rab protein functions similarly at every location within
the cell—even, it would seem, at pathogen-specified parasitic
organelles.

Additionally, some secreted bacterial proteins, such as Incs,
may help to construct the membrane of pathogen-specified par-
asitic organelles. Historically, Inc proteins have been examined
to determine with which host protein they interact as a means
to subvert host cell function, not in how they interact with one
another with regards to organization of the chlamydial inclusion.
Both interactions are relevant in the context of how the inclu-
sion functions within the host cell. New approaches in working
with membrane proteins will need to be implemented to circum-
vent these difficulties. One approach is the bacterial adenylate
cyclase-based two hybrid system (BACTH), which can examine
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in vivo protein-protein interactions within the context of a phos-
pholipid bilayer (Karimova et al., 1998; Ouellette et al., 2014).
Another approach is proximity labeling techniques to covalently
modify neighboring proteins using either a promiscuous biotin
ligase (Roux et al., 2012) or an ascorbate peroxidase (Rhee et al.,
2013) fused to a protein of interest. In either case, expression of
the tagged construct followed by exogenous addition of biotin
(BirA∗) or biotin-phenol (APEX) will result in interacting part-
ners being tagged with biotin. Hence, protein-protein interactions
are recorded and tagged within the cell prior to lysis. Therefore,
measurement of protein-protein interactions is levied against the
affinity of biotin for streptavidin in a pull-down and not for
the preservation of these interactions during lysis and immuno-
precipitation. In our hands, we have been able to transform
C. trachomatis serovar L2 with an IncA-APEX construct, which
biotinylates the IM upon addition of biotin-phenol (Figure 3).
These methodologies will rapidly improve our ability to not
only characterize interactions of membrane proteins but to map
previously unpurifiable cellular organelles.

Granted, if we accept that the chlamydial inclusion is a
pathogen-specified parasitic organelle, then we assume that the
inclusion is interfacing with other subcellular compartments
in an equitable manner. This, in turn, increases the complex-
ity of studying these interactions. However, by combining bio-
chemical protein-protein interactions with imaging technology,
like photoconvertible protein constructs and TIRF (total inter-
nal reflection fluorescence microscopy; (Axelrod, 1981; Axelrod
et al., 1983; Lin and Hoppe, 2013), we can demonstrate, for
the first time, crosstalk between a pathogen-specified parasitic
organelle and host cell organelles. Most likely, many of these
transmembrane bacterial proteins share similarities in how they
organize membranes within eukaryotic cells.

FIGURE 3 | Inducible expression of IncATM-APEX2. HeLa cells were
inoculated with C. trachomatis serovar L2 transformed with
pASK-IncATM_APEX2-mKate2::L2 to allow for inducible expression of the
N-terminal region of IncA encoding the transmembrane domains (TM)
fused to APEX2. The plasmid backbone (pASK-GFP/mKate2-L2 plasmid) for
this study was generously provided by P. Scott Hefty (Department of
Molecular Biosciences, University of Kansas) (Wickstrum et al., 2013). 6 h
after infection, IncATM-APEX2 expression was induced by treating cultures
with 10 ng/ml anhydrotetracycline for an additional 18 h. Monolayers were
then treated with or without biotin-phenol, processed for
immunofluorescence and visualized with a 60X objective on an Olympus
Fluoview 1000 Laser Scanning Confocal Microscope. White arrows depict
IncATM-APEX2 (red) localized to the IM or fibers extending from the
inclusion. In the presence of biotin-phenol the construct is able to
biotinylate (green, detected with streptavidin-488) the IM. Scalebar = 5 μm.

The ability to create unique antimicrobials depends upon us,
the researchers, being able to adequately target survival mecha-
nisms that are unique to pathogens without impacting the host.
Further, a class of antimicrobials could be created that target
specific pathogen-specified parasitic organelles that cordons off
the pathogen in a manner that, rather than encouraging adap-
tation, limits destructive activities toward the host. The concept
of “pathogen-specified parasitic organelles” can radicalize our
thinking in how we examine intracellular pathogens and develop
novel antimicrobial strategies against them.
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