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The mortality rate of patients with coronary artery disease (CAD) increases

year by year, and the age of onset is decreasing, primarily because of the

lack of an efficient and convenient diagnostic method for CAD. In the pre-

sent study, we aimed to detect CAD-correlated biomarkers and the regula-

tory pathways involved through weighted co-expression network analysis.

The microarray data originated from 93 CAD patients and 48 controls

within the Gene Expression Omnibus (GEO) database. The gene network

was implemented by weighted gene co-expression network analysis, and the

genes were observed to fall into a range of modules. We took the intersec-

tion of genes in the modules most correlated with CAD with the differen-

tially expressed genes of CAD, which were identified by applying the

limma package. Lasso regression and support vector machine recursive fea-

ture elimination algorithms were used to determine CAD candidate signa-

ture genes. The biomarkers for diagnosing CAD were detected by

validating candidate signature gene diagnostic capabilities (receiver operat-

ing characteristic curves) based on data sets from GEO. Three modules

were selected, and 26 vital genes were identified. Eight of these genes were

reported as the optimal candidate features in terms of CAD diagnosis.

Through receiver operating characteristic curve analysis, we identified three

genes (ERCC5, HES6 and RORA; area under the curve > 0.8) capable of

distinguishing CAD from the control, and observed that these genes are

correlated with the immune response. In summary, ERCC5, HES6 and

RORA may have potential for diagnosis of CAD.

Coronary atherosclerotic heart disease (CAD) has been

recognized as a primary cause of morbidity and mor-

tality in octogenarians, imposing a huge economic bur-

den on society [1]. As coronary interventional

techniques have been applied clinically, and statins

and antiplatelet therapy have been developing, the

clinical prognosis of CAD patients [2] is significantly

facilitated. Nevertheless, the mortality rate of CAD

patients continues to increase year by year, and the

age of onset is becoming increasingly younger [3], pri-

marily because of the lack of an efficient and conve-

nient diagnostic method for CAD. Thus, specific early
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diagnostic biomarkers in CAD patients should be

explored.

The pathogenesis of CAD has been reported to be

significantly correlated with some biological processes

(e.g. lipid disorder, vascular inflammation, oxidative

stress and vascular endothelial dysfunction) [4]. In

addition, the immune system is primarily involved in

the pathophysiology of cardiovascular disease [5].

Monocytes and macrophages can fall to a proinflam-

matory phenotype and a healing phenotype in extreme

cases. The interaction and balance between the men-

tioned two phenotypes are critical to atherosclerosis

[6,7]. According to a survey of subjects with premature

CAD, older CAD patients were found with higher

levels of T cell, macrophage and T regulatory cell infil-

tration into coronary plaques [8].

Currently, bioinformatics plays a decisive role in

gene function research, protein structure prediction,

precision medicine, drug design and forensic identifica-

tion. In the present study, ERCC5, HES6 and RORA

are identified as the diagnostic markers of CAD.

Specifically, the ERCC5 is an important endonuclease

in the NER pathway. The mutation of ERCC5 can

induce abnormal cell proliferation and differentiation,

which would promote tumorigenesis. However, the

role of ERCC5 in CAD remains unclear [9]. HES6

plays an indirect regulatory role in the Notch signaling

pathway. However, the function and mechanism of

HES6 in the occurrence and progression of CAD have

not been clarified. The expression of RORA can be

widely observed in the heart, lung, liver and other tis-

sues [10]. RORA has the main function of encoding

NR1 (thyroid hormone) and regulating circadian

rhythms. It shall be noted that circadian rhythms are

essential for the heart to maintain a healthy state.

Moreover, it has been revealed that the high expres-

sion of RORA correlates with acute myocardial infarc-

tion, which may be an independent risk factor for

acute myocardial infarction [11]. Furthermore, in the

present study, these genes are involved in the develop-

ment of CAD through some immune-related pathways,

including humoral immune response, regulation of

immune response, positive regulation of immune

response, immune response-regulating signaling path-

way, immune effector process, regulation immune sys-

tem process, immune system process and regulation of

immune system process. Therefore, the diagnostic

biomarkers related to CAD can be identified in the

present study through the exploration, screening, as

well as analysis of genes related to CAD. Besides, the

potential immune pathways were investigated in an

attempt to provide insights and data support for early

diagnosis and prevention of CAD.

Materials and methods

Source of datasets

Two CAD-correlated gene expression profiles (i.e.

GSE113079 and GSE23561) were identified in the Gene

Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo) and determined after searching,

both comprising microarray data from CAD and normal

samples. In GSE113079, 93 CAD patients and 48 normal

subjects were reported. Moreover, in GSE23561, six CAD

patients and nine normal subjects were included to validate

diagnostic genes. The chips from the data sets were periph-

eral blood samples.

Screening for differentially expressed genes

(DEGs)

Given the comparison of expression values between CAD

samples and normal samples in the GSE113079 data set, the

R package limma [12] was adopted to screen for DEGs. The

screening conditions for DEGs were P < 0.05 and ¦log2FC¦ ≥
1.0. The results are illustrated separately by the heat map

and volcano map drawn with the R software package (R

Foundation for Statistical Computing, Vienna, Austria).

Weighted gene co-expression network analysis

(WGCNA)

The R package WGCNA was employed to build a co-

expression network for all genes with mean expression val-

ues over 1 in the CAD samples and normal samples in the

GSE113079 data set. Here, CAD and control served as the

clinical traits for WGCNA. A cluster analysis on all sam-

ples in the GSE113079 data set was first conducted to

determine the presence of outlying samples. Next, the clini-

cal data of CAD and normal samples were introduced to

the cluster diagram to build a sample cluster-clinical trait

heatmap. Power parameters ranging from 1 to 20 were fil-

tered out with the pickSoftThreshold function. An appro-

priate soft threshold power of 6 was determined because it

satisfied scale-free R2 = 0.85 at the minimum power value.

Subsequently, when MEDissThres was set to 0.5, a hybrid

dynamic clipping tree algorithm was exploited to segment

and merge similar modules.

Furthermore, the correlation between the merged mod-

ules and clinical features of CAD was calculated to identify

vital modules significantly correlated with clinical features

of CAD. The correlation coefficient and the P value are

presented in the heatmap. Gene significance (GS) was

defined as the correlation between gene expression and the

respective trait. Module membership (MM) was defined as

the correlation between gene expression and the character-

istic genes of the respective module. The genes were

selected from the vital modules satisfying ¦MM¦ > 0.8 and
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¦G¦ > 0.2 as hub genes for subsequent studies. Through the

online website jvenn (http://jvenn.toulouse.inra.fr/app/

example.html), the analysis exploited the intersection of the

differential genes and Hub genes acquired from the screen-

ing above to identify the genes most correlated with CAD

progression, which were termed vital genes.

Least absolute shrinkage and selection operator

(LASSO) and support vector machine model-

recursive feature elimination (SVM-RFE)

algorithms

The LASSO algorithm and SVM-RFE algorithm were

comprehensively applied for screening the biomarkers of

CAD. First, 141 samples randomly fell to the training set

(n = 99) and the validation set (n = 42) at 7 : 3. The GLM-

NET package in R was employed for the LASSO regression

algorithm with penalty parameter regulation through 10-

fold cross-validation. When lambda.min was 0.004955, it

would be the optimal diagnostic model for CAD. The

SVM-RFE algorithm was implemented with the e1071 soft-

ware package of R. As the number of genes began to vary,

the error rate of the prediction of the optimal points of

CAD samples and normal samples reached 0.035, exhibit-

ing an accuracy of 0.965, thereby complying with the most

appropriate characteristics. The diagnostic markers of

CAD were finally determined by overlapping the signature

genes of the two algorithms.

Receiver operating characteristic (ROC) curve

analysis

To assess the effect exerted by candidate genes in the diag-

nosis of CAD, ROC curve analysis was conducted in RSTU-

DIO (RStudio, Boston, MA, USA) for genes selected by the

multivariate model in combination [13] with the PROC pack-

age. Genes with an area under the curve (AUC) > 0.8 acted

as the diagnostic genes for CAD. Moreover, the diagnostic

significance of the mentioned diagnostic genes was vali-

dated in the GSE23561 data set.

Enrichment analysis by the Gene Set Enrichment

Analysis (GSEA)

To further explore the pathways involved with diagnostic

genes in CAD, CAD patients were separated in the

GSE113079 data set into high and low expression groups

by complying with the expression of diagnostic genes. The

GSEA was conducted to verify whether a set of priori

defined genes achieved significant differential expression

high expression group and the low expression group in the

enrichment collected by MSigDB [14]. In this study, the

ordered list of all genes was first generated by drawing

upon the correlation with the expression of diagnostic

genes. Next, the GSEA was adopted to assess significant

differences between the results of the high expression group

and the low expression group. P < 0.05 was considered sta-

tistically significant with respect to enrichment.

Extraction of total RNA from blood and

quantitative real-time PCR (qRT-PCR)

To more specifically validate the expression of diagnostic

genes in CAD, we first observed the expression of diagnos-

tic genes in CAD and normal samples using the GEO data

set, and then collected blood samples from CAD patients

(n = 10) and normal subjects (n = 10) from the First Peo-

ple’s Hospital of Yunnan Province for validation. The stud-

ies involving human participants were reviewed and

approved by the Ethics Committee of the First People’s

Hospital of Yunnan Province. The patients provided writ-

ten informed consent to participate in this study. The col-

lection and processing of all samples were performed by

strictly complying with the regulations of the Ethics Com-

mittee of the First People’s Hospital of Yunnan Province.

Specific information on the patients is provided in Table

S1. The study methodologies conformed to the standards

set by the Declaration of Helsinki.

The overall RNA from blood was extracted with the Tri-

zol reagent method, and the quality and purity of the

extracted RNA were tested based on a nucleic acid protein

instrument. The extracted RNA was reverse transcribed

into cDNA to detect the relative expression of the target

gene mRMA in accordance with the SureScript-First-

strand-cDNA-synthesis-kit instructions (Genecopoeia,

Rockville, MD, USA). Primers were synthesized following

the sequences (Table 1) transferred to Optimus Biological

Company (Beijing, China).

qRT-PCR reactions were performed by employing the

BlazeTaq™ SYBR® Green qPCR Mix2.0 kit (Genecopoeia)

with the reaction systems oulined below: cDNA, 4 μL;
5 × BlazeTaq qPCR Mix, 2 μL; PCR forward primer

(2 μM), 0.5 μL; PCR reverse primer (2 μM), 0.5 μL; ddH2O

(RNase/DNase free) 1 μL for 10 μL in total. The reaction

program consisted of denaturation at 95 °C for 30 s; denat-

uration at 95 °C for 10 s, annealing at 60 °C for 20 s, for

40 cycles, as well as extension 72 °C fr 30 s. The CT value

of the respective gene was counted, and the relative expres-

sion of the gene was calculated based on the 2�ΔΔCt method

by applying GAPDH as the internal reference gene.

Statistical analysis

All the bioinformatics analyses in the present study were

conducted with the R software package. The expression

heatmap of vital genes in CAD patients and the healthy

controls was constructed using the PHEATMAP package. To

compare the expression differences of vital genes between

CAD patients and the healthy controls, the rank-sum test

1816 FEBS Open Bio 12 (2022) 1814–1827 � 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

CAD diagnostic markers Z. Bai et al.

http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23561
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113079


was performed with the R language GGPUBR package.

P < 0.05 was considered statistically significant.

Results

Screening for DEGs of CAD

By employing the LIMMA package to analyze the differ-

ential expression of the GSE113079 data set, 480

DEGs were overall obtained (i.e. 220 up-regulated

genes and 260 down-regulated genes) (Table S2). The

volcano plot presents the DEGs screened by threshold

(P < 0.05 and ¦log2FC¦ ≥ 1.0) (Fig. 1A). Figure 1B

illustrates the expression of the top 25 up- and the top

25 down-regulated genes ranked by P value and

log2FC value in the respective sample.

Screening of highly relevant critical modules in

CAD

To explore the vital modules most relevant to the

onset of CAD, WGCNA was performed on samples

in the GSE113079 data set. No outliers were

detected in the clusters, and so a hierarchical cluster

tree was constructed with 93 CAD samples and 48

normal samples (Fig. S1A,B). Next, a power of

β = 6 was selected as the soft threshold to ensure

that intergenic interactions maximally conformed to

the scale-free network (Fig. 2A). As a result, the

dynamic shearing tree algorithm was adopted to seg-

ment into nine modules, and three modules were

finally obtained after merging similar modules (Fig. 2

B). Subsequently, WGCNA was exploited to corre-

late the respective module with all available clinical

information in the GSE113079 data set by calculat-

ing CAD feature correlations for each module. After

all modules were screened for significant correlations

with CAD progression, the MEyellow module was

reported with the maximal correlation coefficient

among all selected modules (correlation = −0.77,
P < 0.01) (Fig. 2C). As revealed from the correlation

analysis between module genes and CAD traits, the

correlation coefficient between the MEyellow genes

and module traits reached 0.83 (P < 0.05). In total,

Fig. 1. (A) Volcano plot of differentially expressed genes (dots in green and red represent genes with significant differential expression; dots

in red indicate that their gene expression was up-regulated in the CAD samples and dots in green indicate that the gene was down-

regulated in the CAD samples). (B) Differentially expressed gene heatmap (the top 25 up- and the top 25 down-regulated genes) (each small

square indicates a gene, with red indicating up-regulated and blue indicating down-regulated).

Table 1. Primer sequences.

Genes Forward Reverse

ERCC5 GCCTGGAACCTCTCCTAAAA CGAAATACCGCTGACAAAAT
RORA CACCTACTCCTGTCCTCGTC AGTCTGCCTTACTCCCCTCA
HES6 TGCTGGAGCTGACGGTGCGG GGGGGGCTGGGTATTGGGGA
GAPDH CCTTCCGTGTTCCTACCCC GCCCAAGATGCCCTTCAGT
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1917 genes in the MEyellow module, of which 207

genes satisfied GS > 0.2 and MM > 0.8, served as

the vital module genes for subsequent analysis

(Fig. 2D).

Screening of vital genes for CAD

We intersected the differentially expressed genes

between CAD and control with the CAD-correlated

vital module genes obtained by WGCNA. Then, 26

genes in total were termed vital genes for CAD

(Fig. 3A).

Figure 3B demonstrates the expression of vital genes

in CAD patients and healthy controls. By using the

rank sum test, the significant differences of vital genes

between CAD patients and healthy controls were

compared and presented using box plots (P < 0.0001)

(Fig. 3C).

Screening for CAD diagnostic markers

To further select the optimal candidate diagnostic genes

with significant eigenvalues distinguishing CAD patients

from normal patients, we used the LASSO algorithm to

identify 11 genes (Fig. 4A) and the SVM-RFE algo-

rithm to identify 10 genes (Fig. 4B,C). After the inter-

section of the genes selected by LASSO and SVM-RFE

algorithms, eight genes (CCNDBP1, CDC42SE1,

ERCC5, HES6, PCSK1N, PTGDS, RAB2A and

RORA) were identified by the mentioned two algorithms

simultaneously (Fig. 4D) and were regarded as the opti-

mal candidate features for classification CAD diagnosis.

Fig. 2. CAD highly relevant critical modules. (A) Soft threshold screening [the longitudinal axis of the left figure is scale-freefitindex (i.e. sign-

edR2) and the square of the correlation coefficient, indicating how close the network is to the scale-free distribution; the longitudinal axis of

the right figure represents all gene adjacency functions in the corresponding gene module]. (B) Merge plots of modules. (C) Heat map of

modules versus traits. (D) Correlation analysis between module genes and traits.
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Fig. 3. Vital genes for CAD. (A) Module

key gene screen (blue represents genes

differentially expressed between

CAD/control and green represents

WGCNA acquisition of CAD vital module

genes). (B) Heat map of expression

patterns of module vital genes between

CAD patients and controls. (C) Box plots

of key gene expression of modules (blue

represents control samples and red

represents CAD samples). *P < 0.0001.
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Evaluation and validation of diagnostic value of

optimal candidate features

To determine which candidate features are diagnostic

for CAD patients, ROC analysis was conducted to

investigate the sensitivity and specificity of the men-

tioned genes for CAD diagnosis. As revealed from the

results, the mentioned eight candidate features may

have optimal diagnostic value with respect to distin-

guishing CAD patients from healthy people:

CCNDBP1 (AUC = 0.854), CDC42SE1 (AUC =
0.886), ERCC5 (AUC = 0.893), HES6 (AUC =
0.984), PCSK1N (AUC = 0.918), PTGDS (AUC =
0.978), RAB2A (AUC = 0.838) and RORA (AUC =
0.936) (Fig. 5).

Furthermore, the mentioned candidate diagnostic

features in the validation set (GSE23561 data set)

were validated. As a result, the AUCs of the men-

tioned eight candidate diagnostic genes consisted of

CCNDBP1 (AUC = 0.769), CDC42SE1 (AUC =
0.648), ERCC5 (AUC = 0.935), HES6 (AUC =
0.87), PCSK1N (AUC = 0.481), PTGDS (AUC =
0.713), RAB2A (AUC = 0.796) and RORA (AUC =
0.926) (Fig. 6). On the whole, as suggested from the

mentioned results, the expression of diagnostic

markers ERCC5, HES6 and RORA (AUC > 0.8) is

correlated with the progression of CAD and they

may be used as biomarkers to assess the pathogene-

sis of CAD and validate the effectiveness of CAD

treatment.

Fig. 4. Diagnostic markers of CAD. (A) LASSO regression analysis was conducted to screen the characteristic genes [abscissa deviance

indicates the proportion of residual error explained by the model, indicating the correlation between the number of characteristic genes and

the proportion of residual error explained (dev), ordinate is the coefficient of the gene (left); abscissa is log (λ), ordinate represents the error

of cross-validation (right)]. (B, C) SVM feature number with error rate and precision rate. (D) The intersection of LASSO feature genes with

SVM feature genes.
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Functional enrichment analysis of diagnostic

genes

Through gene set enrichment analysis, we found a

complete list of gene sets enriched in samples with

ERCC5 (Fig. 7A, B), HES6 (Fig. 7C,D) and RORA

(Fig. 7E, F) expression. We then selected the set of

genes correlated with immunity from the complete list

for further analysis. Humoral immune response was

Fig. 5. ROC curve validation of candidate diagnostic genes (AUC refers to the surface area under the ROC curve). (A) CCNDBP1, (B)

CDC42SE1, (C) ERCC5, (D) HES6, (E) PCSK1N, (F) PTGDS, (G) RAB2A and (H) RORA.

Fig. 6. ROC curve validation of candidate diagnostic genes in validation set GSE23561. (A) CCNDBP1, (B) CDC42SE1, (C) ERCC5, (D) HES6,

(E) PCSK1N, (F) PTGDS, (G) RAB2A and (H) RORA.
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significantly enriched in ERCC5 low expression sam-

ples, whereas three gene sets were significantly enriched

in ERCC5 high expression samples, including regula-

tion of immune response, positive regulation of

immune response and immune response-regulating

signaling pathway (Fig. 8A). In addition, immune

effect or process was significantly enriched in samples

with high HES6 or RORA expression, whereas regula-

tion of immune system process was significantly

enriched in samples with low HES6 or RORA

Fig. 7. Functional enrichment of diagnostic genes. (A, B) Single-gene GSEA of ERCC5 enriched for Gene Ontology-Biological Process (GO-

BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results. (C, D) Single-gene GSEA of HES6 enriched for GO-BP and KEGG

results. (E, F) Single-gene GSEA enrichment of GO-BP and KEGG results for RORA.

1822 FEBS Open Bio 12 (2022) 1814–1827 � 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

CAD diagnostic markers Z. Bai et al.



expression (Fig. 8B, C). Furthermore, we analyzed the

correlations among immune-correlated pathways and

three diagnostic genes. The results suggested that

ERCC5 and RORA were significantly positively corre-

lated with regulation of immune response, positive reg-

ulation of immune response, immune response-

regulating signaling pathway, immune effector process,

immune system development and regulation of

immune system process, but negatively correlated with

humoral immune response, whereas HES6 demon-

strated the opposite (Fig. 9).

Expression and validation of diagnostic genes

The expression of diagnostic genes (i.e. ERCC5,

HES6 and RORA) in CAD and normal samples was

found in the GEO data set. As revealed from the

results, the expression of ERCC5 and RORA was

significantly down-regulated in CAD compared to

those of the control (Fig. 10A, C), whereas HES6

expression was up-regulated in the CAD samples

(Fig. 10B). The above results complied with the

detected results of clinical blood samples, such that

the expression of ERCC5 and RORA was signifi-

cantly down-regulated in CAD patients compared to

those of the normal group in blood samples (Fig. 10

D,F), whereas HES6 expression was up-regulated

(Fig. 10E). These results suggested that the diagnos-

tic markers (i.e. ERCC5, HES6 and RORA) are cor-

related with the progression of CAD and may serve

as the biomarkers for the effectiveness of CAD

treatment.

Fig. 8. Immune-correlated pathways of diagnostic genes. (A) Immune-correlated pathways of single-gene GSEA of ERCC5. (B) Immune-

correlated pathways by single-gene GSEA of HES6. (C) Immune-correlated pathways of single-gene GSEA for RORA.

Fig. 9. Correlations analysis among immune-related pathways and three diagnostic genes. (A) Bubble plot. (B) Heatmap. Blue indicates posi-

tive correlations and red represents negative correlations; a larger circle size reflects a smaller P value, **P < 0.01.
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Discussion

The main cause of CAD has been reported as

atherosclerosis, a multifactorial disease characterized

by intimal injury [15]. The identification of early

biomarkers of CAD is part of risk prediction. Accord-

ingly, molecular markers and the underlying molecular

mechanisms of CAD development should be investi-

gated in depth for the diagnosis and early treatment of

CAD.

We first analyzed DEGs in peripheral blood of

CAD patients and controls, taking an intersection with

genes selected in WGCNA, and 26 vital genes were

screened. Through the LASSO and SVM-RFE algo-

rithms, eight candidate genes were selected to explore

their diagnostic value as CAD biomarkers. According

to the data of this study, ERCC5, HES6 and RORA

(AUC > 0.8) can serve as novel biomarkers for the

diagnosis of CAD.

The mentioned diagnostic markers were reported to

be correlated with the development of various human

diseases. ERCC5, pertaining to the FEN1/XPG

endonuclease family, is ectopically expressed in gastric

cancer, breast cancer, scaly cell carcinoma and liver

cancer [16]. ERCC5 single nucleotide polymorphisms

are capable of affecting DNA repair capacity and thus

interfering with cancer susceptibility [17]. An up-

regulated expression of HES6, a helix–loop–helix tran-

scriptional repressor, could significantly increase the

invasive phenotype and decrease survival in prostate

cancer and glioma [18,19]. HES6 was found to be up-

regulated only at the transcriptional level in a xeno-

graft model of metastatic colorectal cancer [20]. As

revealed from the single-cell RNA sequencing results,

HES6 could stimulate the metastasis in primary uveal

melanoma [21]. Moreover, HES6 was suggested to

inhibit HES1 function and promote neural stem cell

differentiation by binding to HES1 [22]. It is notewor-

thy that RORA is expressed in numerous brain tissues

(e.g. the cerebellum, pineal gland and hippocampus)

and it was demonstrated to be correlated with autism

and cerebral ataxia [23]. Furthermore, RORA activa-

tion increased the secretion of miR-122 to plasma in

the liver, thereby up-regulating miR-122 levels in distal

tissues (e.g. muscle and myocardium) [24]. However,

to the best of our knowledge, we report initially that

ERCC5, HES6 and RORA can serve as diagnostic

markers for CAD.

To examine the effect exerted by diagnostic markers

in the development of CAD, we investigated the bio-

logical processes involved in ERCC5, HES6 and

RORA. As revealed from the results, ERCC5, HES6

and RORA were correlated with humoral immune

response, the regulation of immune response, positive

Fig. 10. Diagnostic gene expression assays. (A–C) The expression of diagnostic genes between CAD and control samples in the GEO data.

(D–F) Expression of diagnostic genes between clinical CAD and control samples. Error bars indicate the SEM (n = 10). There was statistical

significance in the intergroup rank-sum test, ***P < 0.001, ****P < 0.0001.
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regulation of immune response, immune response-

regulating signaling pathway, immune effect or process

and regulation of immune system process immune-

correlated biological processes. There is increasing evi-

dence that the immune response is correlated with the

pathogenesis of CAD [25–27]. CAD is recognized as a

complex chronic inflammatory process triggered by

cardiovascular risk factors, thereby causing endothelial

dysfunction and inflammatory cell infiltration in the

arterial wall. Moreover, Toll-like receptors are critical

to the pathogenesis of CAD interms of being the

potent inflammatory cytokines [28].

However, some limitations were reported in the pre-

sent study. For example, other vital genes selected in

WGCNA may be excluded and the sample size of

CAD patients (n = 10) for qRT-PCR analysis was

small.

With the assistance of bioinformatics methods, the

present study reported ERCC5, HES6 and RORA as

biomarkers for CAD diagnosis based on WGCNA ini-

tially, in addition to their molecular mechanisms in the

development of CAD. Furthermore, the mentioned

three diagnostic markers were experimentally validated

by performing PCR experiments. These genes and

associated immune pathways may play an important

role in the pathogenesis of CAD. Nevertheless, further

experiments are required to explore the specific mecha-

nism of action. Additionally, it is necessary to perform

further investigations into the drugs interacting with

these genes/gene products, which is of certain clinical

significance for the accurate treatment of CAD in the

future.

Conclusions

In the present study, ERCC5, HES6 and RORA were

identified as the biomarkers distinguishing CAD from

the normal population based on bioinformatics meth-

ods. In addition, their possible regulatory mechanisms

were explored via immune pathways, thereby present-

ing a novel direction for the early diagnosis and treat-

ment of CAD.
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Involvement of monocytes/macrophages as key factors

in the development and progression of cardiovascular

diseases. Biochem J. 2014;458:187–93. https://doi.org/10.
1042/BJ20131501

8 Puranik R, Fox OJ, Sullivan DS, Duflou J, Bao S.

Inflammatory characteristics of premature coronary

artery disease. Int J Cardiol. 2010;145:288–90. https://
doi.org/10.1016/j.ijcard.2009.10.029

9 Muniesa-Vargas A, Theil AF, Ribeiro-Silva C,

Vermeulen W, Lans H. XPG: a multitasking genome

1825FEBS Open Bio 12 (2022) 1814–1827 � 2022 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Z. Bai et al. CAD diagnostic markers



caretaker. Cell Mol Life Sci. 2022;79:166. https://doi.

org/10.1007/s00018-022-04194-5

10 Krossa I, Strub T, Martel A, Nahon-Esteve S, Lassalle

S, Hofman P, et al. Recent advances in understanding

the role of HES6 in cancers. Theranostics.

2022;12:4374–85. https://doi.org/10.7150/thno.72966
11 Meng H, Ruan J, Tian X, Li L, Chen W, Meng F.

High retinoic acid receptor-related orphan receptor a

gene expression in peripheral blood leukocytes may be

related to acute myocardial infarction. J Int Med Res.

2021;49:3000605211019663. https://doi.org/10.1177/

03000605211019663

12 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi

W, et al. Limma powers differential expression analyses

for RNA-sequencing and microarray studies. Nucleic

Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/

gkv007

13 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F,

Sanchez J-C, et al. pROC: an open-source package for

R and S+ to analyze and compare ROC curves. BMC

Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-

2105-12-77

14 Subramanian A, Kuehn H, Gould J, Tamayo P,

Mesirov JP. GSEA-P: a desktop application for gene

set enrichment analysis. Bioinformatics. 2007;23:3251–3.
https://doi.org/10.1093/bioinformatics/btm369

15 Negi S, Anand A. Atherosclerotic coronary heart

disease epidemiology, classification and management.

Cardiovasc Hematol Disord Drug Targets. 2010;10:257–
61. https://doi.org/10.2174/187152910793743832

16 Han C, Huang X, Hua R, Song S, Lyu L, Ta N, et al.

The association between XPG polymorphisms and

cancer susceptibility: evidence from observational

studies. Medicine (Baltimore). 2017;96:e7467. https://

doi.org/10.1097/MD.0000000000007467

17 Lu B, Li J, Gao Q, Yu W, Yang Q, Li X. Laryngeal

cancer risk and common single nucleotide

polymorphisms in nucleotide excision repair pathway

genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5 and

XPA. Gene. 2014;542:64–8. https://doi.org/10.1016/j.
gene.2014.02.043

18 Haapa-Paananen S, Kiviluoto S, Waltari M, Puputti

M, Mpindi JP, Kohonen P, et al. HES6 gene is

selectively overexpressed in glioma and represents an

important transcriptional regulator of glioma

proliferation. Oncogene. 2012;31:1299–310. https://doi.
org/10.1038/onc.2011.316

19 Ramos-Montoya A, Lamb AD, Russell R, Carroll T,

Jurmeister S, Galeano-Dalmau N, et al. HES6 drives a

critical AR transcriptional programme to induce

castration-resistant prostate cancer through activation

of an E2F1-mediated cell cycle network. EMBO Mol

Med. 2014;6:651–61. https://doi.org/10.1002/emmm.

201303581

20 Swearingen ML, Sun D, Bourner M, Weinstein EJ.

Detection of differentially expressed HES-6 gene in

metastatic colon carcinoma by combination of

suppression subtractive hybridization and cDNA library

array. Cancer Lett. 2003;198:229–39. https://doi.org/10.
1016/S0304-3835(03)00313-6

21 Pandiani C, Strub T, Nottet N, Cheli Y, Gambi G,

Bille K, et al. Single-cell RNA sequencing reveals

intratumoral heterogeneity in primary uveal melanomas

and identifies HES6 as a driver of the metastatic

disease. Cell Death Differ. 2021;28:1990–2000. https://
doi.org/10.1038/s41418-020-00730-7

22 Nam SM, Kim YN, Kim JW, Kyeong DS, Lee SH,

Son Y, et al. Hairy and enhancer of split 6 (Hes6)

deficiency in mouse impairs neuroblast differentiation in

dentate gyrus without affecting cell proliferation and

integration into mature neurons. Cell Mol Neurobiol.

2016;36:57–67. https://doi.org/10.1007/s10571-015-0220-
8

23 Guissart C, Latypova X, Rollier P, Khan TN,

Stamberger H, McWalter K, et al. Dual molecular

effects of dominant RORA mutations cause two

variants of syndromic intellectual disability with either

autism or cerebellar ataxia. Am J Hum Genet.

2018;102:744–59.
24 Chai C, Cox B, Yaish D, Gross D, Rosenberg N,

Amblard F, et al. Agonist of RORA attenuates

nonalcoholic fatty liver progression in mice via up-

regulation of microRNA 122. Gastroenterology.

2020;159:999–1014. https://doi.org/10.1053/j.gastro.
2020.05.056

25 Kop WJ, Gottdiener JS. The role of immune system

parameters in the relationship between depression and

coronary artery disease. Psychosom Med. 2005;67:S37–
41. https://doi.org/10.1097/01.psy.0000162256.18710.4a

26 Yang YL, Wu CH, Hsu PF, Chen SC, Huang SS,

Chan WL, et al. Systemic immune-inflammation index

(SII) predicted clinical outcome in patients with

coronary artery disease. Eur J Clin Invest. 2020;50:

e13230. https://doi.org/10.1111/eci.13230

27 Zorc-Pleskovič R, Pleskovič A, Vraspir-Porenta O,
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Fig. S1. (A) Hierarchical cluster trees and (B) heatmap

of clinical traits (branches represent samples and ordi-

nate represents the height of hierarchical clusters. The

branch refers to a red clinical trait representing sample

pertaining to such a trait).

Table S1. Characteristics of CAD patients and normal

individuals.

Table S2. Genes differentially expressed between CAD

and normal samples.
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