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Abstract Deep learning is emerging as a powerful approach for bioimage analysis. Its use in 
cell tracking is limited by the scarcity of annotated data for the training of deep- learning models. 
Moreover, annotation, training, prediction, and proofreading currently lack a unified user inter-
face. We present ELEPHANT, an interactive platform for 3D cell tracking that addresses these 
challenges by taking an incremental approach to deep learning. ELEPHANT provides an interface 
that seamlessly integrates cell track annotation, deep learning, prediction, and proofreading. This 
enables users to implement cycles of incremental learning starting from a few annotated nuclei. 
Successive prediction- validation cycles enrich the training data, leading to rapid improvements in 
tracking performance. We test the software’s performance against state- of- the- art methods and 
track lineages spanning the entire course of leg regeneration in a crustacean over 1 week (504 time-
points). ELEPHANT yields accurate, fully- validated cell lineages with a modest investment in time 
and effort.

Introduction
Recent progress in deep learning has led to significant advances in bioimage analysis (Moen et al., 
2019; Ouyang et al., 2018; Weigert et al., 2018). As deep learning is data- driven, it is adaptable to 
a variety of datasets once an appropriate model architecture is selected and trained with adequate 
data (Moen et al., 2019). In spite of its powerful performance, deep learning remains challenging for 
non- experts to utilize, for three reasons. First, pre- trained models can be inadequate for new tasks 
and the preparation of new training data is laborious. Because the quality and quantity of the training 
data are crucial for the performance of deep learning, users must invest significant time and effort in 
annotation at the start of the project (Moen et al., 2019). Second, an interactive user interface for 
deep learning, especially in the context of cell tracking, is lacking (Kok et al., 2020; Wen et al., 2021). 
Third, deep learning applications are often limited by accessibility to computing power (high- end 
GPU).

We have addressed these challenges by establishing ELEPHANT (Efficient learning using sparse 
human annotations for nuclear tracking), an interactive web- friendly platform for cell tracking, 
which seamlessly integrates manual annotation with deep learning and proofreading of the results. 
ELEPHANT implements two algorithms optimized for incremental deep learning using sparse anno-
tations, one for detecting nuclei in 3D and a second for linking these nuclei across timepoints in 4D 
image datasets. Incremental learning allows models to be trained in a stepwise fashion on a given 
dataset, starting from sparse annotations that are incrementally enriched by human proofreading, 
leading to a rapid increase in performance (Figure 1). ELEPHANT is implemented as an extension of 
Mastodon (https://github.com/mastodon-sc/mastodon; Mastodon Science, 2021), an open- source 
framework for large- scale tracking deployed in Fiji (Schindelin et al., 2012). It implements a client- 
server architecture, in which the server provides a deep learning environment equipped with sufficient 
GPU (Figure 1—figure supplement 1).
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Results and discussion
ELEPHANT employs the tracking- by- detection paradigm (Maška et al., 2014), which involves initially 
the detection of nuclei in 3D and subsequently their linking over successive timepoints to generate 
tracks. In both steps, the nuclei are represented as ellipsoids, using the data model of Mastodon 
(Figure 2A and Figure 4A). We use ellipsoids for annotation because ellipsoids allow rapid and effi-
cient training and prediction, compared with more complex shapes. This is essential for interactive 

Figure 1. Conventional and incremental deep learning workflows for cell tracking. (A) Schematic illustration of a typical deep learning workflow, starting 
with the annotation of imaging data to generate training datasets, training of deep learning models, prediction by deep learning and proofreading. (B) 
Schematic illustration of incremental learning with ELEPHANT. Imaging data are fed into a cycle of annotation, training, prediction, and proofreading 
to generate cell lineages. At each iteration, model parameters are updated and saved. This workflow applies to both detection and linking phases (see 
Figures 2A and 4A).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. ELEPHANT client- server architecture.

Figure supplement 2. Block diagram of ELEPHANT tracking workflow.

Figure 2. ELEPHANT detection workflow. (A) Detection workflow, illustrated with orthogonal views on the CE1 dataset. Top left: The user annotates 
nuclei with ellipsoids in 3D; newly generated annotations are colored in cyan. Top right: The detection model is trained with the labels generated from 
the sparse annotations of nuclei and from the annotation of background (in this case by intensity thresholding); background, nucleus center, nucleus 
periphery and unlabelled voxels are indicated in magenta, blue, green, and black, respectively. Bottom right: The trained model generates voxel- 
wise probability maps for background (magenta), nucleus center (blue), or nucleus periphery (green). Bottom left: The user validates or rejects the 
predictions; predicted nuclei are shown in green, predicted and validated nuclei in cyan. (B) Comparison of the speed of detection and validation of 
nuclei on successive timepoints in the CE1 dataset, by manual annotation (magenta), semi- automated detection without a pre- trained model (orange) 
and semi- automated detection using a pre- trained model (blue) using ELEPHANT.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. 3D U- Net architecture for detection.

Figure supplement 2. Proofreading in detection.

https://doi.org/10.7554/eLife.69380
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deep learning. In the detection phase, voxels are labelled as background, nucleus center or nucleus 
periphery, or left unlabelled (Figure 2A, top right). The nucleus center and nucleus periphery labels 
are generated by the annotation of nuclei, and the background can be annotated either manually or 
by intensity thresholding. Sparse annotations (e.g. of a few nuclei in a single timepoint) are sufficient 
to start training. A U- Net convolutional neural network (U- Net CNN; Cicek et al., 2016; Ronneberger 
et al., 2015, Figure 2—figure supplement 1) is then trained on these labels (ignoring the unlabelled 
voxels) to generate voxel- wise probability maps for background, nucleus center, or nucleus periphery, 
across the entire image dataset (Figure 2A, bottom right). Post- processing on these probability maps 
yields predictions of nuclei which are available for visual inspection and proofreading (validation or 
rejection of each predicted nucleus) by the user (Figure 2A, bottom left). Human- computer interac-
tion is facilitated by color coding of the annotated nuclei as predicted (green), accepted (cyan), or 
rejected (magenta) (see Figure 2—figure supplement 2), based on the proofreading. The cycles of 
training and prediction are rapid because only a small amount of training data are added each time 
(in the order of seconds, see Supplementary file 1). As a result, users can enrich the annotations 
by proofreading the output almost simultaneously, enabling incremental training of the model in an 
efficient manner.

We evaluated the detection performance of ELEPHANT on diverse image datasets capturing the 
embryonic development of Caenorhabditis elegans (CE1), leg regeneration in the crustacean Parhyale 
hawaiensis (PH), human intestinal organoids (ORG1 and ORG2) and human breast carcinoma cells 
(MDA231) by confocal or light sheet microscopy (Figure 3A–E). First, we tested the performance 
of a generic model that had been pre- trained with various annotated image datasets (Figure 3A–E 
top). We then annotated 3–10 additional nuclei or cells on each test dataset (Figure 3A–E middle) 
and re- trained the model. This resulted in greatly improved detection performance (Figure 3A–E), 

Figure 3. ELEPHANT detection with sparse annotations. Detection results obtained using ELEPHANT with sparse annotations on five image datasets 
recording the embryonic development of C. elegans (CE1 dataset, A), leg regeneration in the crustacean P. hawaiensis (PH dataset, B), human intestinal 
organoids (ORG1 and ORG2, C and D), and human breast carcinoma cells (MDA231, E). CE1, PH, ORG2, and MDA231 were captured by confocal 
microscopy; ORG1 was captured by light sheet microscopy. Top: Detection results using models that were pre- trained on diverse annotated datasets, 
excluding the test dataset (see Supplementary file 3). Precision and Recall scores are shown at the bottom of each panel, with the number of true 
positive (TP), false positive (FP), and false negative (FN) predicted nuclei. Middle: Addition of sparse manual annotations for each dataset. n: number 
of sparse annotations. Scale bars: 10 µm. Bottom: Detection results with an updated model that used the sparse annotations to update the pre- trained 
model. Precision, Recall, TP, FP, and FN values are shown as in the top panels.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing detection predictions of ELEPHANT and StarDist3D.

Figure supplement 2. Evaluation of overfitting in detection using ELEPHANT.

https://doi.org/10.7554/eLife.69380
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showing that a very modest amount of addi-
tional training on a given dataset can yield rapid 
improvements in performance. We find that 
sparsely trained ELEPHANT detection models 
have a comparable performance to state- of- 
the- art software (Figure 3—figure supplement 1) 
and fully trained ELEPHANT models outperform 
most tracking software (Table 1).

We also investigated whether training with 
sparse annotations could cause overfitting of 
the data in the detection model, by training 
the detection model using sparse annotations 
in dataset CE1 and calculating the loss values 
using a second, unseen but similar dataset (see 
Materials and methods). The training and vali-
dation learning curves did not show any signs of 
overfitting even after a large amount of training 
(Figure  3—figure supplement 2). The trained 
model could detect nuclei with high precision 
and recall both on partially seen data (CE1) and 
unseen data (CE2). A detection model that has 

been pre- trained with diverse image datasets is available to users as a starting point for tracking on 
new image data (see Materials and methods).

In the linking phase, we found that nearest neighbor approaches for tracking nuclei over time 
(Crocker and Grier, 1996) perform poorly in challenging datasets when the cells are dividing; hence 
we turned to optical flow modeling to improve linking (Amat et al., 2013; Horn and Schunck, 1981; 
Lucas and Kanade, 1981). A second U- Net CNN, optimized for optical flow estimation (Figure 4—
figure supplement 1), is trained on manually generated/validated links between nuclei in successive 
timepoints (Figure 4A, top left). Unlabelled voxels are ignored, hence training can be performed on 
sparse linking annotations. The flow model is used to generate voxel- wise 3D flow maps, representing 
predicted x, y and z displacements over time (Figure 4A, bottom right), which are then combined with 
nearest neighbor linking to predict links between the detected nuclei (see Materials and methods). 
Users proofread the linking results to finalize the tracks and to update the labels for the next iteration 
of training (Figure 4A, bottom left).

We evaluated the linking performance of ELEPHANT using two types of 4D confocal microscopy 
datasets in which nuclei were visualized by fluorescent markers: the first type of dataset captures the 
embryonic development of Caenorhabditis elegans (CE datasets), which has been used in previous 
studies to benchmark tracking methods (Murray et al., 2008; Ulman et al., 2017), and the second 
type captures limb regeneration in Parhyale hawaiensis (PH dataset, imaging adapted from Alwes 
et al., 2016), which presents greater challenges for image analysis (see below, Figure 5—video 1). For 
both types of dataset, we find that fewer than 10 annotated nuclei are sufficient to initiate a virtuous 
cycle of training, prediction, and proofreading, which efficiently yields cell tracks and validated cell 
lineages in highly dynamic tissues. Interactive cycles of manual annotation, deep learning, and proof-
reading on ELEPHANT reduce the time required to detect and validate nuclei (Figure 2B). On the CE1 
dataset, a complete cell lineage was built over 195 timepoints, from scratch, using ELEPHANT’s semi- 
automated workflow (Figure 4B). The detection model was trained incrementally starting from sparse 
annotations (four nuclei) on the first timepoint. On this dataset, linking could be performed using the 
nearest neighbor algorithm (without flow modeling) and manual proofreading. In this way, we were 
able to annotate in less than 8 hr a total of 23,829 nuclei (across 195 timepoints), of which ~ 2% were 
manually annotated (483 nuclei) and the remaining nuclei were collected by validating predictions of 
the deep- learning model.

Although ELEPHANT works efficiently without prior training, cell tracking can be accelerated by 
starting from models trained on image data with similar characteristics. To illustrate this, we used 
nuclear annotations in a separate dataset, CE2, to train a model for detection, which was then applied 
to CE1. This pre- trained model allowed us to detect nuclei in CE1 much more rapidly and effortlessly 

Table 1. Performance of ELEPHANT on the Cell 
Tracking Challenge dataset.
Performance of ELEPHANT compared with two 
state- of- the- art algorithms, using the metrics 
of the Cell Tracking Challenge on unseen CE 
datasets. ELEPHANT outperforms the other 
methods in detection and linking accuracy 
(DET and TRA metrics); it performs less well in 
segmentation accuracy (SEG).

ELEPHANT KTH- SE

KIT- 
Sch- 
GE

(IGFL- FR)

SEG 0.631 0.662 0.729

TRA 0.975 0.945 0.886

DET 0.979 0.959 0.930

https://doi.org/10.7554/eLife.69380
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than with an untrained model (Figure 2B, blue versus orange curves). For benchmarking, the detec-
tion and linkage models trained with the annotations from the CE1 and CE2 lineage trees were then 
tested on unseen datasets with similar characteristics (without proofreading), as part of the Cell 
Tracking Challenge (Maška et al., 2014; Ulman et al., 2017). In this test, our models with assistance 
of flow- based interpolation (see Materials and methods) outperformed state- of- the- art tracking algo-
rithms (Magnusson et al., 2015; Scherr et al., 2020) in detection (DET) and tracking (TRA) metrics 
(Table 1). ELEPHANT performs less well in segmentation (SEG), probably due to the use of ellipsoids 
to approximate nuclear shapes.

The PH dataset presents greater challenges for image analysis, such as larger variations in the 
shape, intensity, and distribution of nuclei, lower temporal resolution, and more noise (Figure 5—
figure supplement 1). ELEPHANT has allowed us to grapple with these issues by supporting the 
continued training of the models through visual feedback from the user (annotation of missed nuclei, 

Figure 4. ELEPHANT linking workflow. (A) Linking workflow, illustrated on the CE1 dataset. Top left: The user annotates links by connecting detected 
nuclei in successive timepoints; annotated/validated nuclei and links are shown in cyan, non- validated ones in green. Top right: The flow model is 
trained with optical flow labels coming from annotated nuclei with links (voxels indicated in the label mask), which consist of displacements in X, Y, 
and Z; greyscale values indicate displacements along a given axis, annotated nuclei with link labels are outlined in red. Bottom right: The trained 
model generates voxel- wise flow maps for each axis; greyscale values indicate displacements, annotated nuclei are outlined in red. Bottom left: The 
user validates or rejects the predictions; predicted links are shown in green, predicted and validated links in cyan. (B) Tracking results obtained with 
ELEPHANT. Left panels: Tracked nuclei in the CE1 and CE2 datasets at timepoints 194 and 189, respectively. Representative optical sections are shown 
with tracked nuclei shown in green; out of focus nuclei are shown as green spots. Right panels: Corresponding lineage trees. (C) Comparison of tracking 
results obtained on the PH dataset, using the nearest neighbor algorithm (NN) with and without optical flow prediction (left panels); linking errors are 
highlighted in red on the correct lineage tree. The panels on the right focus on the nuclear division that is marked by a dashed line rectangle. Without 
optical flow prediction, the dividing nuclei (in magenta) are linked incorrectly.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. 3D U- Net architecture for flow.

Figure 4—video 1. ELEPHANT flow predictions in 3D.

https://elifesciences.org/articles/69380/figures#fig4video1

https://doi.org/10.7554/eLife.69380
https://elifesciences.org/articles/69380/figures#fig4video1
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validation and rejection of predictions). Using ELEPHANT, we annotated and validated over 260,000 
nuclei in this dataset, across 504 timepoints spanning 168 hr of imaging.

We observed that the conventional nearest neighbor approach was inadequate for linking in the 
PH dataset, resulting in many errors in the lineage trees (Figure 4C). This is likely due to the lower 
temporal resolution in this dataset (20 min in PH, versus 1–2 min in CE) and the fact that daughter 
nuclei often show large displacements at the end of mitosis. We trained optical flow using 1,162 vali-
dated links collected from 10 timepoints (including 18 links for 9 cell divisions). These sparse annota-
tions were sufficient to generate 3D optical flow predictions for the entire dataset (Figure 4—video 1), 
which significantly improved the linking performance (Figure 4C, Supplementary file 2): the number 
of false positive and false negative links decreased by ~57% (from 2093 to 905) and ~32% (from 1991 
to 1349), respectively, among a total of 259,071 links.

By applying ELEPHANT’s human- in- the- loop semi- automated workflow, we succeeded in recon-
structing 109 complete and fully validated cell lineage trees encompassing the duration of leg regen-
eration in Parhyale, each lineage spanning a period of ~1 week (504 timepoints, Figure 5—figure 
supplement 2). Using analysis and visualization modules implemented in Mastodon and ELEPHANT, 
we could capture the distribution of cell divisions across time and space (Figure 5A) and produce a fate 
map of the regenerating leg of Parhyale (Figure 5B). This analysis, which would have required several 
months of manual annotation, was achieved in ~1 month of interactive cell tracking in ELEPHANT, 

Figure 5. Cell lineages tracked during the time course of leg regeneration. (A) Spatial and temporal distribution of dividing nuclei in the regenerating 
leg of Parhyale tracked over a 1- week time course (PH dataset), showing that cell proliferation is concentrated at the distal part of the regenerating leg 
stump and peaks after a period of proliferative quiescence, as described in Alwes et al., 2016. Top: Nuclei in lineages that contain at least one division 
are colored in magenta, nuclei in non- dividing lineages are in cyan, and nuclei in which the division status is undetermined are blank (see Materials and 
methods). Bottom: Heat map of the temporal distribution of nuclear divisions; hpa, hours post amputation. The number of divisions per 20- min time 
interval ranges from 0 (purple) to 9 (yellow). (B) Fate map of the regenerating leg of Parhyale, encompassing 109 fully tracked lineage trees (202 cells at 
167 hpa). Each clone is assigned a unique color and contains 1–9 cells at 167 hpa. Partly tracked nuclei are blank. In both panels, the amputation plane 
(distal end of the limb) is located on the left.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Image quality issues in the PH dataset.

Figure supplement 2. Complete cell lineage trees in a regenerating leg of Parhyale.

Figure 5—video 1. Live imaging of Parhyale leg regeneration (PH dataset).

https://elifesciences.org/articles/69380/figures#fig5video1

https://doi.org/10.7554/eLife.69380
https://elifesciences.org/articles/69380/figures#fig5video1
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without prior training. Applying the best performing models to new data could improve tracking 
efficiency even further.

Materials and methods
Image datasets
The PH dataset (dataset li13) was obtained by imaging a regenerating T4 leg of the crustacean 
Parhyale hawaiensis, based on the method described by Alwes et al., 2016; Figure 5—video 1. The 
imaging was carried out on a transgenic animal carrying the Mi(3xP3> DsRed; PhHS> H2B- mRFPRuby) 
construct (Wolff et al., 2018), in which nuclear- localised mRFPRuby fluorescent protein is expressed 
in all cells following heat- shock. The leg was amputated at the distal end of the carpus. Following 
the amputation, continuous live imaging over a period of 1 week was performed on a Zeiss LSM 800 
confocal microscope equipped with a Plan- Apochromat 20 x/0.8 M27 objective (Zeiss 420650- 9901- 
000), in a temperature control chamber set to 26 °C. Heat- shocks (45 minutes at 37 °C) were applied 
24 hr prior to the amputation, and 65 and 138 hr post- amputation. Every 20 min we recorded a stack 
of 11 optical sections, with a z step of 2.48 microns. Voxel size (in xyz) was 0.31 × 0.31 x 2.48 microns.

The CE1 and CE2 datasets (Murray et al., 2008) and the MDA231 dataset were obtained via the 
Cell Tracking Challenge (Ulman et al., 2017) (datasets Fluo- N3DH- CE and Fluo- C3DL- MDA231). The 
ORG1 and ORG2 datasets were obtained from de Medeiros, 2021 and Kok et al., 2020, respectively. 
Additional datasets used to train the generic models (see Supplementary file 3) were obtained from 
the Cell Tracking Challenge (Ulman et al., 2017).

ELEPHANT platform architecture
ELEPHANT implements a client- server architecture (Figure 1—figure supplement 1), which can be 
set up on the same computer or on multiple connected computers. This architecture brings flexibility: 
allowing the client to run Mastodon (implemented in Java) while the deep learning module is imple-
mented separately using Python, and releasing the client computer from the requirements of high 
GPU needed to implement deep learning. The client side is implemented by extending Mastodon, 
a framework for cell tracking built upon the SciJava ecosystem (https://scijava.org/) and is available 
as a Fiji (Schindelin et al., 2012) plugin. Combining the BigDataViewer (Pietzsch et al., 2015) with 
an efficient memory access strategy (https://github.com/mastodon-sc/mastodon/blob/master/doc/ 
trackmate-graph.pdf), Mastodon enables fast and responsive user interaction even for very large 
datasets. ELEPHANT leverages the functionalities provided by Mastodon, including the functions for 
manual annotation of nuclei, and extends them by implementing modules for deep learning- based 
algorithms.

The server side is built using an integrated system of a deep learning library (PyTorch Paszke et al., 
2019), tools for tensor computing and image processing (NumPy Harris et al., 2020), SciPy (Virtanen 
et al., 2020), Scikit Image (van der Walt et al., 2014), and web technologies (Nginx, uWSGI, Flask). 
The client and the server communicate by Hypertext Transfer Protocol (HTTP) and JavaScript Object 
Notation (JSON). To reduce the amount of data exchanged between the client and the server, the 
image data is duplicated and stored in an appropriate format on each side. An in- memory data struc-
ture (Redis) is used to organize the priorities of the HTTP requests sent by the client. A message 
queue (RabbitMQ) is used to notify the client that the model is updated during training. The client 
software is available as an extension on Fiji (https://github.com/elephant-track/elephant-client). The 
server environment is provided as a Docker container to ensure easy and reproducible deployment 
(https://github.com/elephant-track/elephant-server). The server can also be set up with Google Colab 
in case the user does not have access to a computer that satisfies the system requirements.

Computer setup and specifications
In this study, we set up the client and the server on the same desktop computer (Dell Alienware Aurora 
R6) with the following specifications: Intel Core i7- 8700K CPU @3.70 GHz, Ubuntu 18.04, 4 × 16 GB 
DDR4 2,666 MHz RAM, NVIDIA GeForce GTX 1080 Ti 11  GB GDDR5X (used for deep learning), 
NVIDIA GeForce GTX 1650 4 GB GDDR5, 256 GB SSD and 2 TB HDD. System requirements for the 
client and the server are summarized in the user manual (https://elephant-track.github.io/).

https://doi.org/10.7554/eLife.69380
https://scijava.org/
https://github.com/mastodon-sc/mastodon/blob/master/doc/trackmate-graph.pdf
https://github.com/mastodon-sc/mastodon/blob/master/doc/trackmate-graph.pdf
https://github.com/elephant-track/elephant-client
https://github.com/elephant-track/elephant-server
https://elephant-track.github.io/
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Dataset preparation
Images were loaded in the BigDataViewer (BDV, Pietzsch et al., 2015) format on the client software. 
The CE1, CE2, ORG1, ORG2, and MDA231 datasets were converted to the BDV format using the 
BigDataViewer Fiji plugin (https://imagej.net/BigDataViewer) without any preprocessing. Because 
the PH dataset showed non- negligible variations in intensity during long- term imaging, the original 
16- bit images were intensity normalized per timepoint before conversion to the BDV format, for 
better visualization on Mastodon. In this normalization, the intensity values were re- scaled so that the 
minimum and maximum values at each timepoint become 0 and 65535, respectively. The PH dataset 
also showed 3D drifts due to heat- shocks. The xy drifts were corrected using an extended version 
of image alignment tool (Tseng et al., 2011) working as an ImageJ (Schneider et al., 2012) plugin, 
where the maximum intensity projection images were used to estimate the xy displacements, subse-
quently applied to the whole image stack (https://github.com/elephant-track/align-slices3d). The z 
drifts were corrected manually by visual inspection using Fiji.

On the server, images, annotation labels and outputs were stored in the Zarr format, allowing fast 
read/write access to subsets of image data using chunk arrays (Moore et al., 2021). At the beginning 
of the analysis, these data were prepared using a custom Python script that converts the original 
image data from HDF5 to Zarr and creates empty Zarr files for storing annotation labels and outputs 
(https://github.com/elephant-track/elephant-server). This conversion can also be performed from the 
client application. Generally, HDF5 is slower in writing data than Zarr, especially in parallelization, 
while they show comparable reading speeds (Moore et al., 2021).

On the server, the image data are stored in unsigned 8- bit or unsigned 16- bit format, keeping the 
original image format. At the beginning of processing on the server, the image data are automatically 
converted to a 32- bit float and their intensity is normalized at each timepoint such that the minimum 
and maximum values become 0 and 1.

Algorithm for detection
Detection of nuclei relies on three components: (i) a U- Net CNN that outputs probability maps for 
nucleus center, nucleus periphery, and background, (ii) a post- processing workflow that extracts 
nucleus center voxels from the probability maps, (iii) a module that reconstructs nuclei instances as 
ellipsoids. We designed a variation of 3D U- Net (Cicek et al., 2016) as illustrated in Figure 2—figure 
supplement 1. In both encoder and decoder paths, repeated sets of 3D convolution, ReLU activation 
(Nair and Hinton, 2010) and Group Normalization (Wu and He, 2020) are employed. Max pooling 
in 3D is used for successive downsampling in the encoder path, in each step reducing the size to half 
the input size (in case of anisotropy, maintaining the z dimension until the image becomes nearly 
isotropic). Conversely, in the decoder path, upsampling with nearest- neighbor interpolation is applied 
to make the dimensions the same as in the corresponding intermediate layers in the encoder path. 
As a result, we built a CNN with 5,887,011 trainable parameters. The weights are initialized with the 
Kaiming fan- in algorithm (He et al., 2015a) and the biases are initialized to zero for each convolution 
layer. For each group normalization layer, the number of groups is set as the smallest value between 
32 and the number of output channels, and the weights and biases are respectively initialized to one 
and zero. When starting to train from scratch, the CNN is trained using the cropped out 3D volumes 
from the original image prior to training with annotations. In this prior training phase, a loss function 

 Lprior  is used that penalizes the addition of the following two mean absolute differences (MADs): (i) 
nucleus center probabilities ci and the [0, 1] normalized intensity of the original image yi, (ii) back-
ground probabilities bi and the [0, 1] normalized intensity of the intensity- inverted image  1 − yi  where 
i stands for the voxel index of an input volume with  n  voxels  i ∈ V :=

{
1, 2, . . . , n

}
 .

 Lprior = 1
n
∑n

i=1|yi − ci| + 1
n
∑n

i=1|
(
1 − yi

)
− bi|  

The prior training is performed on three cropped out 3D volumes generated from the 4D datasets, 
where the timepoints are randomly picked, and the volumes are randomly cropped with random 
scaling in the range (0.8, 1.2). The training is iterated for three epochs with decreasing learning rates 
(0.01, 0.001, and 0.0001, in this order) with the Adam optimizer (Kingma and Ba, 2014). The prior 
training can be completed in ~20 s for each dataset.

Training with sparse annotations is performed in the following steps. First, the client application 
extracts the timepoint, 3D coordinates and covariances representing ellipsoids of all the annotated 

https://doi.org/10.7554/eLife.69380
https://imagej.net/BigDataViewer
https://github.com/elephant-track/align-slices3d
https://github.com/elephant-track/elephant-server
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nuclei in the specified time range. Subsequently, these data, combined with user- specified parameters 
for training, are embedded in JSON and sent to the server in an HTTP request. On the server side, 
training labels are generated from the received information by rendering nucleus center, nucleus 
periphery, background and unlabelled voxels with distinct values. The background labels are gener-
ated either by explicit manual annotation or intensity thresholding, where the threshold value is 
specified by the user, resulting in the label images as shown in Figure 2A. To render ellipsoids in 
the anisotropic dimension, we extended the draw module in the scikit- image library (van der Walt 
et al., 2014) (https://github.com/elephant-track/elephant-server). Training of the CNN is performed 
using the image volumes as input and the generated labels as target with a loss function  Lvclass  that 
consists of three terms: (i) a class- weighted negative log- likelihood (NLL) loss, (ii) a term computed 
as one minus the dice coefficient for the nucleus center voxels, and (iii) a term that penalizes the 
roughness of the nucleus center areas. We used the empirically- defined class weights  wc  for the NLL 
loss:  nucleus center = 10 ,  nucleus periphery = 10 ,  background = 1 ; the unlabelled voxels are ignored. The 
first two terms accept different weights for the true annotations  wt  (i.e. true positive and true nega-
tive) and the false annotations  wf   (i.e. false positive and false negative). The third term is defined as 
the MAD between the voxel- wise probabilities for nucleus center and its smoothed representations, 
which are calculated by the Gaussian filter with downsampling ( Down ) and upsampling ( Up ). Let i stand 
for the voxel index of an input volume with  n  voxels  i ∈ V :=

{
1, 2, ..., n

}
 , xi for the input voxel value, 

 hi  for the output from the CNN before the last activation layer for the three classes,  yi ∈ Y :=
{

1, 2, 3
}
  

for the voxel class label (1: nucleus center, 2: nucleus periphery, 3: background, respectively), and 

 zi ∈ Z := { true, false, unlabeled }  for the voxel annotation label. We define the following subsets: the 
voxel index with true labels  T = { i | i ∈ V, zi = true } , with false labels  F = { i | i ∈ V, zi = false } , and the 
nucleus center  C = { i | i ∈ V, yi = 1 } . In the calculation of the  Ldice , a constant  ϵ = 0.000001  is used to 
prevent zero division. Using these components and the empirically- defined weights for each loss term 
( α = 1,β = 5, γ = 1 ), we defined the  Lvclass  as below.

 Lvclass = αLnll + βLdice + γLsmooth  

 
Lnll = wt

∑
i∈T

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈T wc[yi] + wf
∑

i∈F
(

NLL
(

hi,yi
)
·wc[yi]

)
∑

i∈F wc[yi]   

 

Ldice = wt

(
1 − 2

∑
i∈T(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈T

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

+wf

(
1 − 2

∑
i∈F(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈F

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

  

 Lsmooth = 1
n
∑

i∈V|Prob
(
hi, 1

)
− Up

(
Down

(
Prob

(
hi, 1

)))
|  

 
Prob

(
h, c

)
= exp

(
h[c]

)
∑3

j=1 exp
(

h[j]
)
  

 NLL
(
h, y

)
= − log

(
Prob

(
h, y

))
  

 

Onehot
(
yi, c

)
=





0
(
yi ̸= c

)

1
(
yi = c

)
  

In the analyses shown in Figure  3 and its supplements 1 and 2, the following loss functions are 
updated to make them more robust using normalization, which are employed in the current version 
of software.

 Lvclass = αLnll+βLdice+γLsmooth
α+β+γ   

 
Lnll = n

(
T
)

wt
n
(

T
)

wt+n
(

F
)

wf

∑
i∈T

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈T wc[yi] + n
(

F
)

wf
n
(

T
)

wt+n
(

F
)

wf

∑
i∈F

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈F wc[yi]   

 

Ldice = n
(

T
)

wt
n
(

T
)

wt+n
(

F
)

wf

(
1 − 2

∑
i∈T(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈T

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

+ n
(

F
)

wf
n
(

T
)

wt+n
(

F
)

wf

(
1 − 2

∑
i∈F(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈F

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)
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Training of the CNN is performed on the image volumes generated from the 4D datasets, where 
the volumes are randomly cropped with/without random scaling, random contrast, random flip and 
random rotation, which are specified at runtime. There are two modes for training: (i) an interactive 
mode that trains a model incrementally, as the annotations are updated, and (ii) a batch mode that 
trains a model with a fixed set of annotations. In the interactive training mode, sparse annotations 
in a given timepoint are used to generate crops of image and label volumes, with which training is 
performed using the Adam optimizer with a learning rate specified by the user. In the batch training 
mode, a set of crops of image and label volumes per timepoint is generated each iteration, with which 
training is performed for a number of epochs specified by the user (ranging from 1 to 1000) using the 
Adam optimizer with the specified learning rates. In the prediction phase, the input volume can be 
cropped into several blocks with smaller size than the original size to make the volume can be cropped 
into several blocks with smaller size than the original size to make the input data compatible with 
available GPU memory. To stitch the output blocks together, the overlapping regions are seamlessly 
blended by weighted linear blending.

In post- processing for the CNN output, voxel- wise probabilities for nucleus center class are denoised 
by subtracting edges of background class that are calculated with the Gaussian filter and the Prewitt 
operation for each z- slice. After denoising, the voxels with nucleus center probabilities greater than 
a user defined value are thresholded and extracted as connected components, which are then repre-
sented as ellipsoids (from their central moments). These ellipsoids representing the nucleus center 
regions are enlarged so that they cover the original nucleus size (without excluding its periphery). The 
ellipsoids with radii smaller than  rmin  are removed and the radii are clamped to  rmax  specified by the 
user, generating a list of center positions and covariances that can be used to reconstruct the nuclei. 
On the client application, the detection results are converted to Mastodon spots and rendered on 
the BDV view, where the existing and predicted nuclei are tagged based on their status: labelled as 
‘true positive’ (positive and predicted), ‘false negative’ (positive and not predicted), ‘true negative’ 
(negative and not predicted), ‘false positive’ (negative and predicted), and ‘non- validated’ (newly 
predicted). These labels can be visualized when running ELEPHANT in the advanced color mode (in 
basic color mode true positives and false negatives are visualized as ‘accepted’ and false positives and 
true negatives as ‘rejected’). If more than one nucleus is predicted within a user- specified threshold 

 dsup , the one with human annotation is given priority, followed by the one with the largest volume.

Algorithm for linking
Linking of nuclei relies on two components: (i) estimation of the positions of nuclei at the previous 
timepoint by optical flow estimation using deep learning, which is skipped in the case of the nearest 
neighbor algorithm without flow support, (ii) association of nuclei based on the nearest neighbor 
algorithm. We designed a variation of 3D U- Net for flow estimation as illustrated in Figure 4—figure 
supplement 1. In the encoder path, the residual blocks (He et al., 2015b) with 3D convolution and 
LeakyReLU (Maas et al., 2013) activation are applied, in which the outputs are divided by two after 
the sum operation to keep the consistency of the scale of values. In the decoder path, repeated sets of 
3D convolution and LeakyReLU activation are employed. Downsampling and upsampling are applied 
as described for the detection model. Tanh activation is used as a final activation layer. As a result, we 
built a CNN with 5,928,051 trainable parameters. The weights and biases for convolution layers are 
initialized as described for the detection model. Training of the flow model with sparse annotations is 
performed in a similar way as for the detection model. First, on the client application, for each anno-
tated link, which connects the source and target nuclei, the following information gets extracted: the 
timepoint, the backward displacements in each of the three dimensions, and the properties of the 
target nucleus (3D coordinates and covariances). Subsequently, these data, combined with parame-
ters for training, are embedded in JSON and sent to the server in an HTTP request. On the server side, 
flow labels are generated from the received information by rendering backward displacements for 
each target nucleus in each of three dimensions, where the displacements are scaled to fit the range 
(–1, 1). In this study, we used fixed scaling factors (1/80, 1/80, 1/10) for each dimension, but they can 
be customized to the target dataset. Foreground masks are generated at the same time to ignore 
unlabelled voxels during loss calculation. Ellipsoid rendering is performed as described for the detec-
tion training. Training of the CNN for flow estimation is performed using the two consecutive image 
volumes  

(
It−1, It

)
  as input, and the generated label as target. A loss function  Lflow  is defined with the 

https://doi.org/10.7554/eLife.69380
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following three terms; (i) a dimension- weighted MAD between the CNN outputs and the flow labels, 
(ii) a term computed as one minus the structural similarity (SSIM) (Wang et al., 2004) of  It−1  and  ̃It , 
where the estimated flow is applied to  It  (Ilg et al., 2017), (iii) a term penalizing the roughness of the 
CNN outputs. Let i stand for the voxel index of an input volume with  n  voxels  i ∈ V := {1, 2, . . . , n} , xi 
for the input voxel value,  ̂y  for the output of the CNN,  y  for the flow label,  m ∈ M ⊂ V   for the index 
of the annotated voxels,  d ∈ D := {0, 1, 2}  for the dimension index for three dimensions and  wd  for the 
dimension weights. In the SSIM calculation, we defined a function  Gauss  as a 3D Gaussian filter with 
the window size 7 × 7 x 3 and standard deviation of 1.5. Using these components and the empirically 
defined weights for each loss term  

(
α = 1,β = 0.0001, γ = 0.0001

)
 , we defined the  Lflow  as below.

 Lflow = αLmad + βLssim + γLsmooth  

 Lmad = 1
n
∑

d∈D wdd
∑

m∈M|ymd − ŷmd|  

 
Lssim = 1 − SSIM

(
It−1, Ît

)
  

 Lsmooth = 1
3n

∑
i∈V

∑
d∈D|ŷid − Up

(
Down

(
ŷid

))
|  

 µI1 = Gauss
(
I1
)

,µI2 = Gauss
(
I2
)
  

 
σ2

I1 = Gauss
(

I2
1

)
− µ2

I1 ,σ2
I2 = Gauss

(
I2
2

)
− µ2

I2 ,σI1I2 = Gauss
(
I1I2

)
− µI1µI2  

 
SSIM

(
I1, I2

)
=

(
2µI1µI2 +C1

)(
2σI1 I2 +C2

)
(
µ2

I1
+µ2

I2
+C1

)(
σ2

I1
+σ2

I2
+C2

)
  

, where  C1 = 0.0001  and  C2 = 0.0009 . In the current version of software, the following loss functions are 
updated to make them more robust using normalization.

 Lflow = αLmad+βLssim+γLsmooth
α+β+γ

(
α = 1,β = 0.01, γ = 0.01

)
  

 
Lmod = 1

n
(

M
) ∑

d∈D
wdd∑

d∈D wdd

∑
m∈M|ymd − ŷmd|  

The training is performed on the image volumes generated from the 4D datasets, where the sets of 
two consecutive images and corresponding flow labels are randomly cropped with/without random 
scaling and random rotation, which are specified at runtime. The training is performed for a fixed 
number of epochs using the Adam optimizer and with learning rates specified by the user, generating 
a set of images and labels for each timepoint in each epoch. The CNN outputs are rescaled to the 
original physical scale and used to calculate the estimated coordinate of each nucleus center at the 
previous timepoint. Let  K ⊂ V   stands for a subset of voxel index of a nucleus and  p  for its center 
coordinate. Using the output of the CNN  ̂y  and the scaling factor  s , the estimated coordinate at the 
previous timepoint  ̂p  is calculated.

 
p̂ = p + s

n
(

K
) ∑

k∈K ŷk  

These estimated coordinates are subsequently used to find the parent of the nucleus at the previous 
timepoint by the nearest neighbor algorithm (a similar concept was introduced for 2D phase contrast 
microscopy data; Hayashida and Bise, 2019; Hayashida et  al., 2020). The pairs with a distance 
smaller than  dsearch  are considered as link candidates, where the closer the Euclidean distance between 
the two points, the higher their priority of being the correct link. Each nucleus accepts either one or 
two links, determined by the estimated displacements and actual distances. Briefly, given that a single 
nucleus has two possible links, it can accept both if at least one of the estimated displacements is 
larger than the threshold  ddisp  or both distances are smaller than the threshold  ddist . In this study, we 
used ad hoc thresholds  ddisp = 1.0  and  ddist = 1.0 . If there are competing links beyond the allowed 
maximum of two links, the links with smaller  ddisp  are adopted and the remaining nucleus looks for the 
next closest nucleus up to  Nmax  neighbors. The links are generated by repeating the above procedure 
until all the nuclei get linked or the iteration count reaches to five. We optionally implement an inter-
polation algorithm, in which each orphan nucleus tries to find its source up to  Tmax  timepoints back 
and is linked with a nucleus at the estimated coordinate based on the flow prediction, interpolating 
the points in between.

https://doi.org/10.7554/eLife.69380
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Preparation of generic pre-trained models and fine-tuning with sparse 
annotations (Figure 3)
The generic pre- trained models for each dataset were trained on the datasets summarized in Supple-
mentary file 3. Training of the detection models was performed with volumes of 384 × 384 x 16 
voxels or smaller, which were generated by preprocessing with random flip in each dimension, random 
scaling in the range (0.5, 2), random cropping and random contrast in the range (0.5, 1). In the label 
generation step, the center ratio was set to 0.4 and the background threshold was set to 1 (i.e. all 
voxels without manual annotations are background) for the Cell Tracking Challenge datasets (Fluo- 
C3DH- A549, Fluo- C3DH- H157, Fluo- C3DL- MDA231, Fluo- N3DH- CE and Fluo- N3DH- CHO), and 
to 0.03 for the PH dataset. The labels for the Cell Tracking Challenge datasets were automatically 
generated from the silver- standard corpus (silver truth). We trained the models for up to 200 epochs 
starting from scratch using the Adam optimizer with the learning rate of 5 × 10–3, where each epoch 
contained randomly selected 10 pre- processed volumes from each dataset. Validation was performed 
after each epoch using randomly selected five timepoints from each dataset. In the validation phase, 
image volumes were fed into the model using blocks with size 512 × 512 x 24 or smaller, and the 
outputs were stitched together to reconstruct the whole volume. For each condition, the model with 
the highest score in the validation data was finally adopted. At the start of each epoch, the model 
parameters were set to the ones that had previously produced the highest scores on the validation 
data. The parameters for training and validation are summarized in Supplementary file 5. Fine- tuning 
of the model was performed as follows: (i) 3–10 sparse annotations were added at the points where 
the pre- trained model failed in detection (Figure 3 middle), (ii) we trained the models for 10 epochs 
starting from the pre- trained model parameters with volumes of 384 × 384 x 16 voxels or smaller. 
These volumes were generated by preprocessing with random flip in each dimension, random scaling 
in the range (0.5, 2), random cropping and random contrast in the range (0.5, 1), using the Adam 
optimizer with the learning rate of 0.01 or 0.001, where each epoch contained five randomly cropped 
volumes. The pre- trained model and the fine- tuned model were applied to each dataset with parame-
ters summarized in Supplementary file 6. The evaluation scores were calculated based on the detec-
tion criterion of ELEPHANT, which recognizes that a prediction is correct if the distance between the 
prediction and the manual annotation is less than  dsup .

Comparison between ELEPHANT and StarDist3D (Figure 3 – 
Supplement 1)
The ELEPHANT detection model is the same as the one used in Figure 3—figure supplement 2. For 
training of the StarDist3D (Weigert et al., 2020) segmentation model, a single volume of the CE1 
dataset (timepoint = 100) with the fully labelled instance segmentation annotations (93 nuclei) was 
used for training, and another volume of the CE1 dataset (timepoint = 101) with the fully labelled 
instance segmentation annotations (95 nuclei) was used for validation during training. The instance 
segmentation annotations were taken from the silver- standard corpus (silver truth) in the Cell Tracking 
Challenge. Training of the StarDist3D model was performed with the parameters summarized in 
Supplementary file 4. The model with the best performance in the validation data was selected for 
comparison. The trained ELEPHANT and StarDist3D models were applied to a single volume (time-
point = 100) of the CE2 dataset to generate the output for comparison (Figure 3—figure supplement 
1). The DET scores were calculated by the evaluation software provided by the Cell Tracking Chal-
lenge using the gold- standard corpus (gold truth).

Evaluation of overfitting of the detection model (Figure 3 – 
Supplement 2)
A single volume of the CE1 dataset (timepoint = 100) with sparse annotations (10 nuclei) was used 
for training, and a single volume of the fully labelled CE2 dataset (timepoint = 100) was used for 
validation. Training of the detection model was performed using 384 × 384 x 16 cropped- out image 
volumes generated by preprocessing with random flip in each dimension, random scaling in the range 
(0.5, 2), random cropping and random contrast in the range (0.5, 1). In the label generation step, the 
center ratio was set to 0.4 and the background threshold was set to 0 (i.e. all voxels without manual 
annotations are ignored). We trained a model for 500 epochs starting from scratch using the Adam 
optimizer with the learning rate of 5 × 10–4, where each epoch contained five pre- processed volumes. 

https://doi.org/10.7554/eLife.69380
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Training and validation losses were recorded at the end of each epoch (Figure 3—figure supplement 
2, bottom left). The detection model trained for 500 epochs was tested on the CE1 dataset (partially- 
seen data; Figure 3—figure supplement 2, top right) and the CE2 dataset (unseen data; Figure 3—
figure supplement 2, bottom right). In the prediction phase, the input volumes were cropped into 
2 × 2 x 2 blocks with size 544 × 384 x 28 for CE1 or 544 × 384 x 24 for CE2, and stitched together 
to reconstruct the whole image of 708 × 512 x 35 for CE1 or 712 × 512 x 31 for CE2. In the postpro-
cessing of the prediction for detection, a threshold for the nucleus center probabilities were set to 0.5, 
and  rmin ,  rmax  and  dsup  were set to 0.5 µm, 3 µm, and 2 µm respectively. The evaluation scores were 
calculated in the same way as described in the previous section.

Detection and tracking in the CE datasets (Figures 2 and 4)
On the CE1 and CE2 datasets, training of detection and flow models was performed with volumes of 
384 × 384 x 16 voxels that were generated by preprocessing with random scaling in the range (0.5, 
2) and random cropping. For training of a detection model, preprocessing with random contrast in 
the range (0.5, 1) was also applied. In the label generation step, the center ratio was set to 0.3 and 
the background threshold was set to 0.1 and 1 (i.e. all voxels without manual annotations are back-
ground). In the interactive training of detection models, 10 labelled cropped out volumes were gener-
ated per iteration, with which training was performed using the Adam optimizer with a learning rate 
between 5 × 10–5 and 5 × 10–6. In the batch training of detection models, training was performed for 
100 epochs using the Adam optimizer with learning rates of 5 × 10–5. In the training of a flow model, 
training was performed for 100 epochs using the Adam optimizer with learning rates of 5 × 10–5 for 
the first 50 epochs and 5 × 10–6 for the last 50 epochs.  wt  and  wf   were set to 1 and 5, respectively, and 
 wd  was set to (1/3, 1/3, 1/3). In the prediction phase, the input volumes were cropped into 2 × 2 x 2 
blocks with size 544 × 384 x 28 for CE1 or 544 × 384 x 24 for CE2, and stitched together to reconstruct 
the whole image of 708 × 512 x 35 for CE1 or 712 × 512 x 31 for CE2. In the preprocessing of the 
prediction for detection, we corrected the uneven background levels across the z- slices by shifting the 
slice- wise median value to the volume- wise median value. In the postprocessing of the prediction for 
detection, a threshold for the nucleus center probabilities were set to 0.3, and  rmin  and  rmax ,  dsup  were 
set to 1 µm, 3 µm and 1 µm, respectively. In the nearest- neighbor linking with/without flow prediction, 

 dsearch  was set to 5 µm and  Nmax  was set to 3. In the results submitted to the Cell Tracking Challenge 
(Table 1), the suppression of detections with  dsup  was not applied, and the linking was performed by 
the nearest- neighbor linking with flow support and an optional interpolation module, where  Tmax  was 
set to 5.

Detection and tracking in the PH dataset
On the PH dataset, training of detection and flow models was performed with volumes of 384 × 384 x 
12 voxels generated by preprocessing with random rotation in the range of ±180 degrees and random 
cropping. For training a detection model, preprocessing with random contrast in the range (0.5, 1) 
was also applied. In the label generation step, the center ratio was set to 0.3, and the background 
threshold was set to 0.03. In the interactive training of a detection model, 10 crops of image and label 
volumes were generated per iteration, with which training was performed using the Adam optimizer 
with a learning rate between 5 × 10–5 and 5 × 10–6. In the batch training of a detection model, training 
was performed for 100 epochs using the Adam optimizer with learning rates of 5 × 10–5. In the training 
of a flow model, training was performed for 100 epochs using the Adam optimizer with learning rates 
of 5 × 10–5 for the first 50 epochs and 5 × 10–6 for the last 50 epochs.  wt  and  wf   were set to 1 and 3, 
respectively, and  wd  was set to (1, 1, 8). In the prediction phase, the input volumes were fed into the 
CNNs without cropping or further preprocessing. In the postprocessing of the prediction for detec-
tion, a threshold for the  nucleus center  probabilities were set to 0.3, and  rmin ,  rmax  and  dsup  were set to 
1 µm, 3 µm and 5 µm respectively. In the nearest- neighbor linking with/without flow prediction,  dsearch  
was set to 5 µm and  Nmax  was set to 3.

Analysis of CE and PH datasets
On the CE1 and CE2 datasets, the detection and link annotations were made starting from timepoint 
0 and proceeding forward until timepoints 194 (CE1) and 189 (CE2), respectively. In the CE1 dataset, 
the detection was made from scratch, based on manual annotation and incremental training, and the 
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linking was performed by the nearest neighbor algorithm without flow prediction. After completing 
annotation from timepoint 0 to 194 on the CE1 dataset, the detection and flow models were trained by 
the batch mode with the fully labelled annotations. In the CE2 dataset, the detection was performed 
in a similar way as for CE1, by extending the model trained with CE1, and the linking was performed 
by the nearest neighbor algorithm with flow support using the pre- trained model followed by proof-
reading. Incremental training of the detection model was performed when there were annotations 
from nuclei that were not properly predicted.

On the PH dataset, the annotations were made by iterating the semi- automated workflow. In 
general, the nuclei with high signal- to- noise ratio (SNR) were annotated early, while the nuclei with 
low SNR were annotated in a later phase. The detection model was updated frequently to fit the 
characteristics of each region and timepoint being annotated, while the flow model was updated less 
frequently. The CE1 dataset was used to evaluate the speed of detection and validation (Figure 2B). 
All workflows started at timepoint 0 and proceeded forward in time, adding and/or validating all 
the nuclei found in each timepoint. To evaluate the manual workflow, we annotated nuclei using 
hotkeys that facilitate the annotation of a given nucleus at successive timepoints. To evaluate the 
ELEPHANT from scratch workflow, we performed prediction with the latest model, followed by proof-
reading, including add, modify, or delete operations, and incremental training. At each timepoint, the 
model was updated with the new annotations added manually or by proofreading. To evaluate the 
ELEPHANT pre- trained workflow, we performed predictions with a model trained on the CE2 dataset, 
followed by proofreading without additional training. The numbers of validated nuclei associated with 
time were counted from the log data. We measured the counts over 30 min after the start of each 
workflow and plotted them in Figure 2B.

To compare the linking performances (Figure 4C), we trained the flow model with 1,162 validated 
links, including 18 links corresponding to 9 cell divisions, from 108 lineage trees collected between 
timepoints 150 and 159. It took around 30 hr to train the flow model from scratch using these links. 
Starting from a pre- trained model, the training time can be decreased to a few minutes, providing a 
major increase in speed compared with training from scratch (Supplementary file 2).

The results shown in A and BFigure 5A, B were generated based on the tracking results with 
260,600 validated nuclei and 259,071 validated links. In the analysis for Figure 5A, nuclei were cate-
gorised as dividing or non- dividing depending on whether the lineages to which they belong contain 
at least one cell division or not during the period of cell proliferation (timepoints 100–350). Nuclei 
that did not meet these criteria were left undetermined. For Figure 5B, the complete lineages of 109 
nuclei were tracked through the entire duration of the recording, from 0 to 167 hr post- amputation, 
with no missing links.

Evaluation of cell tracking performance
We submitted our results and executable software to the Cell Tracking Challenge organizers, who 
evaluated our algorithm’s performance, validated its reproducibility using the executable software 
that we submitted, and provided us with the scores. The details of the detection accuracy (DET), 
tracking accuracy (TRA), and segmentation accuracy (SEG) metrics can be found in the original paper 
(Matula et  al., 2015) and the website (http://celltrackingchallenge.net/evaluation-methodology/). 
Briefly, the DET score evaluates how many split, delete, and add operations are required to achieve 
the ground truth starting from the predicted nuclei, reflecting the accuracy of detection; the TRA 
score evaluates how many split, delete, and add operations for nuclei, and delete, add, and alter the 
semantics operations for links are required to reconstruct the ground truth lineage trees from the 
predicted lineage trees, reflecting the accuracy of linking; the SEG score evaluates the overlap of the 
detected ellipsoids with fully segmented nuclei, reflecting the precision of nucleus segmentation. All 
three scores range from 0 (poorest) to 1 (best).

Data availability
The CE1, CE2, and MDA231 datasets are available from the Cell Tracking Challenge website: http:// 
celltrackingchallenge.net/3d-datasets/. The ORG1 and ORG2 datasets were obtained from de 
Medeiros, 2021 and Kok et al., 2020, respectively. The following files are available at https://doi. 
org/10.5281/zenodo.4630933: (i) the tracking results shown in Figure 4B, (ii) the PH dataset and its 
tracking results, and (iii) deep- learning model parameters for the CE and PH datasets.

https://doi.org/10.7554/eLife.69380
http://celltrackingchallenge.net/evaluation-methodology/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
https://doi.org/10.5281/zenodo.4630933
https://doi.org/10.5281/zenodo.4630933
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Code availability
The source code for the ELEPHANT client is available at https://github.com/elephant-track/elephant- 
client (Sugawara, 2021c copy archived at swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8), 
for the ELEPHANT server at https://github.com/elephant-track/elephant-server (Sugawara, 2021a 
copy archived at swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458), and for the Align 
Slices 3D + t extension ImageJ plugin at https://github.com/elephant-track/align-slices3d (Sugawara, 
2021b copy archived at swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7). The user manual 
for ELEPHANT is available at https://elephant-trackgithub.io/.
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Additional files
Supplementary files
•  Supplementary file 1. Processing speed of the detection model Processing speed of the deep 
learning model for the detection of nuclei, applied to three datasets. The training speed is affected 
by the distribution of annotations because the algorithm contains a try- and- error process for 
cropping, in which the nucleus periphery labels are forced to appear with the nucleus center labels.

•  Supplementary file 2. Comparison of linking performances Linking performances on the PH 
dataset, on a total number of 259,071 links (including 688 links on cell divisions). Incremental 
training was performed by transferring the training parameters from the model pre- trained with the 
CE datasets. Linking performance on dividing cells is scored separately.

•  Supplementary file 3. Datasets used for training generic detection models Datasets used in 
training of the detection models used in Figure 3. Columns correspond to the datasets analysed in 
Figure 3 and rows indicate the image datasets included in the training. In each case, the test image 
data were excluded from training. The Fluo- C3DH- A549 (Castilla et al., 2019), Fluo- C3DH- H157 
(Maška et al., 2013), Fluo- N3DH- CHO (Dzyubachyk et al., 2010), Fluo- N3DH- CE (Murray et al., 
2008) datasets are from the Cell Tracking Challenge (Maška et al., 2014).

•  Supplementary file 4. Parameters used for training and prediction using StarDist3D Parameters 
used for training and prediction in the StarDist3D model used in Figure 3—figure supplement 
1. These parameters were extracted from “ config. json” and “ thresholds. json” generated by the 
software.

•  Supplementary file 5. Parameters used for training and validation of generic models Parameters 
used for training and validation of the generic models used in Figure 3. Size and scale are 
represented in the format [X]x[Y]x[Z].

•  Supplementary file 6. Parameters used for fine- tuning and prediction using generic models 
Parameters used for fine- tuning of the generic models and prediction used in Figure 3. Size and 
scale are represented in the format [X]x[Y]x[Z].

•  Transparent reporting form 

Data availability
The imaging datasets are available at https://doi.org/10.5281/zenodo.4630933. The source code for 
the ELEPHANT software is available at https://github.com/elephant-track.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sugawara, Çevrim 
and Averof

2021 PH_li13 Zenodo http:// doi. org/ 10. 
5281/ zenodo. 4630933

Zenodo, 10.5281/
zenodo.4630933

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Waterston Lab 2008 C. elegans developing 
embryo

http:// data. cell trac 
king chal lenge. net/ 
training- datasets/ 
Fluo- N3DH- CE. zip

Cell Tracking Challenge, 
Fluo- N3DH- CE

Kamm R 2017 MDA231 human breast 
carcinoma cells

http:// data. cell trac 
king chal lenge. net/ 
training- datasets/ 
Fluo- C3DL- MDA231. 
zip

Cell Tracking Challenge, 
Fluo- C3DL- MDA231
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