
Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 1 of 19

Tracking cell lineages in 3D by
incremental deep learning
Ko Sugawara1,2*, Çağrı Çevrim1,2, Michalis Averof1,2*

1Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure
de Lyon, Lyon, France; 2Centre National de la Recherche Scientifique (CNRS), Paris,
France

Abstract Deep learning is emerging as a powerful approach for bioimage analysis. Its use in
cell tracking is limited by the scarcity of annotated data for the training of deep- learning models.
Moreover, annotation, training, prediction, and proofreading currently lack a unified user inter-
face. We present ELEPHANT, an interactive platform for 3D cell tracking that addresses these
challenges by taking an incremental approach to deep learning. ELEPHANT provides an interface
that seamlessly integrates cell track annotation, deep learning, prediction, and proofreading. This
enables users to implement cycles of incremental learning starting from a few annotated nuclei.
Successive prediction- validation cycles enrich the training data, leading to rapid improvements in
tracking performance. We test the software’s performance against state- of- the- art methods and
track lineages spanning the entire course of leg regeneration in a crustacean over 1 week (504 time-
points). ELEPHANT yields accurate, fully- validated cell lineages with a modest investment in time
and effort.

Introduction
Recent progress in deep learning has led to significant advances in bioimage analysis (Moen et al.,
2019; Ouyang et al., 2018; Weigert et al., 2018). As deep learning is data- driven, it is adaptable to
a variety of datasets once an appropriate model architecture is selected and trained with adequate
data (Moen et al., 2019). In spite of its powerful performance, deep learning remains challenging for
non- experts to utilize, for three reasons. First, pre- trained models can be inadequate for new tasks
and the preparation of new training data is laborious. Because the quality and quantity of the training
data are crucial for the performance of deep learning, users must invest significant time and effort in
annotation at the start of the project (Moen et al., 2019). Second, an interactive user interface for
deep learning, especially in the context of cell tracking, is lacking (Kok et al., 2020; Wen et al., 2021).
Third, deep learning applications are often limited by accessibility to computing power (high- end
GPU).

We have addressed these challenges by establishing ELEPHANT (Efficient learning using sparse
human annotations for nuclear tracking), an interactive web- friendly platform for cell tracking,
which seamlessly integrates manual annotation with deep learning and proofreading of the results.
ELEPHANT implements two algorithms optimized for incremental deep learning using sparse anno-
tations, one for detecting nuclei in 3D and a second for linking these nuclei across timepoints in 4D
image datasets. Incremental learning allows models to be trained in a stepwise fashion on a given
dataset, starting from sparse annotations that are incrementally enriched by human proofreading,
leading to a rapid increase in performance (Figure 1). ELEPHANT is implemented as an extension of
Mastodon (https://github.com/mastodon-sc/mastodon; Mastodon Science, 2021), an open- source
framework for large- scale tracking deployed in Fiji (Schindelin et al., 2012). It implements a client-
server architecture, in which the server provides a deep learning environment equipped with sufficient
GPU (Figure 1—figure supplement 1).

TOOLS AND RESOURCES

*For correspondence:
ko.sugawara@ens-lyon.fr (KS);
michalis.averof@ens-lyon.fr (MA)

Competing interest: See page
15

Funding: See page 15

Preprinted: 26 February 2021
Received: 13 April 2021
Accepted: 07 December 2021
Published: 06 January 2022

Reviewing Editor: Mackenzie W
Mathis, EPFL, Switzerland

 Copyright Sugawara et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.69380
https://github.com/mastodon-sc/mastodon
mailto:ko.sugawara@ens-lyon.fr
mailto:michalis.averof@ens-lyon.fr
https://doi.org/10.1101/2021.02.26.432552
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 2 of 19

Results and discussion
ELEPHANT employs the tracking- by- detection paradigm (Maška et al., 2014), which involves initially
the detection of nuclei in 3D and subsequently their linking over successive timepoints to generate
tracks. In both steps, the nuclei are represented as ellipsoids, using the data model of Mastodon
(Figure 2A and Figure 4A). We use ellipsoids for annotation because ellipsoids allow rapid and effi-
cient training and prediction, compared with more complex shapes. This is essential for interactive

Figure 1. Conventional and incremental deep learning workflows for cell tracking. (A) Schematic illustration of a typical deep learning workflow, starting
with the annotation of imaging data to generate training datasets, training of deep learning models, prediction by deep learning and proofreading. (B)
Schematic illustration of incremental learning with ELEPHANT. Imaging data are fed into a cycle of annotation, training, prediction, and proofreading
to generate cell lineages. At each iteration, model parameters are updated and saved. This workflow applies to both detection and linking phases (see
Figures 2A and 4A).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. ELEPHANT client- server architecture.

Figure supplement 2. Block diagram of ELEPHANT tracking workflow.

Figure 2. ELEPHANT detection workflow. (A) Detection workflow, illustrated with orthogonal views on the CE1 dataset. Top left: The user annotates
nuclei with ellipsoids in 3D; newly generated annotations are colored in cyan. Top right: The detection model is trained with the labels generated from
the sparse annotations of nuclei and from the annotation of background (in this case by intensity thresholding); background, nucleus center, nucleus
periphery and unlabelled voxels are indicated in magenta, blue, green, and black, respectively. Bottom right: The trained model generates voxel-
wise probability maps for background (magenta), nucleus center (blue), or nucleus periphery (green). Bottom left: The user validates or rejects the
predictions; predicted nuclei are shown in green, predicted and validated nuclei in cyan. (B) Comparison of the speed of detection and validation of
nuclei on successive timepoints in the CE1 dataset, by manual annotation (magenta), semi- automated detection without a pre- trained model (orange)
and semi- automated detection using a pre- trained model (blue) using ELEPHANT.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. 3D U- Net architecture for detection.

Figure supplement 2. Proofreading in detection.

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 3 of 19

deep learning. In the detection phase, voxels are labelled as background, nucleus center or nucleus
periphery, or left unlabelled (Figure 2A, top right). The nucleus center and nucleus periphery labels
are generated by the annotation of nuclei, and the background can be annotated either manually or
by intensity thresholding. Sparse annotations (e.g. of a few nuclei in a single timepoint) are sufficient
to start training. A U- Net convolutional neural network (U- Net CNN; Cicek et al., 2016; Ronneberger
et al., 2015, Figure 2—figure supplement 1) is then trained on these labels (ignoring the unlabelled
voxels) to generate voxel- wise probability maps for background, nucleus center, or nucleus periphery,
across the entire image dataset (Figure 2A, bottom right). Post- processing on these probability maps
yields predictions of nuclei which are available for visual inspection and proofreading (validation or
rejection of each predicted nucleus) by the user (Figure 2A, bottom left). Human- computer interac-
tion is facilitated by color coding of the annotated nuclei as predicted (green), accepted (cyan), or
rejected (magenta) (see Figure 2—figure supplement 2), based on the proofreading. The cycles of
training and prediction are rapid because only a small amount of training data are added each time
(in the order of seconds, see Supplementary file 1). As a result, users can enrich the annotations
by proofreading the output almost simultaneously, enabling incremental training of the model in an
efficient manner.

We evaluated the detection performance of ELEPHANT on diverse image datasets capturing the
embryonic development of Caenorhabditis elegans (CE1), leg regeneration in the crustacean Parhyale
hawaiensis (PH), human intestinal organoids (ORG1 and ORG2) and human breast carcinoma cells
(MDA231) by confocal or light sheet microscopy (Figure 3A–E). First, we tested the performance
of a generic model that had been pre- trained with various annotated image datasets (Figure 3A–E
top). We then annotated 3–10 additional nuclei or cells on each test dataset (Figure 3A–E middle)
and re- trained the model. This resulted in greatly improved detection performance (Figure 3A–E),

Figure 3. ELEPHANT detection with sparse annotations. Detection results obtained using ELEPHANT with sparse annotations on five image datasets
recording the embryonic development of C. elegans (CE1 dataset, A), leg regeneration in the crustacean P. hawaiensis (PH dataset, B), human intestinal
organoids (ORG1 and ORG2, C and D), and human breast carcinoma cells (MDA231, E). CE1, PH, ORG2, and MDA231 were captured by confocal
microscopy; ORG1 was captured by light sheet microscopy. Top: Detection results using models that were pre- trained on diverse annotated datasets,
excluding the test dataset (see Supplementary file 3). Precision and Recall scores are shown at the bottom of each panel, with the number of true
positive (TP), false positive (FP), and false negative (FN) predicted nuclei. Middle: Addition of sparse manual annotations for each dataset. n: number
of sparse annotations. Scale bars: 10 µm. Bottom: Detection results with an updated model that used the sparse annotations to update the pre- trained
model. Precision, Recall, TP, FP, and FN values are shown as in the top panels.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing detection predictions of ELEPHANT and StarDist3D.

Figure supplement 2. Evaluation of overfitting in detection using ELEPHANT.

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 4 of 19

showing that a very modest amount of addi-
tional training on a given dataset can yield rapid
improvements in performance. We find that
sparsely trained ELEPHANT detection models
have a comparable performance to state- of-
the- art software (Figure 3—figure supplement 1)
and fully trained ELEPHANT models outperform
most tracking software (Table 1).

We also investigated whether training with
sparse annotations could cause overfitting of
the data in the detection model, by training
the detection model using sparse annotations
in dataset CE1 and calculating the loss values
using a second, unseen but similar dataset (see
Materials and methods). The training and vali-
dation learning curves did not show any signs of
overfitting even after a large amount of training
(Figure 3—figure supplement 2). The trained
model could detect nuclei with high precision
and recall both on partially seen data (CE1) and
unseen data (CE2). A detection model that has

been pre- trained with diverse image datasets is available to users as a starting point for tracking on
new image data (see Materials and methods).

In the linking phase, we found that nearest neighbor approaches for tracking nuclei over time
(Crocker and Grier, 1996) perform poorly in challenging datasets when the cells are dividing; hence
we turned to optical flow modeling to improve linking (Amat et al., 2013; Horn and Schunck, 1981;
Lucas and Kanade, 1981). A second U- Net CNN, optimized for optical flow estimation (Figure 4—
figure supplement 1), is trained on manually generated/validated links between nuclei in successive
timepoints (Figure 4A, top left). Unlabelled voxels are ignored, hence training can be performed on
sparse linking annotations. The flow model is used to generate voxel- wise 3D flow maps, representing
predicted x, y and z displacements over time (Figure 4A, bottom right), which are then combined with
nearest neighbor linking to predict links between the detected nuclei (see Materials and methods).
Users proofread the linking results to finalize the tracks and to update the labels for the next iteration
of training (Figure 4A, bottom left).

We evaluated the linking performance of ELEPHANT using two types of 4D confocal microscopy
datasets in which nuclei were visualized by fluorescent markers: the first type of dataset captures the
embryonic development of Caenorhabditis elegans (CE datasets), which has been used in previous
studies to benchmark tracking methods (Murray et al., 2008; Ulman et al., 2017), and the second
type captures limb regeneration in Parhyale hawaiensis (PH dataset, imaging adapted from Alwes
et al., 2016), which presents greater challenges for image analysis (see below, Figure 5—video 1). For
both types of dataset, we find that fewer than 10 annotated nuclei are sufficient to initiate a virtuous
cycle of training, prediction, and proofreading, which efficiently yields cell tracks and validated cell
lineages in highly dynamic tissues. Interactive cycles of manual annotation, deep learning, and proof-
reading on ELEPHANT reduce the time required to detect and validate nuclei (Figure 2B). On the CE1
dataset, a complete cell lineage was built over 195 timepoints, from scratch, using ELEPHANT’s semi-
automated workflow (Figure 4B). The detection model was trained incrementally starting from sparse
annotations (four nuclei) on the first timepoint. On this dataset, linking could be performed using the
nearest neighbor algorithm (without flow modeling) and manual proofreading. In this way, we were
able to annotate in less than 8 hr a total of 23,829 nuclei (across 195 timepoints), of which ~ 2% were
manually annotated (483 nuclei) and the remaining nuclei were collected by validating predictions of
the deep- learning model.

Although ELEPHANT works efficiently without prior training, cell tracking can be accelerated by
starting from models trained on image data with similar characteristics. To illustrate this, we used
nuclear annotations in a separate dataset, CE2, to train a model for detection, which was then applied
to CE1. This pre- trained model allowed us to detect nuclei in CE1 much more rapidly and effortlessly

Table 1. Performance of ELEPHANT on the Cell
Tracking Challenge dataset.
Performance of ELEPHANT compared with two
state- of- the- art algorithms, using the metrics
of the Cell Tracking Challenge on unseen CE
datasets. ELEPHANT outperforms the other
methods in detection and linking accuracy
(DET and TRA metrics); it performs less well in
segmentation accuracy (SEG).

ELEPHANT KTH- SE

KIT-
Sch-
GE

(IGFL- FR)

SEG 0.631 0.662 0.729

TRA 0.975 0.945 0.886

DET 0.979 0.959 0.930

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 5 of 19

than with an untrained model (Figure 2B, blue versus orange curves). For benchmarking, the detec-
tion and linkage models trained with the annotations from the CE1 and CE2 lineage trees were then
tested on unseen datasets with similar characteristics (without proofreading), as part of the Cell
Tracking Challenge (Maška et al., 2014; Ulman et al., 2017). In this test, our models with assistance
of flow- based interpolation (see Materials and methods) outperformed state- of- the- art tracking algo-
rithms (Magnusson et al., 2015; Scherr et al., 2020) in detection (DET) and tracking (TRA) metrics
(Table 1). ELEPHANT performs less well in segmentation (SEG), probably due to the use of ellipsoids
to approximate nuclear shapes.

The PH dataset presents greater challenges for image analysis, such as larger variations in the
shape, intensity, and distribution of nuclei, lower temporal resolution, and more noise (Figure 5—
figure supplement 1). ELEPHANT has allowed us to grapple with these issues by supporting the
continued training of the models through visual feedback from the user (annotation of missed nuclei,

Figure 4. ELEPHANT linking workflow. (A) Linking workflow, illustrated on the CE1 dataset. Top left: The user annotates links by connecting detected
nuclei in successive timepoints; annotated/validated nuclei and links are shown in cyan, non- validated ones in green. Top right: The flow model is
trained with optical flow labels coming from annotated nuclei with links (voxels indicated in the label mask), which consist of displacements in X, Y,
and Z; greyscale values indicate displacements along a given axis, annotated nuclei with link labels are outlined in red. Bottom right: The trained
model generates voxel- wise flow maps for each axis; greyscale values indicate displacements, annotated nuclei are outlined in red. Bottom left: The
user validates or rejects the predictions; predicted links are shown in green, predicted and validated links in cyan. (B) Tracking results obtained with
ELEPHANT. Left panels: Tracked nuclei in the CE1 and CE2 datasets at timepoints 194 and 189, respectively. Representative optical sections are shown
with tracked nuclei shown in green; out of focus nuclei are shown as green spots. Right panels: Corresponding lineage trees. (C) Comparison of tracking
results obtained on the PH dataset, using the nearest neighbor algorithm (NN) with and without optical flow prediction (left panels); linking errors are
highlighted in red on the correct lineage tree. The panels on the right focus on the nuclear division that is marked by a dashed line rectangle. Without
optical flow prediction, the dividing nuclei (in magenta) are linked incorrectly.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. 3D U- Net architecture for flow.

Figure 4—video 1. ELEPHANT flow predictions in 3D.

https://elifesciences.org/articles/69380/figures#fig4video1

https://doi.org/10.7554/eLife.69380
https://elifesciences.org/articles/69380/figures#fig4video1

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 6 of 19

validation and rejection of predictions). Using ELEPHANT, we annotated and validated over 260,000
nuclei in this dataset, across 504 timepoints spanning 168 hr of imaging.

We observed that the conventional nearest neighbor approach was inadequate for linking in the
PH dataset, resulting in many errors in the lineage trees (Figure 4C). This is likely due to the lower
temporal resolution in this dataset (20 min in PH, versus 1–2 min in CE) and the fact that daughter
nuclei often show large displacements at the end of mitosis. We trained optical flow using 1,162 vali-
dated links collected from 10 timepoints (including 18 links for 9 cell divisions). These sparse annota-
tions were sufficient to generate 3D optical flow predictions for the entire dataset (Figure 4—video 1),
which significantly improved the linking performance (Figure 4C, Supplementary file 2): the number
of false positive and false negative links decreased by ~57% (from 2093 to 905) and ~32% (from 1991
to 1349), respectively, among a total of 259,071 links.

By applying ELEPHANT’s human- in- the- loop semi- automated workflow, we succeeded in recon-
structing 109 complete and fully validated cell lineage trees encompassing the duration of leg regen-
eration in Parhyale, each lineage spanning a period of ~1 week (504 timepoints, Figure 5—figure
supplement 2). Using analysis and visualization modules implemented in Mastodon and ELEPHANT,
we could capture the distribution of cell divisions across time and space (Figure 5A) and produce a fate
map of the regenerating leg of Parhyale (Figure 5B). This analysis, which would have required several
months of manual annotation, was achieved in ~1 month of interactive cell tracking in ELEPHANT,

Figure 5. Cell lineages tracked during the time course of leg regeneration. (A) Spatial and temporal distribution of dividing nuclei in the regenerating
leg of Parhyale tracked over a 1- week time course (PH dataset), showing that cell proliferation is concentrated at the distal part of the regenerating leg
stump and peaks after a period of proliferative quiescence, as described in Alwes et al., 2016. Top: Nuclei in lineages that contain at least one division
are colored in magenta, nuclei in non- dividing lineages are in cyan, and nuclei in which the division status is undetermined are blank (see Materials and
methods). Bottom: Heat map of the temporal distribution of nuclear divisions; hpa, hours post amputation. The number of divisions per 20- min time
interval ranges from 0 (purple) to 9 (yellow). (B) Fate map of the regenerating leg of Parhyale, encompassing 109 fully tracked lineage trees (202 cells at
167 hpa). Each clone is assigned a unique color and contains 1–9 cells at 167 hpa. Partly tracked nuclei are blank. In both panels, the amputation plane
(distal end of the limb) is located on the left.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Image quality issues in the PH dataset.

Figure supplement 2. Complete cell lineage trees in a regenerating leg of Parhyale.

Figure 5—video 1. Live imaging of Parhyale leg regeneration (PH dataset).

https://elifesciences.org/articles/69380/figures#fig5video1

https://doi.org/10.7554/eLife.69380
https://elifesciences.org/articles/69380/figures#fig5video1

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 7 of 19

without prior training. Applying the best performing models to new data could improve tracking
efficiency even further.

Materials and methods
Image datasets
The PH dataset (dataset li13) was obtained by imaging a regenerating T4 leg of the crustacean
Parhyale hawaiensis, based on the method described by Alwes et al., 2016; Figure 5—video 1. The
imaging was carried out on a transgenic animal carrying the Mi(3xP3> DsRed; PhHS> H2B- mRFPRuby)
construct (Wolff et al., 2018), in which nuclear- localised mRFPRuby fluorescent protein is expressed
in all cells following heat- shock. The leg was amputated at the distal end of the carpus. Following
the amputation, continuous live imaging over a period of 1 week was performed on a Zeiss LSM 800
confocal microscope equipped with a Plan- Apochromat 20 x/0.8 M27 objective (Zeiss 420650- 9901-
000), in a temperature control chamber set to 26 °C. Heat- shocks (45 minutes at 37 °C) were applied
24 hr prior to the amputation, and 65 and 138 hr post- amputation. Every 20 min we recorded a stack
of 11 optical sections, with a z step of 2.48 microns. Voxel size (in xyz) was 0.31 × 0.31 x 2.48 microns.

The CE1 and CE2 datasets (Murray et al., 2008) and the MDA231 dataset were obtained via the
Cell Tracking Challenge (Ulman et al., 2017) (datasets Fluo- N3DH- CE and Fluo- C3DL- MDA231). The
ORG1 and ORG2 datasets were obtained from de Medeiros, 2021 and Kok et al., 2020, respectively.
Additional datasets used to train the generic models (see Supplementary file 3) were obtained from
the Cell Tracking Challenge (Ulman et al., 2017).

ELEPHANT platform architecture
ELEPHANT implements a client- server architecture (Figure 1—figure supplement 1), which can be
set up on the same computer or on multiple connected computers. This architecture brings flexibility:
allowing the client to run Mastodon (implemented in Java) while the deep learning module is imple-
mented separately using Python, and releasing the client computer from the requirements of high
GPU needed to implement deep learning. The client side is implemented by extending Mastodon,
a framework for cell tracking built upon the SciJava ecosystem (https://scijava.org/) and is available
as a Fiji (Schindelin et al., 2012) plugin. Combining the BigDataViewer (Pietzsch et al., 2015) with
an efficient memory access strategy (https://github.com/mastodon-sc/mastodon/blob/master/doc/
trackmate-graph.pdf), Mastodon enables fast and responsive user interaction even for very large
datasets. ELEPHANT leverages the functionalities provided by Mastodon, including the functions for
manual annotation of nuclei, and extends them by implementing modules for deep learning- based
algorithms.

The server side is built using an integrated system of a deep learning library (PyTorch Paszke et al.,
2019), tools for tensor computing and image processing (NumPy Harris et al., 2020), SciPy (Virtanen
et al., 2020), Scikit Image (van der Walt et al., 2014), and web technologies (Nginx, uWSGI, Flask).
The client and the server communicate by Hypertext Transfer Protocol (HTTP) and JavaScript Object
Notation (JSON). To reduce the amount of data exchanged between the client and the server, the
image data is duplicated and stored in an appropriate format on each side. An in- memory data struc-
ture (Redis) is used to organize the priorities of the HTTP requests sent by the client. A message
queue (RabbitMQ) is used to notify the client that the model is updated during training. The client
software is available as an extension on Fiji (https://github.com/elephant-track/elephant-client). The
server environment is provided as a Docker container to ensure easy and reproducible deployment
(https://github.com/elephant-track/elephant-server). The server can also be set up with Google Colab
in case the user does not have access to a computer that satisfies the system requirements.

Computer setup and specifications
In this study, we set up the client and the server on the same desktop computer (Dell Alienware Aurora
R6) with the following specifications: Intel Core i7- 8700K CPU @3.70 GHz, Ubuntu 18.04, 4 × 16 GB
DDR4 2,666 MHz RAM, NVIDIA GeForce GTX 1080 Ti 11 GB GDDR5X (used for deep learning),
NVIDIA GeForce GTX 1650 4 GB GDDR5, 256 GB SSD and 2 TB HDD. System requirements for the
client and the server are summarized in the user manual (https://elephant-track.github.io/).

https://doi.org/10.7554/eLife.69380
https://scijava.org/
https://github.com/mastodon-sc/mastodon/blob/master/doc/trackmate-graph.pdf
https://github.com/mastodon-sc/mastodon/blob/master/doc/trackmate-graph.pdf
https://github.com/elephant-track/elephant-client
https://github.com/elephant-track/elephant-server
https://elephant-track.github.io/

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 8 of 19

Dataset preparation
Images were loaded in the BigDataViewer (BDV, Pietzsch et al., 2015) format on the client software.
The CE1, CE2, ORG1, ORG2, and MDA231 datasets were converted to the BDV format using the
BigDataViewer Fiji plugin (https://imagej.net/BigDataViewer) without any preprocessing. Because
the PH dataset showed non- negligible variations in intensity during long- term imaging, the original
16- bit images were intensity normalized per timepoint before conversion to the BDV format, for
better visualization on Mastodon. In this normalization, the intensity values were re- scaled so that the
minimum and maximum values at each timepoint become 0 and 65535, respectively. The PH dataset
also showed 3D drifts due to heat- shocks. The xy drifts were corrected using an extended version
of image alignment tool (Tseng et al., 2011) working as an ImageJ (Schneider et al., 2012) plugin,
where the maximum intensity projection images were used to estimate the xy displacements, subse-
quently applied to the whole image stack (https://github.com/elephant-track/align-slices3d). The z
drifts were corrected manually by visual inspection using Fiji.

On the server, images, annotation labels and outputs were stored in the Zarr format, allowing fast
read/write access to subsets of image data using chunk arrays (Moore et al., 2021). At the beginning
of the analysis, these data were prepared using a custom Python script that converts the original
image data from HDF5 to Zarr and creates empty Zarr files for storing annotation labels and outputs
(https://github.com/elephant-track/elephant-server). This conversion can also be performed from the
client application. Generally, HDF5 is slower in writing data than Zarr, especially in parallelization,
while they show comparable reading speeds (Moore et al., 2021).

On the server, the image data are stored in unsigned 8- bit or unsigned 16- bit format, keeping the
original image format. At the beginning of processing on the server, the image data are automatically
converted to a 32- bit float and their intensity is normalized at each timepoint such that the minimum
and maximum values become 0 and 1.

Algorithm for detection
Detection of nuclei relies on three components: (i) a U- Net CNN that outputs probability maps for
nucleus center, nucleus periphery, and background, (ii) a post- processing workflow that extracts
nucleus center voxels from the probability maps, (iii) a module that reconstructs nuclei instances as
ellipsoids. We designed a variation of 3D U- Net (Cicek et al., 2016) as illustrated in Figure 2—figure
supplement 1. In both encoder and decoder paths, repeated sets of 3D convolution, ReLU activation
(Nair and Hinton, 2010) and Group Normalization (Wu and He, 2020) are employed. Max pooling
in 3D is used for successive downsampling in the encoder path, in each step reducing the size to half
the input size (in case of anisotropy, maintaining the z dimension until the image becomes nearly
isotropic). Conversely, in the decoder path, upsampling with nearest- neighbor interpolation is applied
to make the dimensions the same as in the corresponding intermediate layers in the encoder path.
As a result, we built a CNN with 5,887,011 trainable parameters. The weights are initialized with the
Kaiming fan- in algorithm (He et al., 2015a) and the biases are initialized to zero for each convolution
layer. For each group normalization layer, the number of groups is set as the smallest value between
32 and the number of output channels, and the weights and biases are respectively initialized to one
and zero. When starting to train from scratch, the CNN is trained using the cropped out 3D volumes
from the original image prior to training with annotations. In this prior training phase, a loss function

 Lprior is used that penalizes the addition of the following two mean absolute differences (MADs): (i)
nucleus center probabilities ci and the [0, 1] normalized intensity of the original image yi, (ii) back-
ground probabilities bi and the [0, 1] normalized intensity of the intensity- inverted image 1 − yi where
i stands for the voxel index of an input volume with n voxels i ∈ V :=

{
1, 2, . . . , n

}
 .

 Lprior = 1
n
∑n

i=1|yi − ci| + 1
n
∑n

i=1|
(
1 − yi

)
− bi|

The prior training is performed on three cropped out 3D volumes generated from the 4D datasets,
where the timepoints are randomly picked, and the volumes are randomly cropped with random
scaling in the range (0.8, 1.2). The training is iterated for three epochs with decreasing learning rates
(0.01, 0.001, and 0.0001, in this order) with the Adam optimizer (Kingma and Ba, 2014). The prior
training can be completed in ~20 s for each dataset.

Training with sparse annotations is performed in the following steps. First, the client application
extracts the timepoint, 3D coordinates and covariances representing ellipsoids of all the annotated

https://doi.org/10.7554/eLife.69380
https://imagej.net/BigDataViewer
https://github.com/elephant-track/align-slices3d
https://github.com/elephant-track/elephant-server

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 9 of 19

nuclei in the specified time range. Subsequently, these data, combined with user- specified parameters
for training, are embedded in JSON and sent to the server in an HTTP request. On the server side,
training labels are generated from the received information by rendering nucleus center, nucleus
periphery, background and unlabelled voxels with distinct values. The background labels are gener-
ated either by explicit manual annotation or intensity thresholding, where the threshold value is
specified by the user, resulting in the label images as shown in Figure 2A. To render ellipsoids in
the anisotropic dimension, we extended the draw module in the scikit- image library (van der Walt
et al., 2014) (https://github.com/elephant-track/elephant-server). Training of the CNN is performed
using the image volumes as input and the generated labels as target with a loss function Lvclass that
consists of three terms: (i) a class- weighted negative log- likelihood (NLL) loss, (ii) a term computed
as one minus the dice coefficient for the nucleus center voxels, and (iii) a term that penalizes the
roughness of the nucleus center areas. We used the empirically- defined class weights wc for the NLL
loss: nucleus center = 10 , nucleus periphery = 10 , background = 1 ; the unlabelled voxels are ignored. The
first two terms accept different weights for the true annotations wt (i.e. true positive and true nega-
tive) and the false annotations wf (i.e. false positive and false negative). The third term is defined as
the MAD between the voxel- wise probabilities for nucleus center and its smoothed representations,
which are calculated by the Gaussian filter with downsampling (Down) and upsampling (Up). Let i stand
for the voxel index of an input volume with n voxels i ∈ V :=

{
1, 2, ..., n

}
 , xi for the input voxel value,

 hi for the output from the CNN before the last activation layer for the three classes, yi ∈ Y :=
{

1, 2, 3
}

for the voxel class label (1: nucleus center, 2: nucleus periphery, 3: background, respectively), and

 zi ∈ Z := { true, false, unlabeled } for the voxel annotation label. We define the following subsets: the
voxel index with true labels T = { i | i ∈ V, zi = true } , with false labels F = { i | i ∈ V, zi = false } , and the
nucleus center C = { i | i ∈ V, yi = 1 } . In the calculation of the Ldice , a constant ϵ = 0.000001 is used to
prevent zero division. Using these components and the empirically- defined weights for each loss term
(α = 1,β = 5, γ = 1), we defined the Lvclass as below.

 Lvclass = αLnll + βLdice + γLsmooth

Lnll = wt

∑
i∈T

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈T wc[yi] + wf
∑

i∈F
(

NLL
(

hi,yi
)
·wc[yi]

)
∑

i∈F wc[yi]

Ldice = wt

(
1 − 2

∑
i∈T(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈T

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

+wf

(
1 − 2

∑
i∈F(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈F

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

 Lsmooth = 1
n
∑

i∈V|Prob
(
hi, 1

)
− Up

(
Down

(
Prob

(
hi, 1

)))
|

Prob

(
h, c

)
= exp

(
h[c]

)
∑3

j=1 exp
(

h[j]
)

 NLL
(
h, y

)
= − log

(
Prob

(
h, y

))

Onehot
(
yi, c

)
=

0
(
yi ̸= c

)

1
(
yi = c

)

In the analyses shown in Figure 3 and its supplements 1 and 2, the following loss functions are
updated to make them more robust using normalization, which are employed in the current version
of software.

 Lvclass = αLnll+βLdice+γLsmooth
α+β+γ

Lnll = n

(
T
)

wt
n
(

T
)

wt+n
(

F
)

wf

∑
i∈T

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈T wc[yi] + n
(

F
)

wf
n
(

T
)

wt+n
(

F
)

wf

∑
i∈F

(
NLL

(
hi,yi

)
·wc[yi]

)
∑

i∈F wc[yi]

Ldice = n
(

T
)

wt
n
(

T
)

wt+n
(

F
)

wf

(
1 − 2

∑
i∈T(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈T

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

+ n
(

F
)

wf
n
(

T
)

wt+n
(

F
)

wf

(
1 − 2

∑
i∈F(Prob(hi,1)·Onehot(yi,1))

max
(∑

i∈F

((
Prob

(
hi,1

))2+
(

Onehot
(

yi,1
))2

)
,ϵ
)
)

https://doi.org/10.7554/eLife.69380
https://github.com/elephant-track/elephant-server

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 10 of 19

Training of the CNN is performed on the image volumes generated from the 4D datasets, where
the volumes are randomly cropped with/without random scaling, random contrast, random flip and
random rotation, which are specified at runtime. There are two modes for training: (i) an interactive
mode that trains a model incrementally, as the annotations are updated, and (ii) a batch mode that
trains a model with a fixed set of annotations. In the interactive training mode, sparse annotations
in a given timepoint are used to generate crops of image and label volumes, with which training is
performed using the Adam optimizer with a learning rate specified by the user. In the batch training
mode, a set of crops of image and label volumes per timepoint is generated each iteration, with which
training is performed for a number of epochs specified by the user (ranging from 1 to 1000) using the
Adam optimizer with the specified learning rates. In the prediction phase, the input volume can be
cropped into several blocks with smaller size than the original size to make the volume can be cropped
into several blocks with smaller size than the original size to make the input data compatible with
available GPU memory. To stitch the output blocks together, the overlapping regions are seamlessly
blended by weighted linear blending.

In post- processing for the CNN output, voxel- wise probabilities for nucleus center class are denoised
by subtracting edges of background class that are calculated with the Gaussian filter and the Prewitt
operation for each z- slice. After denoising, the voxels with nucleus center probabilities greater than
a user defined value are thresholded and extracted as connected components, which are then repre-
sented as ellipsoids (from their central moments). These ellipsoids representing the nucleus center
regions are enlarged so that they cover the original nucleus size (without excluding its periphery). The
ellipsoids with radii smaller than rmin are removed and the radii are clamped to rmax specified by the
user, generating a list of center positions and covariances that can be used to reconstruct the nuclei.
On the client application, the detection results are converted to Mastodon spots and rendered on
the BDV view, where the existing and predicted nuclei are tagged based on their status: labelled as
‘true positive’ (positive and predicted), ‘false negative’ (positive and not predicted), ‘true negative’
(negative and not predicted), ‘false positive’ (negative and predicted), and ‘non- validated’ (newly
predicted). These labels can be visualized when running ELEPHANT in the advanced color mode (in
basic color mode true positives and false negatives are visualized as ‘accepted’ and false positives and
true negatives as ‘rejected’). If more than one nucleus is predicted within a user- specified threshold

 dsup , the one with human annotation is given priority, followed by the one with the largest volume.

Algorithm for linking
Linking of nuclei relies on two components: (i) estimation of the positions of nuclei at the previous
timepoint by optical flow estimation using deep learning, which is skipped in the case of the nearest
neighbor algorithm without flow support, (ii) association of nuclei based on the nearest neighbor
algorithm. We designed a variation of 3D U- Net for flow estimation as illustrated in Figure 4—figure
supplement 1. In the encoder path, the residual blocks (He et al., 2015b) with 3D convolution and
LeakyReLU (Maas et al., 2013) activation are applied, in which the outputs are divided by two after
the sum operation to keep the consistency of the scale of values. In the decoder path, repeated sets of
3D convolution and LeakyReLU activation are employed. Downsampling and upsampling are applied
as described for the detection model. Tanh activation is used as a final activation layer. As a result, we
built a CNN with 5,928,051 trainable parameters. The weights and biases for convolution layers are
initialized as described for the detection model. Training of the flow model with sparse annotations is
performed in a similar way as for the detection model. First, on the client application, for each anno-
tated link, which connects the source and target nuclei, the following information gets extracted: the
timepoint, the backward displacements in each of the three dimensions, and the properties of the
target nucleus (3D coordinates and covariances). Subsequently, these data, combined with parame-
ters for training, are embedded in JSON and sent to the server in an HTTP request. On the server side,
flow labels are generated from the received information by rendering backward displacements for
each target nucleus in each of three dimensions, where the displacements are scaled to fit the range
(–1, 1). In this study, we used fixed scaling factors (1/80, 1/80, 1/10) for each dimension, but they can
be customized to the target dataset. Foreground masks are generated at the same time to ignore
unlabelled voxels during loss calculation. Ellipsoid rendering is performed as described for the detec-
tion training. Training of the CNN for flow estimation is performed using the two consecutive image
volumes

(
It−1, It

)
 as input, and the generated label as target. A loss function Lflow is defined with the

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 11 of 19

following three terms; (i) a dimension- weighted MAD between the CNN outputs and the flow labels,
(ii) a term computed as one minus the structural similarity (SSIM) (Wang et al., 2004) of It−1 and ̃It ,
where the estimated flow is applied to It (Ilg et al., 2017), (iii) a term penalizing the roughness of the
CNN outputs. Let i stand for the voxel index of an input volume with n voxels i ∈ V := {1, 2, . . . , n} , xi
for the input voxel value, ̂y for the output of the CNN, y for the flow label, m ∈ M ⊂ V for the index
of the annotated voxels, d ∈ D := {0, 1, 2} for the dimension index for three dimensions and wd for the
dimension weights. In the SSIM calculation, we defined a function Gauss as a 3D Gaussian filter with
the window size 7 × 7 x 3 and standard deviation of 1.5. Using these components and the empirically
defined weights for each loss term

(
α = 1,β = 0.0001, γ = 0.0001

)
 , we defined the Lflow as below.

 Lflow = αLmad + βLssim + γLsmooth

 Lmad = 1
n
∑

d∈D wdd
∑

m∈M|ymd − ŷmd|

Lssim = 1 − SSIM

(
It−1, Ît

)

 Lsmooth = 1
3n

∑
i∈V

∑
d∈D|ŷid − Up

(
Down

(
ŷid

))
|

 µI1 = Gauss
(
I1
)

,µI2 = Gauss
(
I2
)

σ2

I1 = Gauss
(

I2
1

)
− µ2

I1 ,σ2
I2 = Gauss

(
I2
2

)
− µ2

I2 ,σI1I2 = Gauss
(
I1I2

)
− µI1µI2

SSIM

(
I1, I2

)
=

(
2µI1µI2 +C1

)(
2σI1 I2 +C2

)
(
µ2

I1
+µ2

I2
+C1

)(
σ2

I1
+σ2

I2
+C2

)

, where C1 = 0.0001 and C2 = 0.0009 . In the current version of software, the following loss functions are
updated to make them more robust using normalization.

 Lflow = αLmad+βLssim+γLsmooth
α+β+γ

(
α = 1,β = 0.01, γ = 0.01

)

Lmod = 1

n
(

M
) ∑

d∈D
wdd∑

d∈D wdd

∑
m∈M|ymd − ŷmd|

The training is performed on the image volumes generated from the 4D datasets, where the sets of
two consecutive images and corresponding flow labels are randomly cropped with/without random
scaling and random rotation, which are specified at runtime. The training is performed for a fixed
number of epochs using the Adam optimizer and with learning rates specified by the user, generating
a set of images and labels for each timepoint in each epoch. The CNN outputs are rescaled to the
original physical scale and used to calculate the estimated coordinate of each nucleus center at the
previous timepoint. Let K ⊂ V stands for a subset of voxel index of a nucleus and p for its center
coordinate. Using the output of the CNN ̂y and the scaling factor s , the estimated coordinate at the
previous timepoint ̂p is calculated.

p̂ = p + s

n
(

K
) ∑

k∈K ŷk

These estimated coordinates are subsequently used to find the parent of the nucleus at the previous
timepoint by the nearest neighbor algorithm (a similar concept was introduced for 2D phase contrast
microscopy data; Hayashida and Bise, 2019; Hayashida et al., 2020). The pairs with a distance
smaller than dsearch are considered as link candidates, where the closer the Euclidean distance between
the two points, the higher their priority of being the correct link. Each nucleus accepts either one or
two links, determined by the estimated displacements and actual distances. Briefly, given that a single
nucleus has two possible links, it can accept both if at least one of the estimated displacements is
larger than the threshold ddisp or both distances are smaller than the threshold ddist . In this study, we
used ad hoc thresholds ddisp = 1.0 and ddist = 1.0 . If there are competing links beyond the allowed
maximum of two links, the links with smaller ddisp are adopted and the remaining nucleus looks for the
next closest nucleus up to Nmax neighbors. The links are generated by repeating the above procedure
until all the nuclei get linked or the iteration count reaches to five. We optionally implement an inter-
polation algorithm, in which each orphan nucleus tries to find its source up to Tmax timepoints back
and is linked with a nucleus at the estimated coordinate based on the flow prediction, interpolating
the points in between.

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 12 of 19

Preparation of generic pre-trained models and fine-tuning with sparse
annotations (Figure 3)
The generic pre- trained models for each dataset were trained on the datasets summarized in Supple-
mentary file 3. Training of the detection models was performed with volumes of 384 × 384 x 16
voxels or smaller, which were generated by preprocessing with random flip in each dimension, random
scaling in the range (0.5, 2), random cropping and random contrast in the range (0.5, 1). In the label
generation step, the center ratio was set to 0.4 and the background threshold was set to 1 (i.e. all
voxels without manual annotations are background) for the Cell Tracking Challenge datasets (Fluo-
C3DH- A549, Fluo- C3DH- H157, Fluo- C3DL- MDA231, Fluo- N3DH- CE and Fluo- N3DH- CHO), and
to 0.03 for the PH dataset. The labels for the Cell Tracking Challenge datasets were automatically
generated from the silver- standard corpus (silver truth). We trained the models for up to 200 epochs
starting from scratch using the Adam optimizer with the learning rate of 5 × 10–3, where each epoch
contained randomly selected 10 pre- processed volumes from each dataset. Validation was performed
after each epoch using randomly selected five timepoints from each dataset. In the validation phase,
image volumes were fed into the model using blocks with size 512 × 512 x 24 or smaller, and the
outputs were stitched together to reconstruct the whole volume. For each condition, the model with
the highest score in the validation data was finally adopted. At the start of each epoch, the model
parameters were set to the ones that had previously produced the highest scores on the validation
data. The parameters for training and validation are summarized in Supplementary file 5. Fine- tuning
of the model was performed as follows: (i) 3–10 sparse annotations were added at the points where
the pre- trained model failed in detection (Figure 3 middle), (ii) we trained the models for 10 epochs
starting from the pre- trained model parameters with volumes of 384 × 384 x 16 voxels or smaller.
These volumes were generated by preprocessing with random flip in each dimension, random scaling
in the range (0.5, 2), random cropping and random contrast in the range (0.5, 1), using the Adam
optimizer with the learning rate of 0.01 or 0.001, where each epoch contained five randomly cropped
volumes. The pre- trained model and the fine- tuned model were applied to each dataset with parame-
ters summarized in Supplementary file 6. The evaluation scores were calculated based on the detec-
tion criterion of ELEPHANT, which recognizes that a prediction is correct if the distance between the
prediction and the manual annotation is less than dsup .

Comparison between ELEPHANT and StarDist3D (Figure 3 –
Supplement 1)
The ELEPHANT detection model is the same as the one used in Figure 3—figure supplement 2. For
training of the StarDist3D (Weigert et al., 2020) segmentation model, a single volume of the CE1
dataset (timepoint = 100) with the fully labelled instance segmentation annotations (93 nuclei) was
used for training, and another volume of the CE1 dataset (timepoint = 101) with the fully labelled
instance segmentation annotations (95 nuclei) was used for validation during training. The instance
segmentation annotations were taken from the silver- standard corpus (silver truth) in the Cell Tracking
Challenge. Training of the StarDist3D model was performed with the parameters summarized in
Supplementary file 4. The model with the best performance in the validation data was selected for
comparison. The trained ELEPHANT and StarDist3D models were applied to a single volume (time-
point = 100) of the CE2 dataset to generate the output for comparison (Figure 3—figure supplement
1). The DET scores were calculated by the evaluation software provided by the Cell Tracking Chal-
lenge using the gold- standard corpus (gold truth).

Evaluation of overfitting of the detection model (Figure 3 –
Supplement 2)
A single volume of the CE1 dataset (timepoint = 100) with sparse annotations (10 nuclei) was used
for training, and a single volume of the fully labelled CE2 dataset (timepoint = 100) was used for
validation. Training of the detection model was performed using 384 × 384 x 16 cropped- out image
volumes generated by preprocessing with random flip in each dimension, random scaling in the range
(0.5, 2), random cropping and random contrast in the range (0.5, 1). In the label generation step, the
center ratio was set to 0.4 and the background threshold was set to 0 (i.e. all voxels without manual
annotations are ignored). We trained a model for 500 epochs starting from scratch using the Adam
optimizer with the learning rate of 5 × 10–4, where each epoch contained five pre- processed volumes.

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 13 of 19

Training and validation losses were recorded at the end of each epoch (Figure 3—figure supplement
2, bottom left). The detection model trained for 500 epochs was tested on the CE1 dataset (partially-
seen data; Figure 3—figure supplement 2, top right) and the CE2 dataset (unseen data; Figure 3—
figure supplement 2, bottom right). In the prediction phase, the input volumes were cropped into
2 × 2 x 2 blocks with size 544 × 384 x 28 for CE1 or 544 × 384 x 24 for CE2, and stitched together
to reconstruct the whole image of 708 × 512 x 35 for CE1 or 712 × 512 x 31 for CE2. In the postpro-
cessing of the prediction for detection, a threshold for the nucleus center probabilities were set to 0.5,
and rmin , rmax and dsup were set to 0.5 µm, 3 µm, and 2 µm respectively. The evaluation scores were
calculated in the same way as described in the previous section.

Detection and tracking in the CE datasets (Figures 2 and 4)
On the CE1 and CE2 datasets, training of detection and flow models was performed with volumes of
384 × 384 x 16 voxels that were generated by preprocessing with random scaling in the range (0.5,
2) and random cropping. For training of a detection model, preprocessing with random contrast in
the range (0.5, 1) was also applied. In the label generation step, the center ratio was set to 0.3 and
the background threshold was set to 0.1 and 1 (i.e. all voxels without manual annotations are back-
ground). In the interactive training of detection models, 10 labelled cropped out volumes were gener-
ated per iteration, with which training was performed using the Adam optimizer with a learning rate
between 5 × 10–5 and 5 × 10–6. In the batch training of detection models, training was performed for
100 epochs using the Adam optimizer with learning rates of 5 × 10–5. In the training of a flow model,
training was performed for 100 epochs using the Adam optimizer with learning rates of 5 × 10–5 for
the first 50 epochs and 5 × 10–6 for the last 50 epochs. wt and wf were set to 1 and 5, respectively, and
 wd was set to (1/3, 1/3, 1/3). In the prediction phase, the input volumes were cropped into 2 × 2 x 2
blocks with size 544 × 384 x 28 for CE1 or 544 × 384 x 24 for CE2, and stitched together to reconstruct
the whole image of 708 × 512 x 35 for CE1 or 712 × 512 x 31 for CE2. In the preprocessing of the
prediction for detection, we corrected the uneven background levels across the z- slices by shifting the
slice- wise median value to the volume- wise median value. In the postprocessing of the prediction for
detection, a threshold for the nucleus center probabilities were set to 0.3, and rmin and rmax , dsup were
set to 1 µm, 3 µm and 1 µm, respectively. In the nearest- neighbor linking with/without flow prediction,

 dsearch was set to 5 µm and Nmax was set to 3. In the results submitted to the Cell Tracking Challenge
(Table 1), the suppression of detections with dsup was not applied, and the linking was performed by
the nearest- neighbor linking with flow support and an optional interpolation module, where Tmax was
set to 5.

Detection and tracking in the PH dataset
On the PH dataset, training of detection and flow models was performed with volumes of 384 × 384 x
12 voxels generated by preprocessing with random rotation in the range of ±180 degrees and random
cropping. For training a detection model, preprocessing with random contrast in the range (0.5, 1)
was also applied. In the label generation step, the center ratio was set to 0.3, and the background
threshold was set to 0.03. In the interactive training of a detection model, 10 crops of image and label
volumes were generated per iteration, with which training was performed using the Adam optimizer
with a learning rate between 5 × 10–5 and 5 × 10–6. In the batch training of a detection model, training
was performed for 100 epochs using the Adam optimizer with learning rates of 5 × 10–5. In the training
of a flow model, training was performed for 100 epochs using the Adam optimizer with learning rates
of 5 × 10–5 for the first 50 epochs and 5 × 10–6 for the last 50 epochs. wt and wf were set to 1 and 3,
respectively, and wd was set to (1, 1, 8). In the prediction phase, the input volumes were fed into the
CNNs without cropping or further preprocessing. In the postprocessing of the prediction for detec-
tion, a threshold for the nucleus center probabilities were set to 0.3, and rmin , rmax and dsup were set to
1 µm, 3 µm and 5 µm respectively. In the nearest- neighbor linking with/without flow prediction, dsearch
was set to 5 µm and Nmax was set to 3.

Analysis of CE and PH datasets
On the CE1 and CE2 datasets, the detection and link annotations were made starting from timepoint
0 and proceeding forward until timepoints 194 (CE1) and 189 (CE2), respectively. In the CE1 dataset,
the detection was made from scratch, based on manual annotation and incremental training, and the

https://doi.org/10.7554/eLife.69380

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 14 of 19

linking was performed by the nearest neighbor algorithm without flow prediction. After completing
annotation from timepoint 0 to 194 on the CE1 dataset, the detection and flow models were trained by
the batch mode with the fully labelled annotations. In the CE2 dataset, the detection was performed
in a similar way as for CE1, by extending the model trained with CE1, and the linking was performed
by the nearest neighbor algorithm with flow support using the pre- trained model followed by proof-
reading. Incremental training of the detection model was performed when there were annotations
from nuclei that were not properly predicted.

On the PH dataset, the annotations were made by iterating the semi- automated workflow. In
general, the nuclei with high signal- to- noise ratio (SNR) were annotated early, while the nuclei with
low SNR were annotated in a later phase. The detection model was updated frequently to fit the
characteristics of each region and timepoint being annotated, while the flow model was updated less
frequently. The CE1 dataset was used to evaluate the speed of detection and validation (Figure 2B).
All workflows started at timepoint 0 and proceeded forward in time, adding and/or validating all
the nuclei found in each timepoint. To evaluate the manual workflow, we annotated nuclei using
hotkeys that facilitate the annotation of a given nucleus at successive timepoints. To evaluate the
ELEPHANT from scratch workflow, we performed prediction with the latest model, followed by proof-
reading, including add, modify, or delete operations, and incremental training. At each timepoint, the
model was updated with the new annotations added manually or by proofreading. To evaluate the
ELEPHANT pre- trained workflow, we performed predictions with a model trained on the CE2 dataset,
followed by proofreading without additional training. The numbers of validated nuclei associated with
time were counted from the log data. We measured the counts over 30 min after the start of each
workflow and plotted them in Figure 2B.

To compare the linking performances (Figure 4C), we trained the flow model with 1,162 validated
links, including 18 links corresponding to 9 cell divisions, from 108 lineage trees collected between
timepoints 150 and 159. It took around 30 hr to train the flow model from scratch using these links.
Starting from a pre- trained model, the training time can be decreased to a few minutes, providing a
major increase in speed compared with training from scratch (Supplementary file 2).

The results shown in A and BFigure 5A, B were generated based on the tracking results with
260,600 validated nuclei and 259,071 validated links. In the analysis for Figure 5A, nuclei were cate-
gorised as dividing or non- dividing depending on whether the lineages to which they belong contain
at least one cell division or not during the period of cell proliferation (timepoints 100–350). Nuclei
that did not meet these criteria were left undetermined. For Figure 5B, the complete lineages of 109
nuclei were tracked through the entire duration of the recording, from 0 to 167 hr post- amputation,
with no missing links.

Evaluation of cell tracking performance
We submitted our results and executable software to the Cell Tracking Challenge organizers, who
evaluated our algorithm’s performance, validated its reproducibility using the executable software
that we submitted, and provided us with the scores. The details of the detection accuracy (DET),
tracking accuracy (TRA), and segmentation accuracy (SEG) metrics can be found in the original paper
(Matula et al., 2015) and the website (http://celltrackingchallenge.net/evaluation-methodology/).
Briefly, the DET score evaluates how many split, delete, and add operations are required to achieve
the ground truth starting from the predicted nuclei, reflecting the accuracy of detection; the TRA
score evaluates how many split, delete, and add operations for nuclei, and delete, add, and alter the
semantics operations for links are required to reconstruct the ground truth lineage trees from the
predicted lineage trees, reflecting the accuracy of linking; the SEG score evaluates the overlap of the
detected ellipsoids with fully segmented nuclei, reflecting the precision of nucleus segmentation. All
three scores range from 0 (poorest) to 1 (best).

Data availability
The CE1, CE2, and MDA231 datasets are available from the Cell Tracking Challenge website: http://
celltrackingchallenge.net/3d-datasets/. The ORG1 and ORG2 datasets were obtained from de
Medeiros, 2021 and Kok et al., 2020, respectively. The following files are available at https://doi.
org/10.5281/zenodo.4630933: (i) the tracking results shown in Figure 4B, (ii) the PH dataset and its
tracking results, and (iii) deep- learning model parameters for the CE and PH datasets.

https://doi.org/10.7554/eLife.69380
http://celltrackingchallenge.net/evaluation-methodology/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
https://doi.org/10.5281/zenodo.4630933
https://doi.org/10.5281/zenodo.4630933

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 15 of 19

Code availability
The source code for the ELEPHANT client is available at https://github.com/elephant-track/elephant-
client (Sugawara, 2021c copy archived at swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8),
for the ELEPHANT server at https://github.com/elephant-track/elephant-server (Sugawara, 2021a
copy archived at swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458), and for the Align
Slices 3D + t extension ImageJ plugin at https://github.com/elephant-track/align-slices3d (Sugawara,
2021b copy archived at swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7). The user manual
for ELEPHANT is available at https://elephant-trackgithub.io/.

Acknowledgements
We are grateful to Anna Kreshuk and Constantin Pape for training in machine learning, to Jean-
Yves Tinevez (Image Analysis Hub, Institut Pasteur) and Tobias Pietzsch for support in developing
ELEPHANT as a Mastodon plugin, to the NEUBIAS community for feedback on the software, to
Martin Maška, Michal Kozubek and Carlos Ortiz de Solórzano for support in our submission to
the Cell Tracking Challenge, and to Christian Tischer and Sebastian Tosi for extensive feedback
on the software and manuscript. We thank Carlos Ortiz de Solórzano, Bob Waterston, Jeroen van
Zon, Gustavo de Madeiros and Prisca Liberali for sharing image and cell tracking data used to test
ELEPHANT. We also thank Jan Funke, Carsten Wolff, Martin Weigert, Jean- Yves Tinevez, Philipp
Keller, Irepan Salvador- Martínez, Severine Urdy, and Mathilde Paris for comments on the manuscript.
This research was supported by the European Research Council, under the European Union Horizon
2020 programme, grant ERC- 2015- AdG #694918; ÇÇ was supported by a doctoral fellowship from
Boehringer Ingelheim Fonds.

Additional information

Competing interests
Ko Sugawara: KS is employed part- time by LPIXEL Inc. The other author declares that no competing
interests exist.

Funding

Funder Grant reference number Author

H2020 European Research
Council

ERC-2015-AdG #694918 Ko Sugawara
Michalis Averof

Boehringer Ingelheim
Fonds

Çağrı Çevrim

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Ko Sugawara, Conceptualization, Investigation, Methodology, Software, Validation, Writing – original
draft, Writing – review and editing; Çağrı Çevrim, Acquired and annotated imaging data, Validation,
Writing – review and editing; Michalis Averof, Conceptualization, Supervision, Writing – original draft,
Writing – review and editing

Author ORCIDs
Ko Sugawara http://orcid.org/0000-0002-1392-9340
Çağrı Çevrim http://orcid.org/0000-0002-4720-7944
Michalis Averof http://orcid.org/0000-0002-6803-7251

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.69380.sa1
Author response https://doi.org/10.7554/eLife.69380.sa2

https://doi.org/10.7554/eLife.69380
https://github.com/elephant-track/elephant-server
https://github.com/elephant-track/elephant-server
https://archive.softwareheritage.org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8
https://github.com/elephant-track/elephant-server
https://archive.softwareheritage.org/swh:1:dir:a3028f2a4adb71c0cc6249963f0777c6198d8602;origin=https://github.com/elephant-track/elephant-server;visit=swh:1:snp:2efc080405dc4ba11998f598bb4e9e785f39d314;anchor=swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458
https://github.com/elephant-track/align-slices3d
https://archive.softwareheritage.org/swh:1:dir:663a99923602d153e97af69164cd6762ed80f51d;origin=https://github.com/elephant-track/align-slices3d;visit=swh:1:snp:d18a8bf98eee86f6fe757f2087dcca11b051f897;anchor=swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7
https://elephant-trackgithub.io/
http://orcid.org/0000-0002-1392-9340
http://orcid.org/0000-0002-4720-7944
http://orcid.org/0000-0002-6803-7251
https://doi.org/10.7554/eLife.69380.sa1
https://doi.org/10.7554/eLife.69380.sa2

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 16 of 19

Additional files
Supplementary files
• Supplementary file 1. Processing speed of the detection model Processing speed of the deep
learning model for the detection of nuclei, applied to three datasets. The training speed is affected
by the distribution of annotations because the algorithm contains a try- and- error process for
cropping, in which the nucleus periphery labels are forced to appear with the nucleus center labels.

• Supplementary file 2. Comparison of linking performances Linking performances on the PH
dataset, on a total number of 259,071 links (including 688 links on cell divisions). Incremental
training was performed by transferring the training parameters from the model pre- trained with the
CE datasets. Linking performance on dividing cells is scored separately.

• Supplementary file 3. Datasets used for training generic detection models Datasets used in
training of the detection models used in Figure 3. Columns correspond to the datasets analysed in
Figure 3 and rows indicate the image datasets included in the training. In each case, the test image
data were excluded from training. The Fluo- C3DH- A549 (Castilla et al., 2019), Fluo- C3DH- H157
(Maška et al., 2013), Fluo- N3DH- CHO (Dzyubachyk et al., 2010), Fluo- N3DH- CE (Murray et al.,
2008) datasets are from the Cell Tracking Challenge (Maška et al., 2014).

• Supplementary file 4. Parameters used for training and prediction using StarDist3D Parameters
used for training and prediction in the StarDist3D model used in Figure 3—figure supplement
1. These parameters were extracted from “ config. json” and “ thresholds. json” generated by the
software.

• Supplementary file 5. Parameters used for training and validation of generic models Parameters
used for training and validation of the generic models used in Figure 3. Size and scale are
represented in the format [X]x[Y]x[Z].

• Supplementary file 6. Parameters used for fine- tuning and prediction using generic models
Parameters used for fine- tuning of the generic models and prediction used in Figure 3. Size and
scale are represented in the format [X]x[Y]x[Z].

• Transparent reporting form

Data availability
The imaging datasets are available at https://doi.org/10.5281/zenodo.4630933. The source code for
the ELEPHANT software is available at https://github.com/elephant-track.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sugawara, Çevrim
and Averof

2021 PH_li13 Zenodo http:// doi. org/ 10.
5281/ zenodo. 4630933

Zenodo, 10.5281/
zenodo.4630933

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Waterston Lab 2008 C. elegans developing
embryo

http:// data. cell trac
king chal lenge. net/
training- datasets/
Fluo- N3DH- CE. zip

Cell Tracking Challenge,
Fluo- N3DH- CE

Kamm R 2017 MDA231 human breast
carcinoma cells

http:// data. cell trac
king chal lenge. net/
training- datasets/
Fluo- C3DL- MDA231.
zip

Cell Tracking Challenge,
Fluo- C3DL- MDA231

References
Alwes F, Enjolras C, Averof M. 2016. Live imaging reveals the progenitors and cell dynamics of limb

regeneration. eLife 5:e19766. DOI: https://doi.org/10.7554/eLife.19766, PMID: 27776632
Amat F, Myers EW, Keller PJ. 2013. Fast and robust optical flow for time- lapse microscopy using super- voxels.

Bioinformatics 29:373–380. DOI: https://doi.org/10.1093/bioinformatics/bts706, PMID: 23242263

https://doi.org/10.7554/eLife.69380
https://doi.org/10.5281/zenodo.4630933
https://github.com/elephant-track
Zenodo,%20http://doi.org/10.5281/zenodo.4630933
Zenodo,%20http://doi.org/10.5281/zenodo.4630933
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
http://celltrackingchallenge.net/3d-datasets/
https://doi.org/10.7554/eLife.19766
http://www.ncbi.nlm.nih.gov/pubmed/27776632
https://doi.org/10.1093/bioinformatics/bts706
http://www.ncbi.nlm.nih.gov/pubmed/23242263

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 17 of 19

Castilla C, Maska M, Sorokin DV, Meijering E, Ortiz- de- Solorzano C. 2019. 3- D Quantification of Filopodia in
Motile Cancer Cells. IEEE Transactions on Medical Imaging 38:862–872. DOI: https://doi.org/10.1109/TMI.
2018.2873842, PMID: 30296215

Cicek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 2016. 3D U- Net: Learning Dense Volumetric
Segmentation from Sparse Annotation. Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (Eds). Medical
Image Computing and Computer- Assisted Intervention - MICCAI 2016. Springer International Publishing. DOI:
https://doi.org/10.1007/978-3-319-46723-8

Crocker JC, Grier DG. 1996. Methods of Digital Video Microscopy for Colloidal Studies. Journal of Colloid and
Interface Science 179:298–310. DOI: https://doi.org/10.1006/jcis.1996.0217

de Medeiros G. 2021. Multiscale light- sheet organoid imaging framework. European Light Microscopy Initiative
2021. . DOI: https://doi.org/10.22443/rms.elmi2021.90

Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. 2010. Advanced level- set- based cell
tracking in time- lapse fluorescence microscopy. IEEE Transactions on Medical Imaging 29:852–867. DOI:
https://doi.org/10.1109/TMI.2009.2038693, PMID: 20199920

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P,
Gérard- Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.
1038/s41586-020-2649-2, PMID: 32939066

Hayashida J, Bise R. 2019. Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in
Low- Frame- Rate. Shen D (Ed). Cal Image Computing and Computer Assisted Intervention – MICCAI 2019.
Springer International Publishing. p. 397–405.

Hayashida J, Nishimura K, Bise R. 2020. MPM: Joint Representation of Motion and Position Map for Cell
Tracking. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3823–3832. DOI: https://
doi.org/10.1109/CVPR42600.2020.00388

He K, Zhang X, Ren S, Sun J. 2015a. Delving Deep into Rectifiers: Surpassing Human- Level Performance on
ImageNet Classification. IEEE International Conference on Computer Vision. 1026–1034. DOI: https://doi.org/
10.1109/ICCV.2015.123

He K, Zhang X, Ren S, Sun J. 2015b. Deep Residual Learning for Image Recognition. arXiv. https:// arxiv. org/ abs/
1512. 03385 DOI: https://doi.org/10.1109/CVPR.2016.90

Horn BKP, Schunck BG. 1981. Determining optical flow. Artificial Intelligence 17:185–203. DOI: https://doi.org/
10.1016/0004-3702(81)90024-2

Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T. 2017. FlowNet 2.0: Evolution of Optical Flow
Estimation with Deep Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition.
1647–1655. DOI: https://doi.org/10.1109/CVPR.2017.179

Kingma DP, Ba J. 2014. Adam: A Method for Stochastic Optimization. [arXiv]. https:// arxiv. org/ abs/ 1412. 6980
Kok RNU, Hebert L, Huelsz- Prince G, Goos YJ, Zheng X, Bozek K, Stephens GJ, Tans SJ, van Zon JS. 2020.

OrganoidTracker: Efficient cell tracking using machine learning and manual error correction. PLOS ONE
15:e0240802. DOI: https://doi.org/10.1371/journal.pone.0240802, PMID: 33091031

Lucas BD, Kanade T. 1981. An iterative image registration technique with an application to stereo vision.
Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2 IJC. 674–679.

Maas AL, Hannun AY, Ng AY. 2013. Rectifier nonlinearities improve neural network acoustic models. CML
Workshop on Deep Learning for Audio, Speech and Language Processing. .

Magnusson KEG, Jalden J, Gilbert PM, Blau HM. 2015. Global linking of cell tracks using the Viterbi algorithm.
IEEE Transactions on Medical Imaging 34:911–929. DOI: https://doi.org/10.1109/TMI.2014.2370951, PMID:
25415983

Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz- Barrutia A, Ortiz- de- Solorzano C. 2013. Segmentation and
shape tracking of whole fluorescent cells based on the Chan- Vese model. IEEE Transactions on Medical
Imaging 32:995–1006. DOI: https://doi.org/10.1109/TMI.2013.2243463, PMID: 23372077

Maška M, Ulman V, Svoboda D, Matula P, Matula P, Ederra C, Urbiola A, España T, Venkatesan S, Balak DMW,
Karas P, Bolcková T, Streitová M, Carthel C, Coraluppi S, Harder N, Rohr K, Magnusson KEG, Jaldén J,
Blau HM, et al. 2014. A benchmark for comparison of cell tracking algorithms. Bioinformatics 30:1609–1617.
DOI: https://doi.org/10.1093/bioinformatics/btu080, PMID: 24526711

Mastodon Science. 2021. mastodon. 2f1572c. GitHub. https://github.com/mastodon-sc/mastodon
Matula P, Maška M, Sorokin DV, Matula P, Ortiz- de- Solórzano C, Kozubek M. 2015. Cell Tracking Accuracy

Measurement Based on Comparison of Acyclic Oriented Graphs. PLOS ONE 10:e0144959. DOI: https://doi.
org/10.1371/journal.pone.0144959, PMID: 26683608

Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. 2019. Deep learning for cellular image analysis.
Nature Methods 16:1233–1246. DOI: https://doi.org/10.1038/s41592-019-0403-1, PMID: 31133758

Moore J, Allan C, Besson S, Burel JM, Diel E, Gault D, Kozlowski K, Lindner D, Linkert M, Manz T, Moore W,
Pape C, Tischer C. 2021. OME- NGFF: a next- generation file format for expanding bioimaging data- access
strategies. Nature Methods 18:1496–1498. DOI: https://doi.org/10.1038/s41592-021-01326-w, PMID:
34845388

Murray JI, Bao Z, Boyle TJ, Boeck ME, Mericle BL, Nicholas TJ, Zhao Z, Sandel MJ, Waterston RH. 2008.
Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nature Methods
5:703–709. DOI: https://doi.org/10.1038/nmeth.1228, PMID: 18587405

Nair V, Hinton GE. 2010. Rectified linear units improve Restricted Boltzmann machines. ICML 2010 -
Proceedings, 27th International Conference on Machine Learning. .

https://doi.org/10.7554/eLife.69380
https://doi.org/10.1109/TMI.2018.2873842
https://doi.org/10.1109/TMI.2018.2873842
http://www.ncbi.nlm.nih.gov/pubmed/30296215
https://doi.org/10.1007/978-3-319-46723-8
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.22443/rms.elmi2021.90
https://doi.org/10.1109/TMI.2009.2038693
http://www.ncbi.nlm.nih.gov/pubmed/20199920
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1109/CVPR42600.2020.00388
https://doi.org/10.1109/CVPR42600.2020.00388
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1371/journal.pone.0240802
http://www.ncbi.nlm.nih.gov/pubmed/33091031
https://doi.org/10.1109/TMI.2014.2370951
http://www.ncbi.nlm.nih.gov/pubmed/25415983
https://doi.org/10.1109/TMI.2013.2243463
http://www.ncbi.nlm.nih.gov/pubmed/23372077
https://doi.org/10.1093/bioinformatics/btu080
http://www.ncbi.nlm.nih.gov/pubmed/24526711
https://github.com/mastodon-sc/mastodon
https://doi.org/10.1371/journal.pone.0144959
https://doi.org/10.1371/journal.pone.0144959
http://www.ncbi.nlm.nih.gov/pubmed/26683608
https://doi.org/10.1038/s41592-019-0403-1
http://www.ncbi.nlm.nih.gov/pubmed/31133758
https://doi.org/10.1038/s41592-021-01326-w
http://www.ncbi.nlm.nih.gov/pubmed/34845388
https://doi.org/10.1038/nmeth.1228
http://www.ncbi.nlm.nih.gov/pubmed/18587405

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 18 of 19

Ouyang W, Aristov A, Lelek M, Hao X, Zimmer C. 2018. Deep learning massively accelerates super- resolution
localization microscopy. Nature Biotechnology 36:460–468. DOI: https://doi.org/10.1038/nbt.4106, PMID:
29658943

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J. 2019.
PyTorch: An Imperative Style, High- Performance Deep Learning Library. arXiv. https:// arxiv. org/ abs/ 1912. 01703

Pietzsch T, Saalfeld S, Preibisch S, Tomancak P. 2015. BigDataViewer: visualization and processing for large
image data sets. Nature Methods 12:481–483. DOI: https://doi.org/10.1038/nmeth.3392, PMID: 26020499

Ronneberger O, Fischer P, Brox T. 2015. U- Net: Convolutional Networks for Biomedical Image Segmentation.
Ronneberger O (Ed). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics. Springer. p. 234–241. DOI: https://doi.org/10.1007/978-3-
319-24574-4_28

Scherr T, Löffler K, Böhland M, Mikut R. 2020. Cell segmentation and tracking using CNN- based distance
predictions and a graph- based matching strategy. PLOS ONE 15:e0243219. DOI: https://doi.org/10.1371/
journal.pone.0243219, PMID: 33290432

Schindelin J, Arganda- Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open- source
platform for biological- image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019,
PMID: 22743772

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature
Methods 9:671–675. DOI: https://doi.org/10.1038/nmeth.2089, PMID: 22930834

Sugawara K. 2021a. elephant server. swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458. Software
Heritage. https://archive.softwareheritage.org/swh:1:dir:a3028f2a4adb71c0cc6249963f0777c6198d8602;
origin=https://github.com/elephant-track/elephant-server;visit=swh:1:snp:2efc080405dc4ba11998f598bb4e
9e785f39d314;anchor=swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458

Sugawara K. 2021b. Align Slices 3D+t extension. swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7.
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:663a99923602d153e97af69164cd6762
ed80f51d;origin=https://github.com/elephant-track/align-slices3d;visit=swh:1:snp:d18a8bf98eee86f6fe757f20
87dcca11b051f897;anchor=swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7

Sugawara K. 2021c. ELEPHANT: Tracking cell lineages in 3D by incremental deep learning.
swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8. SoftwareHeritage. https://archive.softwareheritage.
org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/
elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17
ce75f355e18f815653ec0aa4bbb8

Tseng Q, Wang I, Duchemin- Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Théry M, Balland M. 2011. A
new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or
reduce cell contraction levels. Lab on a Chip 11:2231–2240. DOI: https://doi.org/10.1039/c0lc00641f, PMID:
21523273

Ulman V, Maška M, Magnusson KEG, Ronneberger O, Haubold C, Harder N, Matula P, Matula P, Svoboda D,
Radojevic M, Smal I, Rohr K, Jaldén J, Blau HM, Dzyubachyk O, Lelieveldt B, Xiao P, Li Y, Cho S- Y, Dufour AC,
et al. 2017. An objective comparison of cell- tracking algorithms. Nature Methods 14:1141–1152. DOI: https://
doi.org/10.1038/nmeth.4473, PMID: 29083403

van der Walt S, Schönberger JL, Nunez- Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, scikit-
image contributors. 2014. scikit- image: image processing in Python. PeerJ 2:e453. DOI: https://doi.org/10.
7717/peerj.453, PMID: 25024921

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E,
Kern R, Larson E, Carey CJ, et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2, PMID: 32015543

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. 2004. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing 13:600–612. DOI: https://doi.org/10.1109/tip.2003.819861,
PMID: 15376593

Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S,
Rocha- Martins M, Segovia- Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J, Tomancak P,
Royer L, Jug F, et al. 2018. Content- aware image restoration: pushing the limits of fluorescence microscopy.
Nature Methods 15:1090–1097. DOI: https://doi.org/10.1038/s41592-018-0216-7, PMID: 30478326

Weigert M, Schmidt U, Haase R, Sugawara K, Myers G. 2020. Star- convex Polyhedra for 3D Object Detection
and Segmentation in Microscopy. 2020 IEEE Winter Conference on Applications of Computer Vision. 3655–
3662. DOI: https://doi.org/10.1109/WACV45572.2020.9093435

Wen C, Miura T, Voleti V, Yamaguchi K, Tsutsumi M, Yamamoto K, Otomo K, Fujie Y, Teramoto T, Ishihara T,
Aoki K, Nemoto T, Hillman EMC, Kimura KD. 2021. 3DeeCellTracker, a deep learning- based pipeline for
segmenting and tracking cells in 3D time lapse images. eLife 10:e59187. DOI: https://doi.org/10.7554/eLife.
59187, PMID: 33781383

Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P,
Pavlopoulos A. 2018. Multi- view light- sheet imaging and tracking with the MaMuT software reveals the cell
lineage of a direct developing arthropod limb. eLife 7:e34410. DOI: https://doi.org/10.7554/eLife.34410,
PMID: 29595475

https://doi.org/10.7554/eLife.69380
https://doi.org/10.1038/nbt.4106
http://www.ncbi.nlm.nih.gov/pubmed/29658943
https://doi.org/10.1038/nmeth.3392
http://www.ncbi.nlm.nih.gov/pubmed/26020499
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1371/journal.pone.0243219
https://doi.org/10.1371/journal.pone.0243219
http://www.ncbi.nlm.nih.gov/pubmed/33290432
https://doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://archive.softwareheritage.org/swh:1:dir:a3028f2a4adb71c0cc6249963f0777c6198d8602;origin=https://github.com/elephant-track/elephant-server;visit=swh:1:snp:2efc080405dc4ba11998f598bb4e9e785f39d314;anchor=swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458
https://archive.softwareheritage.org/swh:1:dir:a3028f2a4adb71c0cc6249963f0777c6198d8602;origin=https://github.com/elephant-track/elephant-server;visit=swh:1:snp:2efc080405dc4ba11998f598bb4e9e785f39d314;anchor=swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458
https://archive.softwareheritage.org/swh:1:dir:a3028f2a4adb71c0cc6249963f0777c6198d8602;origin=https://github.com/elephant-track/elephant-server;visit=swh:1:snp:2efc080405dc4ba11998f598bb4e9e785f39d314;anchor=swh:1:rev:8935febdbcb2e2d6ba2220ca139e765db44e6458
https://archive.softwareheritage.org/swh:1:dir:663a99923602d153e97af69164cd6762ed80f51d;origin=https://github.com/elephant-track/align-slices3d;visit=swh:1:snp:d18a8bf98eee86f6fe757f2087dcca11b051f897;anchor=swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7
https://archive.softwareheritage.org/swh:1:dir:663a99923602d153e97af69164cd6762ed80f51d;origin=https://github.com/elephant-track/align-slices3d;visit=swh:1:snp:d18a8bf98eee86f6fe757f2087dcca11b051f897;anchor=swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7
https://archive.softwareheritage.org/swh:1:dir:663a99923602d153e97af69164cd6762ed80f51d;origin=https://github.com/elephant-track/align-slices3d;visit=swh:1:snp:d18a8bf98eee86f6fe757f2087dcca11b051f897;anchor=swh:1:rev:36c6cb6ccb7e308f9349ec26294d408c35be1ed7
https://archive.softwareheritage.org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8
https://archive.softwareheritage.org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8
https://archive.softwareheritage.org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8
https://archive.softwareheritage.org/swh:1:dir:e69da53d731182d6c6ffcb97588396e59a472e4f;origin=https://github.com/elephant-track/elephant-client;visit=swh:1:snp:f7f13f47ba9af8edaef97291b89bc4825a63a1b9;anchor=swh:1:rev:449f9ff8ad17ce75f355e18f815653ec0aa4bbb8
https://doi.org/10.1039/c0lc00641f
http://www.ncbi.nlm.nih.gov/pubmed/21523273
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.1038/nmeth.4473
http://www.ncbi.nlm.nih.gov/pubmed/29083403
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
http://www.ncbi.nlm.nih.gov/pubmed/25024921
https://doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.1109/tip.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
https://doi.org/10.1038/s41592-018-0216-7
http://www.ncbi.nlm.nih.gov/pubmed/30478326
https://doi.org/10.1109/WACV45572.2020.9093435
https://doi.org/10.7554/eLife.59187
https://doi.org/10.7554/eLife.59187
http://www.ncbi.nlm.nih.gov/pubmed/33781383
https://doi.org/10.7554/eLife.34410
http://www.ncbi.nlm.nih.gov/pubmed/29595475

 Tools and resources Developmental Biology

Sugawara et al. eLife 2022;11:e69380. DOI: https://doi.org/10.7554/eLife.69380 19 of 19

Wu Y, He K. 2020. Group Normalization. International Journal of Computer Vision 128:742–755. DOI: https://
doi.org/10.1007/s11263-019-01198-w

https://doi.org/10.7554/eLife.69380
https://doi.org/10.1007/s11263-019-01198-w
https://doi.org/10.1007/s11263-019-01198-w

	Tracking cell lineages in 3D by incremental deep learning
	Introduction
	Results and discussion
	Materials and methods
	Image datasets
	ELEPHANT platform architecture
	Computer setup and specifications
	Dataset preparation
	Algorithm for detection
	Algorithm for linking
	Preparation of generic pre-trained models and fine-tuning with sparse annotations (Figure 3)
	Comparison between ELEPHANT and StarDist3D (Figure 3 – Supplement 1)
	Evaluation of overfitting of the detection model (Figure 3 – Supplement 2)
	Detection and tracking in the CE datasets (Figures 2 and 4)
	Detection and tracking in the PH dataset
	Analysis of CE and PH datasets
	Evaluation of cell tracking performance
	Data availability
	Code availability

	Acknowledgements
	Additional information
	Competing interests
	Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References

