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OBJECTIVE—Retinol-binding protein (RBP) 4 is an adipokine
of which plasma levels are elevated in obesity and type 2
diabetes. The aims of the study were to identify determinants of
plasma RBP4 and RBP4 mRNA expression in subcutaneous
adipose tissue (SAT) and skeletal muscle and to investigate the
association between RBP4 and in vivo measures of glucose
metabolism.

RESEARCH DESIGN AND METHODS—The study population
included 298 elderly twins (aged 62–83 years), with glucose
tolerance ranging from normal to overt type 2 diabetes, and 178
young (aged 25–32 years) and elderly (aged 58–66 years) nondi-
abetic twins. Peripheral and hepatic insulin sensitivity was
assessed by a euglycemic-hyperinsulinemic clamp, and �-cell
function was estimated from an intravenous glucose tolerance
test.

RESULTS—The influence of environmental versus genetic fac-
tors in the regulation of plasma RBP4 increased with age. Plasma
RBP4 was elevated in type 2 diabetes and increased with
duration of disease. Plasma RBP4 correlated inversely with
peripheral, but not hepatic, insulin sensitivity. However, the
association disappeared after correction for covariates, including
plasma adiponectin. Plasma retinol, and not RBP4, was inversely
associated with insulin secretion. SAT RBP4 expression corre-
lated positively with GLUT4 expression and inversely with
glucose tolerance. Skeletal muscle RBP4 expression reflected
intramuscular fat, and although it was suppressed by insulin, no
association with insulin sensitivity was evident. RBP4 expression
was not associated with circulatory RBP4.

CONCLUSIONS—In conclusion, our data indicate that RBP4
levels in plasma, skeletal muscle, and fat may be linked to insulin
resistance and type 2 diabetes in a secondary and noncausal
manner. Diabetes 58:54–60, 2009

R
etinol-binding protein (RBP) 4 is a transport
protein for retinoids such as vitamin A in the
blood (1). It is mainly produced in the liver but
has recently been identified as an adipokine

(2,3). The adipose tissue source, which secretes RBP4 into
the circulation, may predominantly be visceral fat, includ-

ing tissue (i.e., hepatic) fat depots (4,5). Recently, RBP4
expression has been detected in skeletal muscle, and
RBP4 was accordingly suggested to be a myokine (6,7).

Plasma RBP4 concentration may be under the influence
of age and obesity (8,9). In addition, genes could play a
role in determination of plasma RBP4, since certain single
nucleotide polymorphisms in the RBP4 gene promoter
have been shown to be associated with elevated plasma
RBP4 (10). Nevertheless, little is known about the relative
importance of genes versus environmental factors in de-
termination of plasma RBP4.

Elevated plasma RBP4 levels have been observed in
subjects with insulin resistance and type 2 diabetes
(4,5,8,9,11,12). Downregulation of adipocyte GLUT4, caus-
ing impaired glucose uptake, is thought to represent a
mechanism for upregulation of RBP4 secretion (3,13). An
intervention study (3) in rodents has demonstrated that
lowering of plasma RBP4 ameliorates insulin resistance.
Thus, RBP4 may be a putative drug target for treatment of
type 2 diabetes. The cellular mechanisms of action of
RBP4 are largely unknown and may be mediated by the
protein itself as well as its carried retinoids. It has long
been known that vitamin A is involved in the regulation of
metabolism. Vitamin A depletion may enhance hepatic
oxidation of citric acid cycle intermediates (14), whereas
administration of 13-cis-retinoic acid to healthy humans
has been shown to induce reversible insulin resistance,
including reduced glucose oxidation (15). Retinoids act as
regulators of gene transcription through a series of nuclear
receptors (16). Among others, the gene for PEPCK is
controlled by retinoids (17), and it has been demonstrated
that injection of RBP4 causes an upregulation of hepatic
PEPCK mRNA (3). In the present study, we aimed to
investigate determinants of plasma RBP4 as well as RBP4
mRNA expression in adipose tissue and skeletal muscle
tissue and their influences on in vivo glucose metabolism.

RESEARCH DESIGN AND METHODS

Population 1 consisted of 298 monozygotic (MZ) (n � 126, 49 pairs and 28
single twins) and same-sex dizygotic (DZ) (n � 172, 56 pairs and 60 single
twins) elderly twins aged 62–83 years (18,19). Oral glucose tolerance test
(OGTT) data were obtained in 295 subjects for which glucose tolerance status
ranged from normal (n � 170) over impaired glucose tolerance (n � 83) to
overt type 2 diabetes (n � 42). A total of 22 subjects had known type 2
diabetes and were treated with diet or glucose-lowering medication. Popula-
tion 2 included 178 MZ (n � 97, 48 pairs and 1 single twin) and same-sex DZ
(n � 81, 40 pairs and 1 single twin) twins without type 2 diabetes divided into
two age-groups (aged 25–32 and 58–66 years) (20). Zygosity was determined
by a questionnaire concerning phenotypic similarities (18) and, in population
2, additionally by polymorphic genetic markers (21). The study was approved
by the regional ethical committees and conducted in accordance with the
Helsinki Declaration.
Clinical examination. Both populations underwent measures of height and
weight for calculation of BMI and a 75-g OGTT. In addition, subjects in
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population 2 underwent a dual-energy X-ray absorptiometry scan with mea-
surement of total body fat percentage (22). Peripheral insulin sensitivity was
determined by a 2-h (40 mU/m2 per min) euglycemic-hyperinsulinemic clamp,
which included 3-3H-glucose infusion for measurement of hepatic glucose
production (HGP), and indirect calorimetry for measurements of glucose
oxidation (GOX) and fat oxidation (FOX) rates (20,23,24). Insulin-stimulated
glucose disposal rate (Rd) and HGP were calculated by Steele’s equations for
non–steady state (25). Hepatic insulin sensitivity was assessed as the absolute
difference in HGP between the basal state and upon insulin infusion (�HGP)
and as hepatic insulin sensitivity index (i.e., basal HGP multiplied by fasting
plasma insulin). �-Cell function was estimated from an intravenous glucose
tolerance test by calculation of the first-phase disposition index (Di1) (20).
Finally, physical fitness was estimated as VO2max calculated from the maximal
load on an ergometer bicycle (26).
Tissue biopsies. Subcutaneous adipose tissue (SAT) biopsies were collected
from the abdomen in a subgroup of population 1 (n � 196). Skeletal muscle
biopsies were obtained from the vastus lateralis muscle before and during
insulin stimulation in a subgroup of population 2 (n � 96) (23). The tissue
specimens were taken under local anesthesia (lidocaine) using a Bergström
needle with suction applied and were quickly blotted on filter paper and
frozen in liquid nitrogen.
Analytical methods. Plasma glucose was measured by the glucose dehydro-
genase oxidation method (20). Fasting levels of plasma RBP4 were deter-
mined by enzyme-linked immunosorbent assay (ELISA) (27). The ELISA
results were validated by Western blotting. A total amount of 0.2 �l plasma
was diluted 1:100 and loaded in 10 �l of loading buffer (LDS sample buffer;
Invitrogen, Carlsbad, CA) and 1 mol/l dithiothreitol mixed 5:2 on 10% Bis-Tris
gels (Invitrogen). Electrophoresis in NuPAGE MES running buffer (Invitro-
gen) and blotting in NuPAGE transfer buffer were conducted according to the
manufacturer’s recommendations. The membrane was incubated overnight in
polyclonal anti-RBP4 antibody (cat. no. A0040; Dako, Glostrup, Denmark)
diluted 1:500. Detection and membrane development were performed with a
polyclonal horseradish peroxidase–linked anti-rabbit antibody (Cell Signaling,
Danvers, MA) diluted 1:2,000 and LumiGLO reagent (Cell Signaling). Imaging
and protein quantification were carried out by means of an LAS-3000 Image
Reader (FujiFilm, Tokyo, Japan) and MultiGauge 2.0 software (FujiFilm). The
agreement between plasma RBP4 quantities measured by ELISA and Western
blotting was good (r � 0.76, P � 0.001). Fasting plasma retinol was measured
by high-pressure liquid chromatography (28). In all 468 plasma samples
analyzed, mean RBP4 was 2.58 � 0.70 �mol/l, whereas mean retinol was
2.19 � 0.58 �mol/l. RBP4 and retinol concentrations correlated tightly (r �
0.93, P � 0.001). Fasting plasma interleukin-6 and tumor necrosis factor-�
levels were measured by Quantikine ELISA kits (R&D systems, Minneapolis,
MN), and fasting plasma adiponectin was measured by a human adiponectin
ELISA kit (Linco Research, St. Charles, MO) (29,30).

Total RNA was isolated from skeletal muscle and SAT with TRI reagent
(Sigma-Aldrich, St. Louis, MO). Random-hexamer primed reverse-transcrip-
tion reactions were performed from 1 �g of total RNA in 100 �l of water using
a RevertAid first-strand cDNA synthesis kit (Fermentas Life Sciences, Ontario,
Canada). RBP4, GLUT4, and ADIPOQ (adiponectin) cDNA was quantified by
TaqMan real-time PCR on an ABI Prism 7900 HT system (Applied Biosystems,
Foster City, CA) using gene expression assays for RBP4 (Hs00198830_m1),
GLUT4 (Hs00168966_m1), and ADIPOQ (Hs00605917_m1). The mRNA quan-
tities of target genes were normalized to the mRNA level of PPIA (cyclophilin
A) (4326316E) and expressed in arbitrary units (AU). The reactions were
performed with 20–80 ng of cDNA in 4.5 �l of water, 0.5 �l of gene expression
assay, and 5 �l of Universal PCR Master Mix (Applied Biosystems).
Statistical methods

Mixed ANOVA. Uni- and multivariate analyses were conducted using the
PROC MIXED procedure in SAS (version 9.1; SAS Institute, Cary, NC), with
adjustment for zygosity and intra–twin pair relationships (23). Furthermore,
adjustment for sex, age, obesity, and physical fitness was performed. Before
analysis, the response variable was transformed by natural logarithm.
Correlation analyses. Pearson or Spearman correlation coefficients were
calculated. The total phenotypic variance is the sum of the variance attribut-
able to effects of both genetic and environmental factors. The heritability (h2)
expresses the proportion of variance attributable to genetic variance and was
calculated from intraclass correlations in MZ and DZ twins [h2 � (rMZ �
rDZ) 	 2] (31).
Data presentation. Data are presented as means � SD. Parameter estimates
are shown in percentage with 95% CIs. Statistical significance was defined as
P � 0.05.

RESULTS

Tables 1 and 2 summarize the characteristics including
age, anthropometry, and plasma RBP4 and retinol of
subjects from populations 1 and 2.
Factors regulating circulating RBP4
Age. In population 2, plasma RBP4 levels were signifi-
cantly lower in young (45.8 � 11.6 �g/ml) compared with
elderly (51.2 � 9.8 �g/ml) subjects (P � 0.009). When
adjusted for sex and body fat percentage, age was an
independent predictor of plasma RBP4 (P � 0.006).
Sex. Among elderly subjects in both populations 1 and 2,
plasma RBP4 was slightly (though not significantly) higher
in male subjects (population 1: 57.9 � 16.5 �g/ml; popula-
tion 2: 52.9 � 9.4 �g/ml) than in female subjects (popula-
tion 1: 54.0 � 13.6 �g/ml; population 2: 49.7 � 10.1 �g/ml;
P � 0.09 and P � 0.2, respectively). Among young subjects,
the differences in plasma RBP4 between male and female
subjects reached the level of significance (male subjects:
50.1 � 10.8 �g/ml; female subjects: 39.8 � 10.1 �g/ml; P �
0.001). In addition, when adjusted for age and body fat
percentage, sex was an independent predictor of plasma
RBP4 in population 2 (P � 0.001).
Heredity. In population 1, the intraclass correlation co-
efficients were alike in MZ and DZ twins (rMZ � 0.52, rDZ �
0.35; P � 0.3). Similarly, in population 2, there were no
statistically significant differences in intraclass correla-
tions, neither among young (rMZ � 0.75, rDZ � 0.44; P �

TABLE 1
Characteristics including age, anthropometry, and plasma RBP4
and retinol of subjects from population 1

Variable MZ twins DZ twins P

n (male/female) 126 (71/55) 172 (75/97) —
Age (years) 74.2 � 4.8 73.4 � 5.4 0.3
BMI 26.3 � 4.7 26.1 � 3.9 0.9
Waist-to-hip ratio 0.92 � 0.09 0.89 � 0.10 0.05
RBP4 (�g/ml) 56.4 � 17.0 55.1 � 16.7 0.4
Retinol (�mol/l) 2.25 � 0.67 2.21 � 0.55 0.5

Data are means � SD unless otherwise indicated.

TABLE 2
Characteristics including age, anthropometry, and plasma RBP4 and retinol of subjects from population 2

Variable
Young MZ

twins
Young DZ

twins P

Elderly MZ
twins

Elderly DZ
twins P

n (male/female) 57 (34/23) 38 (22/16) — 40 (22/18) 43 (16/27) —
Age (years) 28.2 � 1.9 27.4 � 2.0 0.06 61.5 � 2.7 62.0 � 2.0 0.3
BMI 24.3 � 3.0 24.1 � 3.3 0.9 26.4 � 3.6 25.8 � 4.9 0.7
Waist-to-hip ratio 0.85 � 0.09 0.84 � 0.07 0.8 0.91 � 0.09 0.87 � 0.11 0.9
Body fat (%) 22.3 � 6.5 21.2 � 6.8 0.3 27.6 � 10.0 27.7 � 10.0 0.3
RBP4 (�g/ml) 46.2 � 11.7 45.3 � 11.7 0.9 51.3 � 10.4 51.0 � 9.4 0.9
Retinol (�mol/l) 1.92 � 0.50 1.87 � 0.48 0.9 2.20 � 0.44 2.19 � 0.42 0.9

Data are means � SD unless otherwise indicated.
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0.09) nor elderly (rMZ � 0.40, rDZ � 0.53; P � 0.6) twins.
The heritability estimates for plasma RBP4 were h2 � 0.63
for young twins from population 2 and h2 � 0.35 for elderly
twins from population 1. A heritability estimate was not
calculable for elderly twins from population 2 because of
a higher intraclass correlation in DZ twins.
Obesity. Subjects were stratified according to BMI (lean:
BMI �25 kg/m2, overweight: 25 � BMI � 30 kg/m2, and
obese: BMI �30 kg/m2). In population 1, plasma RBP4 in
lean (n � 119), overweight (n � 134), and obese (n � 43)
subjects was 52.4 � 14.8, 57.7 � 14.6, and 58.3 � 16.6
�g/ml, respectively, with a significant difference between
lean and obese subjects (P � 0.003). In population 2,
plasma RBP4 differed between lean and obese subjects
(P � 0.004) within the young age-group (lean [n � 63]:
43.9 � 11.0 �g/ml; overweight [n � 25]: 48.5 � 12.0 �g/ml;
obese [n � 4]: 58.9 � 10.8 �g/ml), whereas no difference in
plasma RBP4 was seen in the elderly subjects stratified for
BMI (lean [n � 26]: 50.5 � 10.5 �g/ml; overweight [n � 37]:
51.0 � 10.7 �g/ml; obese [n � 15]: 52.6 � 6.5 �g/ml). When
adjusted for sex and age, BMI was a significant predictor
of plasma RBP4 in both populations 1 and 2 (P � 0.02 and
P � 0.005, respectively).
Metabolic effects of circulating RBP4 and retinol
Glucose tolerance. Mean plasma RBP4 concentrations
were higher in subjects with type 2 diabetes (63.7 � 19.4
�g/ml) and impaired glucose tolerance (55.1 � 14.2 �g/ml)
compared with subjects with normal glucose tolerance
(53.6 � 13.3 �g/ml) (Fig. 1), and the difference between
subjects with normal glucose tolerance and type 2 diabe-
tes achieved statistical significance (P � 0.001). Subjects
with known type 2 diabetes (n � 22, 71.2 � 21.9 �g/ml)
had significantly higher plasma RBP4 than subjects with
newly diagnosed type 2 diabetes (n � 26, 58.2 � 16.2
�g/ml; P � 0.02). Additionally, RBP4 was positively asso-
ciated with glucose tolerance (i.e., 2-h post OGTT plasma
glucose levels), independent of sex, age, and BMI (P �
0.01).
Peripheral insulin sensitivity. In both young and el-
derly twins, plasma RBP4 correlated inversely with Rd
(r � �0.30, P � 0.004 and r � �0.37, P � 0.001,
respectively) (Fig. 2). When adjusted for sex, age, body fat
percentage, and VO2max, RBP4 was independently associ-
ated with Rd with an effect of �4.8% (�9.6 to –0.04) for a
1-SD increase in RBP4. The corresponding effect of retinol
on Rd was �5.0% (�9.2 to –0.4) (P � 0.04). When plasma
concentrations of tumor necrosis factor-�, interleukin-6,

and adiponectin were introduced into the multivariate
model, the independent association between Rd and
plasma RBP4 or retinol disappeared (P � 0.3 and P � 0.07,
respectively). In contrast, plasma adiponectin was posi-
tively associated with Rd, independent of sex, age, body fat
percentage, plasma interleukin-6, plasma tumor necrosis
factor-�, and plasma RBP4 (P � 0.001).

Plasma RBP4 correlated with insulin-stimulated rates of
glucose and fat oxidation in young (r � �0.36, P � 0.001;
and r � 0.24, P � 0.02, respectively) but not in elderly (r �
�0.20, P � 0.08; and r � 0.14, P � 0.2, respectively)
subjects. Nevertheless, after adjustment for sex, age, body
fat percentage, and VO2max, plasma RBP4 was a significant
predictor of GOX and FOX (P � 0.02 and P � 0.007,
respectively), with a �6.0% decrease (�11.0 to –1.0) in
GOX and a 20.7% increase (5.8–35.7) in FOX for a 1-SD
increase in RBP4. The similar effects of retinol on GOX
and FOX were �4.9% (�9.4 to 0.01; P � 0.05) and 22.7%
(3.0–49.9; P � 0.01), respectively.
Hepatic insulin sensitivity. �HGP correlated inversely
with plasma RBP4 in both young (r � �0.27, P � 0.01) and
elderly (r � �0.25, P � 0.03) twins. However, when
adjusted for sex, age, and body fat percentage, plasma
RBP4 was not an independent predictor of �HGP (P �
0.5). There was no significant correlation between plasma
RBP4 and hepatic insulin sensitivity index (young: r �
�0.041, P � 0.7; elderly: r � 0.15, P � 0.2). Furthermore,
plasma retinol was not associated with hepatic insulin
sensitivity (data not shown).
�-Cell function. Di1 correlated with plasma RBP4 in
elderly (r � �0.30, P � 0.01) but not in young (r � �0.057,
P � 0.6) subjects. However, the association disappeared
upon adjustment for sex, age, and body fat percentage
(P � 0.1). On the other hand, when replacing RBP4 with
retinol in the multivariate analysis, retinol was indepen-
dently and inversely associated with Di1 (P � 0.04). The
effect of a 1-SD increase in plasma retinol was associated
with a �9.2% decrease (�16.3 to –0.7) of Di1.
Tissue RBP4 mRNA expression
SAT. RBP4 mRNA expression was significantly higher in
female subjects (n � 94, 1.09 � 0.50 AU) compared with
male subjects (n � 78, 0.84 � 0.42; P � 0.001). Subjects
with normal glucose tolerance (n � 94, 1.06 � 0.53 AU)
had significantly higher RBP4 mRNA expression than
subjects with impaired glucose tolerance (n � 49, 0.93 �
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FIG. 1. Plasma RBP4 and glucose tolerance. Plasma RBP4 concentra-
tion (means � SE) in subjects with normal glucose tolerance (NGT; n �
170), impaired glucose tolerance (IGT; n � 83), and type 2 diabetes
(T2D; n � 42). P values are adjusted for twin pair and zygosity status.
�P < 0.001 for normal glucose tolerance vs. type 2 diabetes.
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0.001).
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0.44 AU) and type 2 diabetes (n � 28, 0.79 � 0.31 AU; P �
0.01 and P � 0.001, respectively) (Fig. 3). There was a
positive correlation between GLUT4 and RBP4 expression
(r � 0.61, P � 0.001) (Fig. 4). GLUT4 expression was
inversely associated with BMI (r � �0.40, P � 0.001) and
with 2-h post-OGTT plasma glucose (r � �0.24, P �
0.002), whereas RBP4 expression did not correlate with
BMI (r � �0.052, P � 0.5). No correlation was seen
between RBP4 expression and plasma RBP4 (r � �0.12,
P � 0.1).
Skeletal muscle. RBP4 mRNA expression in skeletal
muscle was significantly lower in male subjects (n � 51,
8.12 � 10.02 AU) than in female subjects (n � 45, 38.75 �
55.69 AU; P � 0.001) and in young (n � 34, 9.94 � 12.21
AU) compared with elderly (n � 62, 29.91 � 49.47 AU)
subjects (P � 0.02). In both young and elderly subjects,
RBP4 expression correlated positively with body fat per-
centage (r � 0.37, P � 0.03; and r � 0.41, P � 0.001,
respectively) and with skeletal muscle adiponectin expres-
sion (r � 0.86, P � 0.001) (Fig. 5). No significant correla-
tion was found between GLUT4 and RBP4 expression in

young and elderly subjects (r � �0.32, P � 0.08; and r �
�0.074, P � 0.6, respectively). RBP4 expression was
significantly reduced upon insulin stimulation (basal:
22.48 � 41.53 AU, insulin: 11.68 � 18.54 AU; P � 0.004)
(Fig. 6). However, when adjusted for sex, age, body fat
percentage, and VO2max, insulin-stimulated RBP4 expres-
sion was not an independent predictor of Rd (P � 0.4). No
correlation was observed between basal RBP4 expression
and plasma RBP4 concentration (r � 0.0090, P � 0.9).

DISCUSSION

Elevated plasma RBP4 has been found to be associated
with insulin resistance and type 2 diabetes in some
(4,5,8,9,11,12), but not all (32–35), studies. The present
study takes a step further in the investigation of the role of
RBP4 as a mediator of insulin resistance. The unique twin
study design combined with detailed metabolic character-
ization as well as eligible tissue specimens made it possi-
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ble to explore areas that have not been fully covered
previously. These include the relative influence of genes
versus environment on circulating RBP4, the putative role
of RBP4 as a myokine, and, finally, the influence of RBP4
on distinct in vivo measures of glucose metabolism.
Regulating factors of plasma RBP4. The relative impor-
tance of genetic versus environmental etiological factors
was determined by an estimate of heritability, which is the
proportion of variance attributed to genetic factors. In the
young twins, the heritability for plasma RBP4 was 63%,
indicating a genetic component, which is in accordance
with previous findings of an association between variants
of the RBP4 gene and plasma RBP4 levels (10). Interest-
ingly, the genetic influence declined with advancing age,
suggesting that environmental factors may be the predom-
inant regulator of plasma RBP4 in the elderly.

Male subjects had higher plasma RBP4 levels than
female subjects, which is consistent with previous findings
(4,8). The sex-specific difference in plasma RBP4 concen-
tration seemed to decrease with age. Thus, among young
twins, the plasma RBP4 concentration was 26% higher in
male than in female subjects, whereas in elderly subjects,
the difference was only 6–7%. It may be speculated that the
greater difference in plasma RBP4 between male and
female subjects in young compared with elderly subjects
could be due to an influence of, and possibly regulation by,
sex hormones, although oral contraception has been dem-
onstrated to elevate plasma RBP4 (36). A relatively larger
age-related increase in plasma RBP4 in female subjects
than in male subjects could also be due to an alteration in
body fat distribution toward android shape in aging female
subjects. Elderly subjects had 12% higher plasma RBP4
concentration than young subjects. The fact that aging
seemed to play a role in determination of plasma RBP4 is
in agreement with a previous study (8).

Obesity, as expressed by BMI, has previously been
shown to be positively associated with plasma RBP4
(9,37). In accordance, we demonstrated 4–34% higher
plasma RBP4 in obese compared with lean subjects,
depending on twin population. Importantly, the associa-
tion between overall obesity and plasma RBP4 was inde-
pendent of sex and age. It has been demonstrated that
particularly hepatic fat accumulation may lead to elevation
of plasma RBP4 (5,38). Supporting this theory, we found a
positive association between plasma levels of alanine
amminotransferase and RBP4 (data not shown). In addi-
tion to genes, sex, and obesity, factors such as lipid
metabolism (32), inflammation (39), hepatic function (40),
and renal function (41) may influence plasma RBP4 levels.
These areas were not investigated in the present study.
Plasma RBP4 and in vivo glucose metabolism. Molar
plasma concentrations of RBP4 and retinol correlated
tightly, and therefore associations to metabolic rates were
almost identical for RBP4 and retinol. When stratifying
according to glucose tolerance, we found that diabetic
subjects had 19% higher plasma RBP4 concentration than
subjects with normal glucose tolerance, and the multivar-
iate analysis confirmed that plasma RBP4 predicted glu-
cose tolerance independently of sex, age, and obesity.
Plasma RBP4 may therefore represent a biomarker for
impairment of glucose tolerance. Interestingly, plasma
RBP4 was significantly higher in subjects with known type
2 diabetes (i.e., a longer duration of disease) than in
subjects with newly diagnosed type 2 diabetes, possibly
related to the higher plasma glucose levels in the former

group. Hence, an upregulation of plasma RBP4 could be a
secondary event to hyperglycemia.

Previous studies (4,5,9,12) have demonstrated an in-
verse association between RBP4 and peripheral insulin
sensitivity as determined by the euglycemic-hyperinsuline-
mic clamp technique. In the present study, we confirm this
association, independent of the known influencing factors,
age, body fat percentage, and physical fitness. However,
the association with Rd was markedly surpassed by
plasma adiponectin, making it less likely that plasma RBP4
is a key determinant of peripheral glucose uptake. In
contrast, the effect of plasma RBP4 on insulin-stimulated
fat oxidation rate was noteworthy. It has been demon-
strated that treatment of adipocytes with retinoic acid, a
major retinol metabolite, led to decreased adipogenesis
and increased fat oxidation (42). Thus, plasma RBP4
could, via delivery of retinol to the cells, stimulate fat
oxidation, thereby decreasing glucose oxidation according
to Randle’s cycle (43).

It has been shown in rodents that elevation of plasma
RBP4 was associated with an upregulation of HGP, which
was ascribed to an increased expression of PEPCK (3). To
our knowledge, the present study is the first to describe
the relationship between plasma RBP4 and hepatic insulin
sensitivity measured by the gold standard euglycemic-
hyperinsulinemic clamp in human subjects. Importantly,
these data do not support a role of plasma RBP4 or retinol
in regulation of hepatic insulin sensitivity.

Plasma retinol, but not RBP4, was an independent,
negative predictor of Di1. It has previously been demon-
strated that plasma RBP4 was associated with impaired
�-cell function in elderly subjects (34). Our data indicate
that the observed association could be mediated by reti-
nol. However, the fact that no association was found
between plasma retinol and Di1 in young subjects contra-
dicts a causal connection between plasma retinol and
�-cell failure.
Skeletal muscle and adipose tissue RBP4 mRNA ex-
pression. In accordance with a previous study (6), RBP4
expression in skeletal muscle was low compared with that
in SAT (data not shown). Female subjects had significantly
higher RBP4 expression than male subjects, and mRNA
levels correlated with total body fat percentage and with
skeletal muscle adiponectin mRNA expression. Female
sex is associated with increased body fat percentage,
including intramuscular fat depots (44), and adiponectin is
almost exclusively expressed in adipocytes (45), hence
representing a surrogate for adipose tissue. Therefore, it is
plausible that the RBP4 expression level in skeletal muscle
reflects the amount of intramuscular fat rather than RBP4
being a true myokine synthesized by the muscle fibers. The
lack of correlation between skeletal muscle GLUT4 and
RBP4 expression supports this theory. It has previously
been demonstrated that intramuscular fat content is not
associated with plasma RBP4 (5). Accordingly, we did not
find a correlation between muscle RBP4 expression and
plasma RBP4. The suppression of skeletal muscle RBP4
expression to 55% of the basal level upon insulin infusion
suggested a connection between glucose metabolism and
skeletal muscle RBP4 expression. However, we did not
demonstrate a relationship between skeletal muscle RBP4
expression and peripheral insulin sensitivity.

Adipocyte GLUT4 mRNA and GLUT4 protein have been
shown to be downregulated in obese and type 2 diabetic
subjects (46). In the present study, these data were con-
firmed at mRNA level. It has been hypothesized that the
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impaired glucose uptake in GLUT4-deficient adipocytes
could lead to a compensatory upregulation of RBP4 (13).
Accordingly, RBP4 expression has been shown to corre-
late inversely with GLUT4 expression in visceral fat (3,47).
In the present study we demonstrated a relatively strong
positive correlation between SAT GLUT4 and RBP4 ex-
pression, which is in line with findings from two previous
studies (6,33). Furthermore, we observed significantly
lower SAT RBP4 expression in diabetic subjects compared
with subjects with normal glucose tolerance. This down-
regulation of RBP4 expression could be due to the hyper-
insulinemia characterizing the diabetic and/or insulin-
resistant state, parallel to our finding of an insulin-induced
suppression of RBP4 expression in skeletal muscle. Fe-
male subjects had higher SAT RBP4 expression than male
subjects, though the sex-specific difference was less pro-
nounced than in skeletal muscle. Differential expression of
adipokines in SAT and visceral adipose tissue has been
demonstrated in several studies (48,49), hence their met-
abolic activity is thought to be different depending on fat
depot. Accordingly, higher RBP4 expression has been
observed in visceral compared with SAT, and the differ-
ence was reflected by a stronger association of visceral fat
RBP4 expression than of SAT RBP4 expression with
plasma RBP4 (47). In the present study, we did not find a
correlation between SAT RBP4 expression and plasma
RBP4 as previously reported (33).

In conclusion, our data indicate that elevated plasma
RBP4 in type 2 diabetes is a secondary and predominantly
nongenetic phenomenon and that plasma RBP4, per se,
plays only a minor, if any, role in the development of
insulin resistance in humans. Plasma glucose and insulin
may be involved in the regulation of RBP4 expression in
SAT and skeletal muscle; however, these tissues do not
contribute to a noteworthy degree to production of plasma
RBP4.
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