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Introduction: Human studies report conflicting results on the predictive power of serum lipids on the

progression of chronic kidney disease. We aimed to systematically identify the lipids that predict pro-

gression to end-stage kidney disease.

Methods: From the Chronic Renal Insufficiency Cohort, 79 patients with chronic kidney disease stages 2 to

3 who progressed to end-stage kidney disease over 6 years of follow-up were selected and frequency

matched by age, sex, race, and diabetes with 121 nonprogressors with less than 25% decline in estimated

glomerular filtration rate during the follow-up. The patients were randomly divided into training and test

sets. We applied liquid chromatography-mass spectrometry-based lipidomics on visit year 1 samples.

Results: We identified 510 lipids, of which the top 10 coincided with false discovery threshold of 0.058 in

the training set. From the top 10 lipids, the abundance of diacylglycerols and cholesteryl esters was lower,

but that of phosphatidic acid 44:4 and monoacylglycerol 16:0 was significantly higher in progressors.

Using logistic regression models, a multimarker panel consisting of diacylglycerols and monoacylglycerol

independently predicted progression. The c-statistic of the multimarker panel added to the base model

consisting of estimated glomerular filtration rate and urine protein-to-creatinine ratio as compared with

that of the base model was 0.92 (95% confidence interval: 0.88–0.97) and 0.83 (95% confidence interval:

0.76–0.90, P < 0.01), respectively, an observation that was validated in the test subset.

Discussion: We conclude that a distinct panel of lipids may improve prediction of progression of chronic

kidney disease beyond estimated glomerular filtration rate and urine protein-to-creatinine ratio when

added to the base model.
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A
ccording to the Center for Disease Control and
Prevention, there are currently more than 20

million people above the age of 20 with chronic kidney
disease (CKD) in the United States.1 In spite of its public
health burden, the clinical care of the patients with CKD
is largely dependent on the application of traditional
biomarkers including serum creatinine, urine protein-
to-creatinine ratio (UPCR), and estimated glomerular
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filtration rate (eGFR), which are significantly limited by
their precision, accuracy, and prognostic values espe-
cially early in the course of disease.2,3 In CKD, metabolic
derangements start at early stages where these inherent
deficiencies are most prominent. Such limitations
necessitate a shift of paradigm from exclusive reliance
on traditional biomarkers to systematic approaches for
the identification of prognostic markers.

Lipids are diverse and abundant molecules with
significant links to different metabolic pathways along
with diverse cellular and biological functions.4,5 In the
past, lipid studies in CKD have largely been limited to
studying the changes at class level of a limited number
of lipids such as total cholesterol, triglycerides,
low-density lipoprotein (LDL), and high-density lipo-
protein with conflicting results in terms of the associ-
ation between dyslipidemia and progression of
CKD.6–11 As a result of these limited approaches, the
effect of diverse intraclass variation within these lipid
classes as well as the alterations in various other classes
of lipids on the progression of CKD has remained
poorly understood. More recently, the use of conven-
tional lipid measurements for the description of lipo-
protein abnormalities in mild CKD has come into
question.12 On the other hand, the application of the
lipidomics and/or metabolomics approach in a number
of diseases such as diabetes,13,14 cardiovascular dis-
eases,15 and other inflammatory processes16 has pro-
vided characteristic lipid signatures and mechanistic
insights to disease processes.17 These studies provide
proof-of-principle on the clinical applicability of the
candidate metabolites for risk prediction, an approach
that is rarely taken in CKD. In a recently published
report, Reis et al.18 have compared the lipid signature
of LDL in patients at the advanced stage of CKD
(stages 4 and 5) with the control group using the liquid
chromatography-mass spectrometry-based lipidomics
approach. To our knowledge, there is no study in CKD
aimed at the identification of lipid signature predictive
of incident end-stage kidney disease (ESKD) at early
stages of CKD. Therefore, this study examines the
systematic identification of prognostic serum lipid
metabolites at CKD stages 2 and 3 to predict progres-
sion to ESKD using liquid chromatography-mass spec-
trometry-based lipidomics in the Chronic Renal
Insufficiency Cohort (CRIC) patient population.

METHODS

Patients

This study is a case-control study nested in the
core CRIC study. The design of CRIC is published pre-
viously.19,20 CRIC is a multicenter cohort of patients
with mild-to-moderate CKD, with recruitment starting
in 2003 with the goals of examining risk factors for CKD
Kidney International Reports (2016) 1, 256–268
and cardiovascular events, and developing predictive
models that would identify high-risk subgroups. The
core study has recruited 3939 subjects over a 5-year
period through 2008. Inclusion criteria of the sub-
cohort used for this study were eGFR $ 30 ml/min at
visit year 1 and an age of 18 years or more with no racial
or gender restriction. Cases were defined as patients who
progressed to ESKD over the next 6 years of follow-up.
ESKD is defined as needing chronic dialysis or having
kidney transplantation. Controls were defined as pa-
tients who were frequency matched with cases by their
baseline age, sex, race, and diabetes and had less than
25% decline in eGFR during the 6-year mean follow-up.
Onemilliliter of fasting serum sample from visit year 1 as
baseline was obtained from the selected subcohort. De-
mographic, clinical, and laboratory variables from
baseline were retrieved from the corresponding pa-
tients. eGFR calculated by CKD Epidemiology Collabo-
ration is used for multivariable adjustments.

Data Acquisition

Liquid chromatography-mass spectrometry-based
shotgun lipidomics using a TripleTOF 5600 was applied
for lipid identification (see the Supplementary Methods
for details).

Statistical Analysis

After data acquisition, the missing values for lipids were
imputed using the K nearest-neighbor method.17,21

Then the data were log2 transformed followed by
normalization using the cross-contribution compen-
sating multiple internal standard normalization
method.22 The cohort was randomly divided into the
training and test sets with a 2:1 ratio in an attempt to
develop the probabilistic predictive model of multi-
marker panel predictive of progression in the training
set followed by its validation in the test set. The
compound-by-compound t-test was applied to identify
the top differentially regulated lipids that passed the
nominal threshold P value of <0.05, followed by the
Benjamini-Hochberg procedure for false discovery rate
(FDR) correction23,24 accounting for multiple compari-
sons. In parallel, the partial least square-discriminant
analysis (PLS-DA)25,26 and Random Forest (RF)27 classi-
fication methods were applied on the top lipids with
nominal significance in the training set to generate the
rank of the variable important in projection by each
classification method separately (Figure 1). The rationale
for using PLS-DA and RF classification methods besides
the application of the Benjamini-Hochberg procedure
for FDR correction was to assess concordance of
the products of different classification methods and
to compare if the proposed lipids by different
methods differed. Then logistic regression models with
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Table 1. Comparison of baseline characteristics of the progressors
and nonprogressors
Variable Nonprogressors Progressors P value

N 121 79

Age (yr) 59 � 10 59 � 10 0.705

Male gender (%) 68 (56.2) 44 (55.7) 0.944

Race 0.885

White (%) 61 (50.4) 39 (49.4)

Black (%) 60 (49.6) 40 (50.6)

Current smoking (%) 23 (19.0) 16 (20.3) 0.828

Medications

ACEI (%) 61 (50.4) 41 (52.6) 0.767

ARB (%) 33 (27.3) 23 (29.5) 0.735

Beta blocker (%) 56 (46.3) 44 (56.4) 0.163

Ca channel blocker (%) 48 (39.7) 42 (53.8) 0.050

Diuretics (%) 68 (56.2) 48 (61.5) 0.456

Statins (%) 73 (60.6) 51 (65.4) 0.473

Other lipid-lowering agents (%) 15 (12.4) 8 (10.3) 0.645

Steroids (%) 80 (66.1) 53 (67.1) 0.887

Aspirin (%) 66 (54.5) 39 (50.0) 0.531

Antiplatelets (%) 67 (55.4) 42 (53.8) 0.833

Comorbidities (history)

Diabetes (%) 57 (47.1) 43 (54.4) 0.311

Hypertension (%) 103 (85.1) 73 (92.4) 0.121

PVD (%) 9 (7.4) 7 (9.0) 0.717

CHF (%) 9 (7.4) 14 (17.7) 0.026

Stroke (%) 6 (5.0) 9 (11.4) 0.091

A-fib (%) 19 (15.7) 22 (27.8) 0.038

Height (m) 1.7 � 0.1 1.7 � 0.1 0.492

Weight (kg) 93 � 21 97 � 28 0.229

BMI (kg/m2) 32.0 � 7.1 33.7 � 8.9 0.139

Waist (m) 1.1 � 0.2 1.1 � 0.2 0.203

Systolic BP (mm Hg) 128 � 22 132 � 19 0.162

Diastolic BP (mm Hg) 71 � 14 71 � 13 0.774

Pulse (per min) 67 � 11 69 � 11 0.205

HbA1c (%)a 7.8 � 1.8 8.2 � 1.8 0.080

Sodium (mmol/l) 140 � 2.3 140 � 2.9 0.455

CO2 (mmol/l) 24.8 � 2.7 24.1 � 2.8 0.110

Chloride (mmol/l) 104 � 3 105 � 4 0.093

ALT (IU/l) 35 � 21 32 � 13 0.249

AST (IU/l) 26 � 12 26 � 13 0.695

TAG (mg/dl) 149 � 104 154 � 77 0.699

Total cholesterol (mg/dl) 182 � 47 179 � 47 0.648

HDL (mg/dl) 49 � 14 47 � 15 0.409

LDL (mg/dl) 103 � 38 96 � 31 0.226

eGFR (ml/min) 48 � 13 38 � 8 <0.001

UPCRb 0.1 [0.1–0.4] 1.8 [0.2–2.1] <0.001

ACEI, angiotensin-converting-enzyme inhibitor; ALT, alanine aminotransferase; ARB,
angiotensin receptor blocker; AST, aspartate aminotransferase; BMI, body mass index;
BP, blood pressure; CHF, congestive heart failure; eGFR, estimated glomerular filtration
rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PVD, peripheral
vascular disease; TAG, triacylglycerol; UPCR, urine protein-to-creatinine ratio.
aN for HbA1c is 54 nonprogressors and 43 progressors all in diabetic patients.
bValues are median and interquartile range.

Entire 
Cohort

Training Set (2/3):
Detected: n = 510

Passed to next 
step: n = 382 

t-test with 
P < 0.05: n = 49 

Top 10 by PLS-DA 
ranking

LR: n = 6

Top 10 by FDR 
threshold

LR: n = 3

Top 10 by RF ranking

LR: n = 4

Filtered out by  
IQR: 128 

Test Set (1/3):
Validation

Figure 1. Flow of identification and validation of the independent
predictors of progression by different classification methods in the
study subsets. FDR, false discovery rate; IQR, interquartile range; LR,
logistic regression; PLS-DA, partial least square-discriminant anal-
ysis; RF, Random Forest.
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andwithout adjusting for eGFR and UPCR as continuous
variables were used to identify the independent pre-
dictors of progression from the ranking list of each
classification method. The c-statistic,28 category-free
continuous net reclassification improvement, and inte-
grated discrimination improvement were calculated for
the probabilistic model of the multimarker panels
derived from logistic regression, and their improvement
over the base model was tested in the training set and
replicated in the test set. Linear regression analysis was
applied to test the relationship between the mean ratio
of lipid levels on the log2 scale in cases and controls with
the number of carbons or double bonds within each
lipid class. Over-representative enrichment analysis
using the 2-sided Fisher exact test was applied to test the
enrichment of lipid classes by taking into account
the number of metabolites that have passed the FDR
threshold and the number of metabolites that are
detected within each class of lipids as comparedwith the
rest of other lipids in the entire dataset. The lipid cor-
relation network was built using Metscape.29 We
applied a sparse graphical modeling algorithm based on
the desparsified graphical lasso modeling procedure30 to
calculate the Benjamini-Hochberg-adjusted partial cor-
relations between each pair of lipids that displayed
a significant difference between cases and controls using
the “Correlation Calculator” tool (http://metscape.med.
umich.edu/calculator.html).31 The study has 80% po-
wer at a ¼ 0.05 to detect an increase in the area under
receiver operating characteristics from 0.8 to 0.9 using a
2-sided z-test.32 MetaboAnalyst version 2.0,33,34

R-Metabolomics version 0.1.3 (Melbourne, Australia),35
258
SPSS version 22 (Armonk, NY), and STATA version 10
(College Station, TX) were applied for the analysis.

RESULTS

Baseline

From patients aged $18 years with baseline eGFR $ 30
ml/min, 79 patients who progressed to ESKD over 6
Kidney International Reports (2016) 1, 256–268
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Figure 2. Volcano plot in the training set illustrating the statistical
significance of the fold change of the mean values of detected fea-
tures in progressors to end-stage kidney disease versus non-
progressors derived from the compound-by-compound t-test. 1¼ DAG
36:0; 2 ¼ CE 20:5; 3 ¼ CE 22:5; 4 ¼ DAG 34:5; 5 ¼ CE 20:3; 6 ¼ CE 18:2;
7 ¼ DAG 34:0; 8 ¼ DAG 32:0; 9 ¼MAG 16:0; 10¼ PA 44:4; lipids with a
nominal P value # 0.0027 are shown in color. CE, cholesterol esters;
DAG, diacylglycerol; MAG, monoacylglycerol; PA, phosphatidic acid.
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years of follow-up were selected and frequency
matched with 121 nonprogressors (<25% decline in
eGFR during follow-up) by age, sex, race, and diabetes.
Mean age was 59 years (SD ¼ 10). There were 112 males
(56%), 100 patients with diabetes (50%), and equal
numbers of African American and Caucasians (100 in
each group). The distribution of baseline demographic
characteristics, medications, and comorbidities in cases
and controls is presented for the entire cohort (Table 1)
as well as in the training and the test subsets
(Supplementary Table S1). Accordingly, the progressors
a
DAG 32:0
DAG 36:0

DAG 36:0

DAG 36:0

DAG 32:0

DAG 32:0

MAG 16:0

MAG 16:0

MAG 16:0
MAG 20:0
MAG 26:2

PC 34:3

PC 34:3

FDR Driven:

RF Driven:

PLS-DA Driven:

b

0.2         1           6           0.2          1            
OR OR

DAG 32:0

MAG 16:0

DAG 32:0

MAG 16:0

DAG 32:0

MAG 16:0

MAG 26:2

Figure 3. Odds ratio and 95%confidence interval of progression to end-stage
(middle panel), and PLS-DA proposed lipids (bottom panel) by change of each
model in unadjusted model, (b) adjusted models by eGFR and other factors (a
adjusted by the urine protein-to-creatinine ratio and other factors, and (d) adj
training set. DAG, diacylglycerol; eGFR, estimated glomerular filtration rate;
choline; PLS-DA, partial least square-discriminant analysis; RF, Random For
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are reasonably matched with nonprogressors as is
evident by the lack of clinical and statistical differences
in most of the baseline variables. However, the mean
eGFR was lower by 10 ml/min, and the median UPCR
was higher by 0.7 in progressors as compared with
nonprogressors at baseline (P < 0.001).

Analytic Flow of Narrowing Down to Indepen-

dent Predictors of Progression

Figure 1 illustrates the flow of identification and
validation of the independent candidates for pre-
dicting progression of CKD. First, the entire cohort
was randomly divided into the discovery or training
set (77 nonprogressors and 57 progressors) and the
validation or test set (44 nonprogressors and 22
progressors) with a 2:1 ratio. Using the training set,
from the 510 identified known lipids, 128 lipids that
were unlikely to be used in the downstream analyses
were filtered out using the interquartile range
filtering protocol36 that left 382 lipids of which 49
passed the nominal significance by a t-test (P < 0.05).
From the top 49 lipids, we also used PLS-DA and RF
besides using the Benjamini-Hochberg procedure for
FDR correction to explore if different classification
methods nominate different candidates. Figure 2
illustrates the distribution of statistical significance
by the log2 mean fold change of the identified lipids
in progressors versus nonprogressors in the training
set, suggesting lower abundance of differentially
regulated diacylglycerols (DAGs) and cholesterol
esters(CEs) in progressors. Supplementary Table S3
shows the compound-by-compound comparison of
identified lipids by status of progression using a t-test,
c d

   6        0.2         1              6         0.2        1            6
OR OR

kidney disease according to the FDRproposed (top panel), RF proposed
1 SD in abundance of candidate lipids using (a) the logistic regression
ge, sex, race, diabetes, hypertension, and congestive heart failure), (c)
usted by eGFR, urine protein-to-creatinine ratio, and other factors in the
FDR, false discovery rate; MAG, monoacylglycerol; PC, phosphatidyl-
est.
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as well as the corresponding unadjusted and adjusted
logistic regression models. Accordingly, from the
FDR-projected list, the top 10 lipids coincide with
q # 0.058. We then identified the top lipid candidates
by each classification method followed by internal
validation in the test set.

Top Lipid Candidates Nominated by Different

Classification Methods

In the next step, we compared the products of different
classification methods. Supplementary Table S4 sug-
gests a high concordance between the top 10 lipids
ranked by the 3 classification methods particularly for
the DAGs. We then used logistic regression models on
the top 10 lipids of each classification method to further
narrow down to the independent predictors of pro-
gression after adjusting for eGFR, UPCR, age, sex, race,
diabetes, hypertension, and congestive heart failure. As
a result, the independent lipids projected by the FDR
list were DAG 36:0, DAG 32:0, and monoacylglycerol
(MAG) 16:0 (most conservative model). The indepen-
dent lipids projected from the PLS-DA were DAG 36:0,
DAG 32:0, MAG 26:2, MAG 20:0, MAG 16:0, and
phosphatidylcholine (PC) 34:3 (most inclusive model),
and those projected by RF were DAG 36:0, DAG 32:0,
Table 2. Comparison of c-statistic, category-free continuous NRI, and IDI
and the entire cohort by base models, lipids, and their combinations to p
disease

Models

Training set (Npatient [ 134)

C (95% CI) NRI IDI (95%

Base (eGFR þ UPCR) 0.83 (0.76–0.90) Sensitivity: 31/57 –

Specificity: 41/77

FDR-driven models

Lipids (n ¼ 3) 0.86 (0.79–0.92)a Event NRI: 31/57 0.22 (0.15–

Nonevent NRI: 49/77

Overall NRI: 1.18b

Lipids þ base model 0.92 (0.88–0.97)a Event NRI: 53/57 0.23 (0.16–

Nonevent NRI: 49/77

Overall NRI: 1.34b

RF-driven models

Lipids (n ¼ 4) 0.89 (0.83–0.95)a Event NRI: 35/57 0.28 (0.20–

Nonevent NRI: 53/77

Overall NRI: 1.30b

Lipids þ base model 0.94 (0.90–0.98)a Event NRI: 41/57 0.30 (0.22–

Nonevent NRI: 59/77

Overall NRI: 1.49b

PLS-DA driven models

Lipids (n ¼ 6) 0.92 (0.87–0.97)a Event NRI: 37/57 0.36 (0.25–

Nonevent NRI: 53/77

Overall NRI: 1.34b

Lipids þ base model 0.95 (0.92–0.99)a Event NRI: 43/57 0.37 (0.28–

Nonevent NRI: 65/77

Overall NRI: 1.60b

P values are comparisons with the corresponding base model. The components of FDR-driven m
DAG 36:0, DAG 32:0, MAG 16:0, and PC 34:3. The components of the PLS-DA-driven model we
CI, confidence interval; DAG, diacylglycerol; eFGR, estimated glomerular filtration rate; FDR, fa
NRI, net reclassification improvement; PC, phosphatidylcholine; PLS-DA, partial least square-d
aP < 0.05, bP < 0.001.
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MAG 16:0, and PC 34:3 (a model in between), sug-
gesting a high concordance in the final products of
different classification methods.

Figure 3 shows that the significance or direction of the
risk associated with each 1 SD change in abundance was
unchanged in unadjusted to fully adjusted models by
age, sex, race, diabetes, hypertension, and congestive
heart failure. According to the FDR-driven models and
after full adjustment, each 1 SD increase in abundance of
DAG 36:0 andDAG 32:0was associatedwith the reduced
risk of progression by 71% (95% CI: 43% to 85%, P <
0.001) and 66% (95% CI: 33% to 83%, P ¼ 0.002),
respectively. On the other hand, each 1 SD increase in
abundance of MAG 16:0 was associated with increased
risk of progression by 5.45-fold (95% CI: 2.51 to 11.86,
P < 0.001), a result similar to the unadjusted model.
Similar results were obtained from the RF- and PLS-DA-
driven methods (Figure 3).

Classification Power and Internal Validation

Table 2 shows that in the training set, irrespective of
the classification method, the addition of the multi-
marker panel to the base model (eGFR þ UPCR) has
significantly improved the c-statistic (P < 0.05). We
also showed in Table 2 that such an improvement was
and their 95% confidence intervals in the “training set,” “test set,”
redict progression of chronic kidney disease to end-stage kidney

Test set (Npatient [ 66)

CI) c (95% CI) NRI IDI (95% CI)

0.78 (0.67–0.89) Sensitivity: 6/22 –

Specificity: 18/44

0.29)b 0.81 (0.70–0.93) Event NRI: 10/22 0.28 (0.16–0.40)b

Nonevent NRI: 26/44

Overall NRI: 1.05b

0.30)b 0.91 (0.83–0.99)a Event NRI: 12/22 0.38 (0.25–0.52)b

Nonevent NRI: 30/44

Overall NRI: 1.23b

0.35)b 0.85 (0.76–0.95)a Event NRI: 10/22 0.28 (0.16–0.41)b

Nonevent NRI: 26/44

Overall NRI: 1.05b

0.39)b 0.93 (0.87–0.99)a Event NRI: 12/22 0.40 (0.26–0.53)b

Nonevent NRI: 30/44

Overall NRI: 1.23b

0.42)b 0.80 (0.69–0.91) Event NRI: 8/22 0.20 (0.09–0.31)b

Nonevent NRI:24/44

Overall NRI: 0.91b

0.45)b 0.90 (0.82–0.97)a Event NRI: 12/22 0.27 (0.15–0.39)b

Nonevent NRI: 24/44

Overall NRI: 1.09b

odel were DAG 36:0, DAG 32:0, MAG 16:0. The components of the RF-driven model were
re DAG 36:0, DAG 32:0, MAG 26:2, MAG 20:0, MAG 16:0, and PC 34:3.
lse discovery rate; IDI, integrated discrimination improvement; MAG, monoacylglycerol;
iscriminant analysis; RF, Random Forest; UPCR, urine protein-to-creatinine ratio.

Kidney International Reports (2016) 1, 256–268
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reproducible in the test set by the application of the
corresponding multivariable probabilistic model
developed in the training set (P < 0.05). In addition,
the net reclassification improvement and integrated
discrimination improvement were highly significant in
all multimarker lipid panels alone and when added to
the base model in the training set (P # 0.0005),
an observation that was reproduced in the test set us-
ing the models that were developed in the training
set. The statistically significant net reclassification
improvement and integrated discrimination impr-
ovement imply that the sum of correctly classified
progressors and correctly classified nonprogressors by
the new models is significantly higher than what was
obtained from the base model (eGFR þ UPCR) alone.

Ten-Fold Cross-validation in the Entire Cohort

Other than internal validation by random splitting of
the cohort to training and test sets, we additionally
compared the c-statistic of the 10-fold cross-validated
models with prevalidated models in the entire cohort.
***

****

***

Control CaseControl Case

pP
E

Figure 4. Intraclass comparison of the distribution of the mean of log2 pea
(q < 0.05) by case and control groups; CE: n ¼ 10; DAG: n ¼ 7; PC: n ¼ 2;
represents median and interquartile ranges, and error bars present 1.5-
percentile. Means were compared using the t-test, *P < 0.05; ***P < 0.0
rate; MAG, monoacylglycerol; PA, phosphatidic acid; pPC, plasmenyl-pho
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Accordingly, the c-statistic of the multimarker panel
alone or after the addition to the base model was not
significantly different in the original and validated
models (Supplementary Figure S2).

Differentially Regulated Classes of Lipids in the

Entire Cohort

A comparison of intraclass mean peak intensities of
each lipid class by progression to ESKD shows lower
class level peak intensities in CE, plasmenyl-
phosphatidylethanolamine (pPE), and ceramides in
progressors irrespective of significance of individual
lipids (Supplementary Table S5). However, as the lack
of significance in other classes might be driven by a
larger number of metabolites that have not reached
statistical significance (with the net effect of leading
the class level difference toward null), in the next step
only the mean of the top differentially regulated lipids
that passed the FDR threshold (P < 0.05) was
compared (Figure 4). Accordingly, the intraclass mean
of differentially regulated metabolites in MAG and
***
***

* ******

Control CaseControl Case

pP
C

k intensities of significant metabolites that passed the FDR threshold
pPC: n ¼ 2; PA: n ¼ 4; pPE: n ¼ 2; PE: n ¼ 6; MAG: n ¼ 2. The box
fold � the interquartile range below the 25th and above the 75th
01. CE, cholesterol esters; DAG, diacylglycerol; FDR, false discovery
sphatidylcholine; pPE, plasmenyl-phosphatidylethanolamine.
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PE was higher in progressors, but the mean of CE,
DAG, PC, plasmenyl-PC (pPC), pPE, and phosphatidic
acid was lower in progressors as compared with
nonprogressors.

Subgroup Analysis by Diabetes

Figure 5 shows the distribution of the FDR-driven panel
by diabetes in the entire cohort. Overall, the pattern of
association of the proposed lipids with CKD progression
in patients with and without diabetes was similar.

Relationship With Double Bond and Lipid

Carbon Numbers

Figure 6 shows that overall there was a trend toward
lower abundance of longer chain lipids within CE,
DAG, MAG, pPC, and pPE in progressors as compared
with nonprogressors, reaching statistical significance in
MAG and pPE class (P # 0.014). Such a trend was not
observed in triacylglycerol, PE, and PC class. Similarly,
there was a trend toward lower abundance of CE,
MAG, triacylglycerol, and pPE lipids with higher
number of double bonds in progressors as compared
Without Diabetes

With Diabetes

Control  Case Control  Case Control  Case

***

*** ** *

*

D
A

G

D
A

G

D
A

G

M
A

G
M

A
G

Figure 5. Comparing the distribution of the false discovery rate
proposed lipids in cases and controls in patients with and without
diabetes. The box represents median and interquartile ranges, and
error bars present 1.5-fold � the interquartile range below the 25th
and above the 75th percentile. Means were compared using the
t-test, *P < 0.05; **P < 0.01, ***P < 0.001. DAG, diacylglycerol;
MAG, monoacylglycerol.
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with nonprogressors, reaching statistical significance in
CE, triacylglycerol, and pPE (P # 0.048). Such a trend
was not observed in DAG, pPC, PE, and PC class.

Class Enrichment Analysis, Lipid Correlation

Network

Table 3 demonstrates that the top 3 most significantly
enriched classes of lipids using the entire cohort are
CEs, DAGs, and PEs. A high-level overview correlation
of each lipid class with other relevant metabolites in
the metabolic network along with their corresponding
involved genes, reactions, and enzymes according
to the Kyoto Encyclopedia of Genes and Genomes
reveals a number of genes in the network that have
already been linked to kidney disease (Supplementary
Figure S3). Figure 7 illustrates the map of the correla-
tion network between and within members of the top
differentially regulated lipids of various lipid classes
driving the separation of progressors from non-
progressors in our study (Supplementary Table S6).

DISCUSSION

In this study, DAG and CE in the baseline samples were
among the 2 most predictive classes of lipids for the
separation of progressors from nonprogressors to ESKD,
as they had the largest number of metabolites that
passed the FDR threshold. At the class level, among
metabolites that passed the FDR threshold, on average
DAGs, CEs, PCs, pPCs, pPEs, and phosphatidic acids
had lower abundance whereas PEs and MAGs had
higher abundance in progressors. At the metabolite
level, the top-hit independent predictors of progression
uniformly picked up by all 3 classification methods
were DAG36:0, DAG32:0, and MAG16:0. DAG36:0 and
DAG32:0 were associated with lower and MAG16:0
associated with higher odds of progression to ESKD
independent of eGFR and UPCR. The net reclassifica-
tion improvement and integrated discrimination
improvement indices of the lipids panels showed
highly statistically significant improvement in classifi-
cation, and the probabilistic models projected by the
addition of a multimarker panel presented a signifi-
cantly higher c-statistic above and beyond what was
achieved from eGFR and UPCR and combined an
observation that stood the internal validation.

These findings provide a basis for examining serum
lipid levels as a minimally invasive tool for the iden-
tification of kidneys at risk of progression to ESKD. A
systematic examination of serum levels of lipid species
for their prognostic value is the first logical step toward
the identification of novel pathways of damage
amenable to intervention, particularly in the presence
of conflicting results from association studies of dysli-
pidemia and progression of kidney disease in human
Kidney International Reports (2016) 1, 256–268
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Figure 6. ESKD:non-ESKD mean ratio of log2 peak intensities by the number of bonds and carbon number in different classes of lipids. Only
statistically significant P values are shown. CE, cholesterol ester; DAG, diacylglycerol; ESKD, end-stage kidney disease; MAG, mono-
acylglycerol; pPC, plasmenyl-phosphatidylcholine; pPE, plasmenyl-phosphatidylethanolamine; TAG, triacylglycerol.
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studies.6–10 These studies are in part a reflection of the
underappreciation of significant intraclass biological
diversity and variations in lipid classes beyond tradi-
tional lipids panels such as lipoproteins. Although li-
poproteins are complex particles that carry almost all
the lipid classes, the determination of a level of LDL
and high-density lipoprotein may not address the
complexity of the lipidome. In a case-control observa-
tion, Reis et al.18 compared lipidomic profiles of LDL in
10 normocholestrolemic patients with CKD stages 4 and
5 with 10 healthy individuals. Triacylglycerols and
N-acyl taurines were significantly higher in CKD,
whereas PCs, pPEs, sulfatides, ceramides, and choles-
terol sulfate were significantly lower in patients with
Kidney International Reports (2016) 1, 256–268
CKD.18 These results are compatible with our findings,
wherein from the list of differentially regulated species,
MAGs were higher, and CEs, PCs, pPCs, pPEs, and
phosphatidic acids were lower in progressors to ESKD.
However, a limitation of the Reis study is that it was
limited to LDL, but not other lipoprotein particles.
Looking at serum gives a more comprehensive profile
that might be the reason why we have identified
additional lipids. What further highlights the signifi-
cance of our findings is the predictive power of the
proposed panel at earlier stage CKD (stage 2 or 3) to
predict progression to ESKD. To our knowledge, this
study is the first to show the predictive power of a
distinct panel of lipids from the application of an
263



Table 3. The number of metabolites within each lipid class that has
passed the FDR threshold in the entire cohort

Class Pathways
N

detected
N with

P < 0.05
N with

q < 0.05
Fisher exact
P value

CE Bile acid biosynthesis 15 12 10 1.99 3 10--9

DAG Glycerophospholipid 41 11 7 0.018

PE Glycerophospholipid,
phosphatidylinositol

phosphate

35 14 6 0.029

PA Glycerophospholipid,
phosphatidylinositol

phosphate

21 6 4 0.053

PC Glycerophospholipid,
arachidonic acid

metabolism, linoleate
metabolism

71 16 2 0.208

SM Glycosphingolipid
metabolism

30 3 0 0.257

MAG Glycerophospholipid 18 5 2 0.368

Lyso PC – 23 2 0 0.395

PI Phosphatidylinositol
phosphate

13 0 0 0.613

Lyso PE Glycerophospholipid 16 1 0 0.618

Plasmenyl
PC

Glycerophospholipid 22 2 2 0.663

Plasmenyl
PE

Glycerophospholipid 25 11 2 0.694

CerP Glycosphingolipid 10 4 0 1.000

PS Glycerophospholipid 3 0 0 1.000

PG Glycerophospholipid 12 2 0 1.000

CL Glycerophospholipid 62 7 0 0.015

TAG Glycerophospholipid 93 6 1 0.012

Total detected 510 102 36

The q value was obtained based on the Benjamini-Hochberg procedure for multiple
testing of all identified lipids in the entire cohort. Fisher exact P value tests, if any
particular class of lipids had differentially higher number of lipids that have passed the
statistical threshold of the q value as compared with the rest of the identified lipids
combined (class enrichment by the overrepresentation method). The statistically sig-
nificant P values of overrepresented classes are shown in bold.
CE, cholesterol ester; Cer-P, ceramides; CL, cardiolipin; DAG, diacylglycerol; FDR, false
discovery rate; MAG, monoacylglycerol; PA, phosphatidic acid; PE, phosphatidyletha-
nolamine; PG, phosphoglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SM,
sphingomyelin; TAG, triacylglycerol.

CLINICAL RESEARCH F Afshinnia et al.: Lipidomics and CKD
unbiased lipidomics search strategy for the prediction
of incident ESKD at CKD stages 2 and 3.

In this study,we also observeddecreased abundance of
longer acyl chains and polyunsaturated complex lipids in
progressors. This is aligned with meta-analysis of clinical
trials on beneficial effects of polyunsaturated fatty acid
supplementation on urinary protein excretion and bio-
markers of kidney injury.37,38 We are unaware of any
report on a protective effect of longer acyl chain carbons
from kidney injury, and therefore the observation of
lower abundance of longer acyl chain carbons in pro-
gressors is likely a novel observation. The mechanisms
may involve differentially altered enzymatic pathways
such as elongase, dietary effects, and alterations in liver
metabolism besides other unknown mechanisms.

The differentially regulated lipids in this
study belong to the bile acid, glycerophospholipid,
and phosphatidylinositol phosphate biosynthesis path-
ways. Although we have not explored the relationships
between the lipids and the alterations in expression of the
264
corresponding involved genes, reactions, and enzymes in
the metabolic network, from the work of others, there is
evidence to suggest that the involvedgenes andpathways
might be differentially regulated in CKD (Supplementary
Figure S3). Search in theKyoto Encyclopedia ofGenes and
Genomes (Supplementary Figure S3) reveals a high-level
view of such interrelationships. However, such a map-
ping strategy has important limitations. First, not every
known lipid class is mapped in Kyoto Encyclopedia of
Genes and Genomes, and second, the mapped lipids are
limited to the class level of each lipid and therefore lack
information on distinct lipids within each class, ignoring
the intraclass diversity by carbon number or number of
unsaturated carbons.

Unique aspects of our study include (a) identification
of the top differentially regulated candidate predictors
of progression, (b) demonstration of the intraclass di-
versity of lipids above and beyond the mapped lipids
in Kyoto Encyclopedia of Genes and Genomes, and (c)
elucidation of the lipidomic signature of progression in
CKD for the first time in CRIC (Figure 7). Our network
analysis highlights the links between DAGs, CEs, and
PEs that are differentially expressed by cases and
controls. The underlying mechanisms may involve
the dysregulation of classic pathways of lipolysis
including adenylate cyclase/Gs protein/protein kinase
A/hormone-sensitive lipase cascade and/or phorbol
myristate acetate/protein kinase-C (PKC)/mitogen-
activated protein kinase signaling pathways.39 In
particular, DAG is shown to be a cofactor of PKC
stimulation40 and is linked with an inflammatory
milieu41 and activation of the mitogen-activated protein
kinase,42 nuclear factor kB,43 and vascular endothelial
growth factor44,45 signaling pathways. Similarly,
cellular accumulation of CE is linked to the activation
of PKC46 and mitogen-activated protein kinase.47 PKC
promotes the synthesis of PE leading to differentially
regulated degradation of membranous phospholipid
and alteration of downstream membrane-protein
physiological processes.48–54 Whether the lower serum
level of differentially regulated DAGs and CEs in pro-
gressors reflects their increased utilization in cortical
glomerular or tubular compartments and activating the
above pathologic cascades of events and whether
increased serum levels of PEs in progressors reflects renal
tissue activation of PKC and inflammation55 could be
subjects for further investigation. These mechanisms
may also explain increased risk of cardiovascular diseases
in CKD but requires confirmation in further studies.

This study has several strengths. It is powered with
appropriate sample size for conduct of the proposed
analyses. We followed a very strict quality control
protocol and achieved excellent quality data evidenced
by low coefficient of variation, low rate of missing
Kidney International Reports (2016) 1, 256–268



Figure 7. The correlation network displaying metabolic differences between progressors and nonprogressors according to the top 102
differentially regulated lipids. Node color reflects fold changes. Lipids that have passed the FDR statistical significance with significantly lower
and higher abundance in progressors are shown in green and red, respectively. Edge thickness represents the significance of adjusted partial
correlation coefficients between the nodes (Supplementary Table S6). In most cases, the correlations within the same class of lipids are
stronger than interclass correlations that are evident from the network structure. CE, cholesterol ester; DAG, diacylglycerol; FDR, false discovery
rate; MAG, monoacylglycerol; PA, phosphatidic acid; pPE, plasmenyl-phosphatidylethanolamine; TAG, triacylglycerol.
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values, and excellent reproducibility (Supplementary
Figure S1). We took the advantage of outstanding
infrastructure in CRIC with the prospectively ascer-
tained outcome of ESKD allowing the identification of
the proposed panel. There are limitations to the study as
well. Although our results are consistent with the find-
ings of Reis et al.,18 and the internal validation is sug-
gestive of reproducibility, we are still in need of external
validation of the findings in independent samples and/or
cohorts. We have not studied the lipid alterations in
kidney tissue as kidney biopsies were not available for
analysis. As such the underpinning mechanisms of renal
injury and the directionality with serum lipidomic
signature require further investigation. In conclusion,
the lipidomic signature of differentially regulated lipids
separating progressors from nonprogressors to ESKD in a
subset of the CRIC cohort included lower abundance of
Kidney International Reports (2016) 1, 256–268
select number of DAGs, CEs, PCs, pPCs, pPEs, and
phosphatidic acids, but higher abundance of select
number of PEs and MAGs. From these differentially
regulated lipids, a distinct multimarker panel was able to
independently predict the progression of CKD to ESKD
and improved the classification power of eGFR andUPCR
when added to the base model. Further research is
required for external validation, as well as serum-kidney
tissue lipid alteration cross-talk.
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SUPPLEMENTARY MATERIAL

Supplementary Methods. Supplementary material

includes details on the methods of sample preparation

and tables of identified lipids.

Table S1. Comparison of baseline characteristics in case

and control groups with the training and the test sets

Table S2. Identified lipids by type of adducts, experimental

mass, and retention time in positive and negative modes.

The mass accuracy was �0.001 in positive mode and

�0.005 in negative mode, with an overall mass error

of <2 parts per million

Table S3. List of processed lipids and their ranks according

to the false discovery rate (FDR) corrected t-test, and

unadjusted and adjusted logistic regression models in

the training set. Adjustments are by eGFR, urine protein-

to-creatinine ratio, age, sex, race, diabetes, hypertension,

and congestive heart failure

Table S4. The top 10 metabolites loaded by various

classification methods in the training set; partial least

square-discriminant analysis (PLS-DA)

Table S5. Mean of log2 peak intensities of all detected lipids

in each class by progression to end-stage kidney disease

Table S6. The partial correlation coefficients and adjusted

P values of significant edges illustrated in Figure 7 after

adjusting for the total number of bivariate correlations

passing the Benjamini-Hochberg threshold of 0.1. The

108 edges out of 5151 possible bivariate correlations are

shown among the top 102 nominally differentiated lipids

in the entire cohort

Figure S1. (a) Batch variability of internal standards in test

pools. (b) Batch variability of internal standards in pooled

plasma.

Figure S2. The c-statistic of the original and 10-fold vali-

dated multimarker panel alone and after addition to the

base model compared with the c-statistics of the base

model (eGFRþUPCR).

Figure S3. Class level metabolic network represents 8 main

classes of lipids that were detected in our samples. Limited

representation of lipid metabolism in the most existing

databases allows only a high level overview of relevant
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pathways; however, the Metscape network provides a

broad list of reactions, enzymes, and genes involved in

metabolism of different classes of lipids. A number of

genes in this network including LCAT, LIPC, LPL,

PLA2G1B, PLA2G2A, PLCD1, PLD2, SOAT1, PLA2G10,

SOAT2, LIPG, PLCE1, and DGKH have been previously

linked to kidney disease.

Supplementary material is linked to the online version of

the paper at www.kireports.org.
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