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Introduction

The discovery and optimization of RNA interference (RNAi) 
technologies over the past 10 years has made it possible 
to routinely develop in vitro picomolar (pM) small interfering 
RNA (siRNA) inhibitors to any chosen gene within a matter 
of weeks.1 Significant progress has also been made, through 
the incorporation of straightforward chemical modifications, in 
introducing drug-like properties into siRNA duplexes, result-
ing in improved nuclease stability and reduced immunostimu-
latory capacity.1,2

While numerous approaches for in vivo siRNA silencing 
have been reported involving both local and systemic deliv-
ery, robust and repeated success with commercially viable 
formulations has been limited.3 Systemic delivery of siRNA 
has resulted in silencing of liver-specific genes using several 
different classes of lipid nanoparticle (LNP)-based formula-
tions. Broadly speaking, LNPs can be classified into those 
containing cationic or ionizable lipids as their main active 
component and differ in both their structure and mechanism 
of uptake.4,5 While both cationic and ionizable lipids can be 
formulated into LNPs with the same size and encapsula-
tion properties, “ionizable” lipids maintain a nearly neutral 
charge at physiological pH while “cationic” lipids have an 
overall slightly positive charge. Recently, in vivo hepatocyte 

gene silencing has been improved by roughly two orders of 
magnitude for both classes of LNPs through identification 
of novel lipids and formulation optimization. Early reports 
demonstrated efficacious mRNA silencing in hepatocytes at 
siRNA doses of ~1 mg/kg6,7 and more recent reports show 
similar efficacy at doses of ~0.01 mg/kg.4,5 Importantly, not 
only has progress been made in the potency and mechanis-
tic understanding of how these LNP mediate siRNA delivery,8 
but also in the translation of this technology: multiple LNP-
siRNA therapeutic candidates are currently in clinical testing 
and late stage preclinical development.9

Despite impressive progress in siRNA delivery to hepato-
cytes, efficacious systemic siRNA delivery to extra-hepatic 
cells and tissues remains difficult. One area of particular 
interest is delivery to immune cells, given their central role 
in homeostasis and disease. siRNA delivery by an antibody 
or peptide linked to a cationic entity, such as protamine or 
poly-arginine has been reported.10–13 Application of these 
formulations resulted in the inhibition of viral replication or 
protection from cytokine induction via delivery of siRNA. 
Another approach taken by Peer and colleagues employed 
antibody-targeted lipid particles to deliver siRNA to immune 
cells via anti-β7 integrin antibody14 or anti-CD11a anti-
bodies,11 resulting in improvement of disease in a dextran 
sodium  sulfate colitis mouse model and HIV resistance in 
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a humanized mouse model, respectively. It has also been 
reported that siRNA can be delivered to macrophages 
after oral administration by packaging in yeast particles,15 
or via injection of polymer or lipoplex complexes after intra-
peritoneal administration in chitosan/siRNA particles.16,17 
Importantly however, much of the above mentioned work on 
silencing immune cell genes has used chemically unmodi-
fied siRNA duplexes that are known to stimulate innate 
immune response and could, therefore, result in nonspecific 
gene modulation.18,19

Innate immune cells, in particular monocytes and mac-
rophages, are critical for inducing and orchestrating global 
and local immune responses,20 and are centrally involved 
in disease initiation and progression. Thus, we focused our 
attention on these cells, which are also professional phago-
cytes and therefore have the propensity to engulf nanoparti-
cle-based formulations. We developed highly active siRNAs 
to genes expressed in myeloid cells and optimized the LNP 
formulations for greater potency, achieving half-maximal 
silencing doses of 0.2 mg/kg. Using dynamic fluorescence 
tomography combined with microscopy, we show robust 
delivery of siRNA to the spleen in mice. These formulations 
provide efficacious RNAi-mediated silencing of multiple tar-
gets in myeloid cells in both healthy rodents and nonhuman 
primates (NHPs). In addition, we demonstrated that by inhib-
iting the well-validated target tumor necrosis factor-α (TNFα) 
in a macrophage-dependent model of rheumatoid arthritis 
(RA), disease activity was drastically reduced to a level com-
parable with potent antibody-mediated treatment. Two very 
recent studies complement and further extend this work. 
Basha et al. present a detailed analysis establishing the KC2 
ionizable lipid as very potent vehicle for siRNA delivery to 
antigen-presenting cells.21 Leuschner et al. demonstrates 
the broad therapeutic potential of C12-200-mediated deliv-
ery to myeloid cells while focusing on a specific gene target, 
CCR2.22 Taken together these findings represent a signifi-
cant advancement in both RNAi technology and drug devel-
opment as they open possibilities to simultaneously silence 
gene targets not accessible to small molecules or antibodies 
in myeloid cells, offering new therapeutic opportunities for 
diseases with inflammatory etiology.

Results

Significant work has been dedicated toward the development 
of new materials and formulations for the delivery of siRNA 
to hepatocytes (see e.g. refs. 4,5). We sought to develop 
nanoparticles with delivery potential to myeloid cells through 
the use of lipids and lipid-like materials known as KC2 (an 
ionizable lipid)4 and C12-200 (a cationic lipid).5 Formulations 
containing these lipid materials, as well as the excipients: cho-
lesterol, PEG-DMG, and distearoyl phosphatidyl choline were 
formulated as nanoparticles, encapsulating siRNAs directed 
to several myeloid-expressed gene targets (including CD45, 
CD11b, integrin β1, TNFα). The KC2 containing formulations 
utilized here use a higher molar percent of cationic lipid com-
pared to earlier work,4 further increasing formulation potency. 
We also optimized the C12-200 containing liposomes increas-
ing the lipid to siRNA ratio in the particle.

Quantitative in vivo whole body imaging and histological 
localization of LNP-siRNA distribution. In order to deter-
mine LNP-siRNA distribution, we intravenously (i.v.) injected 
LNP-encapsulated, fluorescently labeled siRNA, and fol-
lowed whole body fluorescence by fluorescence-mediated 
tomography/X-ray computed tomography (FMT-CT). FMT-CT 
is a hybrid imaging approach that quantitates fluorochrome 
concentration in tissue, while fusion with CT data provides 
the anatomic localization of the fluorescent signal at high 
resolution.23 Concentration was sampled 90 minutes after 
injection of siRNA formulated in KC2 LNP and C12-200 LNP 
(Figure 1a), and key organs were then analyzed. Fluores-
cent signal reporting on siRNA concentration was attributed 
to anatomical structures using hybrid CT data. Interestingly, 
we found that the spleen is a major distribution site for both 
LNP preparations, with high fluorescence per gram of tissue 
(Figure 1a,b). Imaging also provided information about the 
excretion pathway of LNP siRNA. The signal peaked in the 
liver, gall bladder and intestine likely reflecting the excretion 
of the fluorochrome and attached materials. Low signal was 
observed in the kidneys and the urinary tract  (Figure 1 and 
data not shown). Low siRNA concentration was observed 
in the lung for both nanoparticles. Ex vivo fluorescence 
reflectance imaging corroborated these findings with the 
spleen showing the brightest signal among major organs 
( Figure 1b,c). Distribution data obtained by imaging are 
consistent with plasma/tissue siRNA amount derived from 
a PCR-based method of siRNA quantification,24 which gives 
us confidence that we are not merely tracking fluorochrome, 
but fluorescently labeled siRNA. Leuschner et al. have shown 
that multiple myeloid cell types in the spleen take up C12-
200 LNP-formulated siRNA including macrophages, splenic 
reservoir monocytes, and dendritic cells.22 Similar analysis 
carried out for the KC2 formulation did not reveal major differ-
ence in the cell populations targeted (data not shown).

Efficient silencing of gene targets in myeloid cells after 
i.v. injection. Encouraged by the distribution of LNP siRNA 
to sites of immune cell localization, we initiated experiments 
to determine whether distribution translates into RNAi silenc-
ing activity in leukocytes. Macrophage lineage cells special-
ize in the removal of foreign material, thus most systemically 
administered particles are taken up by these cells. In fact, 
cells of the monocyte/macrophage lineage showed the high-
est fluorescence signal after i.v. injection of fluorescently 
labeled siRNA (see below). However, uptake often does not 
translate into siRNA-induced silencing; macrophages spe-
cialize in shuttling cargo into lysosomes for degradation, 
whereas siRNA needs to reach the cytoplasm to induce cleav-
age of the target mRNA. Indeed, with earlier- generation LNP 
formulations,6,7 despite good uptake we have not observed 
siRNA-mediated gene silencing in macrophages after i.v. 
administration.

To determine which leukocyte populations are subject to 
silencing in response to i.v. injected LNP-siRNA, we used a 
CD45 silencing assay. CD45 is a common, highly expressed 
leukocyte antigen that occupies up to 10% of the cell surface.25 
We assayed CD45 protein knockdown by flow cytometric 
analysis of leukocytes defined by combinations of specific cell 
surface markers and then measured the decrease of CD45 
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expression in each of these cell populations (Figure 2). We 
compared leukocytes from animals injected with a formulation 
containing a CD45-specific siRNA versus animals injected 
with an identical formulation containing a control siRNA 
 targeting luciferase. We surveyed leukocytes isolated from 
different organs (spleen, liver, peritoneal cavity, bone  marrow, 
and lymph nodes) 3 days after a single i.v. bolus injection 
(Figure 2a and Supplementary Figure S1b). A 3-day inter-
val between injection and protein level analysis was needed 
to allow the reduction in mRNA levels to be translated into 
decreased CD45 protein expression. Using this assay, we 
found highly effective (~80%) silencing in cells of macrophage 
lineage (Figure 2a,b), good (~40%) silencing in dendritic cells 
(Supplementary Figure S1b), some activity (~15%) in B cells 
(Supplementary Figure S1c, and no silencing in T cells, NK 
cells, or GR-1+ granulocytes (Supplementary Figure S1c). 
Silencing in all cell types was examined in multiple tissues 
including spleen, liver, bone marrow, blood, and peritoneal 
cavity. These findings imply broad applicability of this technol-
ogy to diseases that involve innate immune activation, infec-
tion, and antigen presentation.

To address whether ingestion of LNPs might activate leuko-
cytes, we compared mice injected with PBS versus siRNA in 
LNP. Notably, we used only chemically modified siRNA mole-
cules (2′OMe modified at selected pyrimidine sites) which do 
not induce cytokine production in the human PBMC assay.18 
We investigated leukocyte numbers as well as their activation 
status in blood, spleen, bone marrow, and peritoneal cavity 
following an i.v. administration of LNP siRNA. Interestingly, 

we did not find evidence for overt activation in any of the 
populations surveyed; there was no increase in costimulatory 
molecules CD80 and CD86 or in MHCII expression (Supple-
mentary Figure S2). After injection of Luc LNP-siRNA, we 
observed a minor influx of CD11b− low cells in the peritoneal 
cavity and slight CD45 upregulation on CD11b+ cells (Sup-
plementary Figure S2).

To corroborate the CD45 silencing data, we conducted 
silencing experiments with other gene targets, including 
green fluorescent protein (GFP), CD11b, integrin β1, and 
TNFα, where we observed similar or greater silencing effi-
ciencies (Supplementary Figure S3 and data not shown). 
For instance, silencing of integrin β1 in CD11b+ cells from 
the bone  marrow was more pronounced than that of CD45 in 
the same cells (Supplementary Figure S3). These observa-
tions may reflect both intrinsic differences in the potencies 
of the specific siRNA (half-maximal concentration required 
for in vitro silencing of 10 pM for integrin β1 versus 90 pM 
for CD45) and different characteristics in the target mRNA 
transcripts (e.g., mRNA half-life).

Interestingly, the anatomical location showing the stron-
gest silencing of CD45 after i.v. injection in mice was the 
peritoneal cavity with up to 90% reduction in CD45 protein 
expression, followed by significant silencing in the spleen, 
and only moderate silencing seen in the bone marrow, lymph 
nodes, and liver (Figure 2 and Supplementary Figure S1, 
data not shown), using shift in mean fluorescent intensity of 
the total population as the metric. It is noteworthy that within 
a population with average silencing even at 20–30%, there 

Figure 1 In vivo dynamic fluorescence-mediated tomography/X-ray computed tomography (FMT-CT) of lipid nanoparticles 
(LNP)-small interfering RNA (siRNA) delivery and siRNA localization within reservoir monocyte clusters in the spleen. (a) 3D 
reconstruction of FMT-CT data of KC2 (left) and C12-200 (right) is shown. The arrow points to the position of splenic signal. Signal in organ 
systems of interest was quantified, data are shown as mean and SE, n = 4–5 per group. (b). Ex vivo fluorescence reflectance imaging after 
injection of LNP siRNA side-by-side imaging of respective organs and highlights the signal intensity in the spleen. (c) Fluorescence images 
of spleens from mice injected or not injected with LNP-siRNA.
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are subpopulations of cells with silencing as high as >95% 
at the lower end of distribution. Given the extreme stability 
and abundance of CD45, it is likely a gene target that is more 
refractive to silencing.

Next, in dose response experiments, we assessed the 
potency of in vivo silencing in peritoneal macrophages and 
found that C12-200 LNP induced 50% CD45 silencing at 
doses of ~0.2 mg/kg, and KC2 LNP at doses of ~0.5 mg/kg 
(Figure 2a,b). This is a significant improvement compared 
to similarly formulated LNPs using early generation cationic  
lipids, where no silencing in leukocytes was seen after i.v. 
injection of at least tenfold higher doses.7 Even compared to 
LNPs using the KC2 lipid the formulation used here shows 
a sixfold improvement in potency with 50% silencing at 
0.5 mg/ kg versus 3 mg/kg22 in peritoneal macrophages. Know-
ing that peritoneal cells are sessile, we could monitor longev-
ity of silencing in vivo using cells transferred intraperitoneally 
from the peritoneum of GFP transgenic mice. To this end, we 
injected cohorts of animals with CD45 or control LNP-siRNA 
and sacrificed them at different time points. We observed 

silencing in peritoneal macrophages for up to 3 weeks after 
a single injection (Figure 2c), which is near identical to the 
duration of silencing observed in hepatocytes.4,5 We observe 
a longer silencing duration than that seen in peritoneal mac-
rophages put in culture following liposome treatment.21 This 
may be a reflection of the differences in the assay systems 
and the gene targets being assayed (CD45 versus GFP).

With such low doses, it is possible to combine several gene 
targets for silencing in leukocytes, thus, enabling functional 
genomics studies in the cells central to inflammatory disor-
ders. To validate this utility, we performed an experiment that 
mixed siRNA to four independent gene targets formulated 
in C12-200 LNP, each at the 0.2 mg/kg dose, an estimated 
IC50 dose for the CD45 siRNA. We included siRNA target-
ing CD45, CD11b, RAB5c, and integrin β1 into this cock-
tail. Silencing was monitored in total peritoneal cavity cells  
24 hours post injection on the mRNA level by reverse tran-
scription-quantitative PCR. We observed silencing ranging 
from 50 to 80% for each of the targets as compared to the 
levels seen in animals dosed with control siRNA (Figure 2d).
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Figure 2 Efficacious and durable silencing in peritoneal cavity macrophages. (a) Cells were collected at 72 hours after a single 
intravenous (i.v.) bolus administration of the indicated doses of small interfering RNA (siRNA) in KC2 or C12-200 lipid nanoparticles (LNP) 
formulation. Leukocytes were stained for CD11b and CD45 and analyzed by flow cytometry. Representative profiles of CD45 staining in 
CD11b+ population are shown. Groups of three mice were analyzed, a representative experiment out of three independently conducted 
ones is shown. (b) Quantification of the percent silencing with C12-200 (gray bars) and KC2 (black bars) seen in panel (a). Bars represent 
average  percent silencing within group with standard deviation. (c) Green fluorescent protein (GFP)-expressing peritoneal lavage cells 
from N5-RAGE GFP mice were transferred into C57BL/6 recipients by intraperitoneal (i.p.) injection. Thirty minutes after transfer mice 
were treated with 2 mg/kg KC2 formulation encapsulated CD45 or Luc siRNA i.v. At indicated days silencing of CD45 in GFP-expressing 
peritoneal cavity myeloid cells was monitored. Three mice per group were analyzed. (d) C57BL/6 mice were injected with 0.8 mg/kg of 
equivalent mixture of four siRNA directed against integrin β1, Rab5c, CD11b, and CD45 or with total amount of Luc siRNA. Twenty four 
hours post injection  peritoneal cavity cells were collected and gene expression was analyzed by quantitative-PCR (Q-PCR). Each gene 
expression was measured as ratio to GAPDH expression. Knockdown results are expressed as % gene knock down with SEM, relative to 
the group injected with Luc siRNA. Three mice per group were analyzed.
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Macrophage uptake of LNP-siRNA relies on phagocy-
tosis. Since both KC2 and C12-200 represent potent LNP 
formulations for myeloid cell silencing in vivo, we chose to 
investigate the mechanism of cellular uptake for these two 
formulations. We performed uptake experiments with  primary 
mouse bone marrow-derived macrophages that were 
treated with fluorescently labeled siRNA in KC2 or  C12-200 
LNP. C12-200, relative to KC2 LNP, mediated more efficient 
uptake of the labeled siRNA by primary macrophages in vitro 
consistent with mRNA-silencing results (Figure 3a). To char-
acterize the mechanism of cellular uptake, we co-exposed 
primary macrophages to markers of different endocytic path-
ways. We saw ~60–70% colocalization of labeled siRNA par-
ticles with fluorescent latex beads that due to their large 1 µm 
size enter these cells by phagocytosis (Figure 3b,c).26 We 
saw substantially less colocalization with  markers of other 
pathways: dextran, a marker of macropinocytosis (~40%), 
and transferrin, a marker of  clathrin-mediated endocytosis 
(10%) (Supplementary Figure S4a–c). Latex beads and 
siRNA-containing vesicles colocalized most prominently in 
the perinuclear region; these likely represent vesicles that 

have already undergone lysosome fusion (Figure 3b). Since 
phagosomes are known to contain the EEA1 marker27 the 
compartments in which siRNA signal is observed likely cor-
respond to the EEA1 positive structures reported by Basha 
et al.21 In addition, LNP-siRNA uptake was inhibited by 
Cytochalasian D and by Dynasore (inhibitors of actin rear-
rangement and dynamin, respectively, both previously shown 
to inhibit different steps of phagocytosis (Supplementary 
Figure S4d,e)). We therefore concluded that the primary 
mechanism of LNP siRNA internalization in macrophages 
was phagocytosis.

Silencing of myeloid genes in vivo occurs in both 
 tissue-resident and splenic reservoir cells of monocyte/
macrophage lineage. A key question for therapeutic gene 
silencing in leukocytes is whether delivery can be achieved 
to circulating and splenic monocyte/macrophages, including 
splenic reservoir monocytes that migrate in high numbers 
to inflammatory sites such as acute myocardial infarcts.28–30 
One technical challenge in assessing in vivo gene silenc-
ing in  leukocytes is their migratory nature. The site of initial 
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 LNP-siRNA uptake and the ultimate cell destination when 
protein downregulation is detectable may not coincide. To 
address this issue, we injected mice i.v. with LNP-siRNA and 
isolated monocytes/macrophages from bone marrow, blood, 
spleen, and peritoneal cavity at 15, 60, and 120 minutes post 
injection. The cells were then seeded onto plastic to allow 
time for downregulation of CD45 protein expression. This 
strategy interrupted the migratory path of the cells, and deter-
mined the site of effective uptake independent of subsequent 
cell relocation. Interestingly, we did not observe any silencing 
in the bone marrow in this assay, whereas blood monocytes 
reached maximum silencing at 15 minutes, splenic cells at 
1 hour, and peritoneal macrophages at 2 hours after injec-
tion with KC2 LNP-formulated CD45 siRNA (Figure 4a). 
The maximal levels of CD45 silencing seen in this in vivo/  
in vitro assay (>50%) were comparable to the levels reached 
3 days post injection in vivo (Figure 4a). Silencing kinetics 
were faster following injection of C12-200 LNP-formulated 
siRNA, with maximal blood silencing as early as 5 minutes 
post injection (data not shown). These data indicate that LNP 
siRNA effectively reached the central pool of circulating and 
splenic monocytes, as well as resident tissue macrophages. 
Due to the fast migratory kinetics of myeloid cells, many cir-
culating and splenic monocytes relocate to target tissue after 

ingesting LNP siRNA. Some of these transfected cells appear 
to migrate to the peritoneal cavity.

The efficient silencing seen in mouse peritoneal 
 macrophages 3 days after i.v. injection was surprising, and 
may be (i) a functional consequence of gene silencing, (ii) due 
to migration of the cells that had been targeted while circu-
lating in blood or residing in the spleen, and/or (iii) a result 
of local accumulation of LNP siRNA in the peritoneal cavity 
and uptake by resident macrophages. Notably, the kinetics 
of LNP accumulation in peritoneal cavity macrophages was 
 significantly slower than that observed in blood or spleen 
 (Figure 4c,d). Using GFP-expressing transgenic mice, we 
found that equally efficient silencing of GFP can also be 
 measured in the peritoneal cavity macrophages, therefore 
excluding a role for endogenous gene knockdown in localiza-
tion of these cells to the peritoneal cavity (Supplementary 
Figure S3a).

To determine whether LNP internalization first occurred in 
circulation or locally in the peritoneal cavity, we transferred 
resident GFP+ peritoneal cells into the peritoneum of wild-
type mice and injected recipient mice i.v. with LNP-siRNA 
targeting CD45 30 minutes after cell transfer. CD45 in both, 
GFP+ and well as GFP− cells, was silenced to a nearly identi-
cal degree in vivo (Figure 4b). This experiment established 
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that gene targets in sessile resident peritoneal cells31 are 
also silenced by i.v. injected LNP-siRNA.

Silencing mRNA specific for the monocyte/macrophage 
lineage. While the CD45 assay allowed us to follow many 
leukocyte cell types in parallel, it necessitated isolation of 
leukocytes from different tissues to identify cell types by sur-
face staining. Previous work demonstrated that some tissue 
resident leukocytes cannot be isolated,32 thereby making it 
impossible to assess the degree of silencing in such cells 
by flow cytometry. We therefore decided to focus on all cells 
of the monocyte/macrophage lineage by devising siRNA 
against CD11b (Mac-1) and thus enabling total tissue mRNA 
analysis of silencing in the cells of interest. This siRNA was 
very active in vitro with an IC50 of about 4 pM. We identified a 
24-hour time point when mRNA for CD11b was significantly 
silenced, but cell surface protein was still unaffected, to avoid 
potential effects specific to CD11b function. We performed 
in vivo titration of LNP encapsulated CD11b siRNA and 
found it required ~0.3 mg/kg siRNA in C12-200 and ~1 mg/
kg siRNA in KC2 LNP to achieve 50% silencing at the mRNA 
level in the peritoneal cavity cells (Figure 5). These in vivo 
potencies were very similar to those found for the CD45 pro-
tein and they demonstrate the robustness and reproducibility 
of silencing across several targets, using mRNA and protein 
as readouts.

We proceeded to test CD11b silencing in different organs, 
measuring the ratio of CD11b mRNA level to GAPDH. In 
spleen and peritoneal cavity, CD11b mRNA was reduced to 
similar levels when compared with CD45 silencing (Figures 2 
and 5 and Supplementary Figure S1), namely, ~30% in the 
spleen and 70–90% in peritoneal cavity. Interestingly, we also 

found efficient CD11b knockdown in the liver (Figure 5). We 
believe that the near absence of CD45 silencing in the mac-
rophages isolated from liver reflects the fact that a true resident 
population of Kupffer cells is not isolated by the liver digestion 
protocols employed and was therefore not accessible to flow 
cytometric analysis.32 CD11b knockdown was also normal-
ized to another macrophage-specific marker, F4/80, and was 
shown to be very similar to the values obtained by normaliza-
tion to GAPDH (data not shown): This indicates that observed 
CD11b knockdown is not due to the loss of macrophages.

CD45 and CD11b silencing is RNAi mediated. To confirm 
that the knockdown of myeloid gene mRNA observed in rodents 
was mediated by an RNAi silencing mechanism, we isolated 
CD11b+ cells from mice treated with either CD45 or CD11b 
LNP-siRNA. mRNA from these cells was then subjected to 
rapid amplification of cDNA ends (5′-RACE), a method pre-
viously used to demonstrate siRNA-mediated cleavage.6,33 
5′-RACE analysis of peritoneal cavity  macrophage-derived 
mRNA from animals treated with LNP-siRNA revealed prod-
ucts of the expected sizes for both CD45 and CD11b ampli-
cons in their respective cohorts (Supplementary  Figure S5). 
Sequence analysis of cloned PCR products demonstrated 
that 46 out of 48 and 24 out of 24 PCR products were derived 
from the predicted cleavage event at position (CTGGCTGAA/
TTTCAGAGCA) for CD45 siRNA in KC2 and C12-200 LNP, 
respectively; for CD11b, 29 out of 48 and 20 out of 24 PCR 
products were cleaved at position (TTGTCTCAA/CTGTGAT-
GGA) in KC2 and C12-200 LNP, correspondingly. No specific 
cleavage site PCR products were derived from the 5′-RACE 
samples treated with LNP-encapsulated control siRNA (out 
of 140 sequenced products) except for one likely contami-
nant clone with CD45 cleavage product derived from CD11b 
siRNA in C12-200 LNP treated cells. These results clearly 
demonstrate that the effect of siRNA in LNP treatment on 
CD45 and CD11b expression levels observed is due to cleav-
age of the mRNA transcript via an RNAi mechanism.

siRNA-mediated silencing in immune cells substantially 
inhibits disease progression in a mouse model of RA. 
To determine whether the effective silencing in macrophages 
translated into disease modifying activity, we tested TNFα-
specific siRNA in an antibody-induced arthritis mouse model 
in which systemic inhibition of soluble TNFα has been previ-
ously shown by several groups to be highly effective.34 Using 
siRNA targeting TNFα, we found inhibition of paw swelling in 
two independent experiments with C12-200 LNP  (Figure 6a). 
In fact, the anti-inflammatory activity was comparable to 
anti-VLA1 i.v. antibody treatment (Figure 6a,d), which has 
been previously demonstrated to be at least as effective as 
systemic TNFα inhibition.35 In agreement with the near com-
plete absence of redness and swelling in the joints and dig-
its, histological analyses of paw sections showed significantly 
decreased edema, synovial inflammation, and inflammatory 
cell infiltration in TNFα siRNA-treated animals (Figure 6d). To 
quantitate the degree of inflammation in siRNA-treated ani-
mals, we used in vivo fluorescence tomography of arthritic 
joints after injection of a pan-cathepsin sensor, which reports 
on protease activity.36 Using this method, we found that TNFα-
specific LNP siRNA reduced joint inflammation by more than 
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half (Figure 6c,e). In splenic macrophages from arthritic mice 
treated with TNFα targeting but not with control siRNA, we 
found a decrease of intracellular TNFα staining indicating 
effective silencing (Figure 6b).Overall, the effect of treatment 
on mean fluorescent intensity value is highly significant accord-
ing to an ANOVA (F = 17.061, P < 10−5). Tukey’s  post-hoc tests 
indicate that the pairwise difference between mean MFI in the 
TNFα siRNA group and the Luc siRNA group is significant  
(P = 0.0197; see star in Figure 6b).

In vivo silencing in circulating monocytes in NHPs. 
Finally, in order to determine the translational potential of 
RNAi- mediated silencing in immune cells, we explored leu-
kocyte gene silencing in NHPs. We first performed a non-
terminal study in cynomolgus macaques and examined 
efficacy of a single dose per formulation and one time point 
of sampling post dose. To avoid confounding effects due to 
leukocyte redistribution and trafficking in the days following 
LNP-siRNA administration, we replicated our mouse protocol 
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and collected blood 1 hour post-i.v. injection followed by 
3 days of in vitro culture and analysis of CD45 protein cell 
surface expression. We tested CD45 or luciferase siRNA for-
mulated in KC2 (3 mg/kg) or C12-200 (1 mg/kg) and com-
pared pre- and post injection levels of CD45 expression on 
blood monocytes. In every animal dosed with CD45 siRNA, 
but not with control siRNA, we found CD45 protein reductions 
of ~40–50% (Figure 7a). Encouraged by these results, we 
next monitored organ resident leukocyte silencing in cyno-
molgus macaques. The same doses and formulations were 
used, namely CD45 or luciferase siRNA formulated in KC2 
(3 mg/kg) or C12-200 (1 mg/kg). Three days after injection 
we isolated leukocytes from blood, bone marrow, peritoneal 
cavity, liver, and spleen to compare surface CD45 expres-
sion in animals injected with active versus control siRNA. 

We observed 30–60% silencing in liver, blood, spleen, and 
bone marrow-derived cells of monocyte/macrophage lineage  
(n = 3 per group, Figure 7c). Interestingly, peritoneal cav-
ity myeloid cells did not demonstrate any detectable silenc-
ing (Figure 7c). Dot plots from representative animals and 
overlaid histograms from each animal are shown in Supple-
mentary Figure S6, demonstrating that there is a signifi-
cant number of cells with diminished CD45 staining. In this 
experiment, we could not compare pre and post dose levels; 
therefore we analyzed group averages with expected and sig-
nificant variability in nongenetically identical animals. Despite 
this limitation, robust silencing of CD45 was observed in 
organ resident and blood circulating myeloid cells. It is worth 
mentioning that in cynomolgus macaques we were able to 
detect silencing of CD45 in circulating cells up to 3 days after 
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the injection, which indicates potent and durable silencing in 
the central compartment of myeloid cells ready for recruit-
ment to inflammatory sites.

Discussion

Bringing RNAi-mediated silencing in leukocytes toward 
the clinic. Macrophages are an important therapeutic cel-
lular target in many diseases, but so far developing systemic 
siRNA treatment aimed at these cells has been difficult. In 
this study, we provide evidence that LNP-mediated siRNA 
delivery to macrophages and dendritic cells can be used as 
a robust therapeutic platform. Similar LNP formulations are 
already in clinical trials or in late stage preclinical develop-
ment for transthyretin amyloidosis, hypercholesterolemia, 
and liver cancer.9

We investigate the ability of two types of liposomal for-
mulations KC2 (an ionizable lipid) and C12-200 (a cationic 
lipid) to mediate silencing in myeloid cells.8 We demonstrate 
dose-dependent silencing for both liposome types with an 
in vivo ED50 of 0.2–0.5 mg. The high in vivo potency of these 
formulations makes them potentially applicable for clinical 
use and is a major improvement on the dose levels used by 
Basha et al. where a 3 mg/kg dose of a KC2-based formula-
tion was employed.21 In the mouse system, systemic delivery 
of LNP-encapsulated siRNA results in silencing in multiple 
cell types (macrophages, dendritic cells, B cells) and ana-
tomic sites (peripheral blood, peritoneal cavity, spleen, bone 
marrow, liver). In tissue resident macrophages, such as 
those found in the peritoneum, CD45 silencing persists for 
over 2 weeks. We also provide evidence that the observed 
effects on protein levels are mediated by an RNAi mecha-
nism for multiple gene targets. The formulations used in this 
study have a relatively simple composition, containing four 
excipients in addition to the siRNA, and can be manufac-
tured at scale, a crucial attribute for translating LNP-based 
therapies into the clinic.

Silencing of gene targets in rodent myeloid cells had been 
reported by multiple groups using a variety of approaches, 
however translation to higher species has been elusive. Here, 
we demonstrate target-specific silencing of CD45 in liver, 
blood, spleen, and bone marrow derived cells of  monocyte/
macrophage lineage in NHPs for both KC2- and C12-200-
based LNPs. Since silencing of CD45 can be detected in 
circulating myeloid cells 3 days post injection, we have an 
opportunity for testing multiple formulations in NHPs for 
 further LNP potency improvement. LNPs are highly amena-
ble to attachment of a targeting ligand, as has been recently 
shown for LNP targeting via a GalNAc ligand for hepatocyte 
delivery.8 Targeting LNPs to macrophage surface receptors 
will likely result in an increased cytoplasmic localization of 
the siRNA by increasing the amount of siRNA taken up by 
macro phages via nonphagocytic pathways and may allow 
further lowering of the therapeutic dose.

To further validate the therapeutic potential of this plat-
form we demonstrate that systemic administration of LNP-
 encapsulated siRNA targeting TNFα results in disease 
modifying activity in a mouse model of RA. When compared 
to a previously reported anti-VLA1 antibody treatment, siRNA 

to TNFα gives a similar level of protection in this immune-
inflammatory model. The recent study of Leuschner et al.22 
greatly extends the potential therapeutic applications of this 
platform by demonstrating therapeutic efficacy of anti-CCR2-
specific siRNA delivered using a C12-200 LNP. In this study, 
multiple rodent disease models are interrogated, includ-
ing models of chronic disease.22 The ability to rapidly select 
siRNAs to a gene makes the LNP-siRNA platform a power-
ful tool for rapid validation of therapeutic targets for treating 
inflammation in vivo.

This process can be further aided by the ability to silence 
several independent genes by a cocktail of siRNA as is demon-
strated here. The cocktail approach allows for studying signal-
ing pathways, unraveling nonredundant signals and mimicking 
conditions that are believed to affect whole functional groups 
of genes. In addition, the ability to simultaneously silence 
several genes paves the way to therapeutic applications that 
require inhibition of multiple cellular functions.

Delivering siRNA to myeloid cells could provide novel 
approaches to treating multiple human diseases, such as 
modulating chronic inflammation in autoimmune disease, pro-
tecting against myeloid-tropic viral infections, reprogramming 
tumor-associated macrophages, restoring functionally insuf-
ficient cells, or killing malignantly transformed immune cells.

Materials and methods

siRNA synthesis and selection. Single-stranded chemically 
modified RNAs were synthesized at Alnylam Pharmaceu-
ticals (Cambridge, MA) using standard phosphoramidite 
chemistry. Deprotection and purification of the crude oligo-
ribonucleotides by anion exchange high-performance liquid 
chromatography were carried out according to established 
procedures. siRNAs were generated by annealing equimolar 
amounts of complementary sense and antisense strands. 
CD45- and luciferase-specific siRNA were described earlier,7 
other siRNA used are listed in Supplementary Table S1. 
siRNA specific to murine CD11b was identified by screening 
a set of 28 siRNA duplexes designed to target mouse and rat 
versions of the gene. Best duplexes were selected by trans-
fection of DC2.4 cells and IC50 values determined. siRNA 
specific to β1 integrin and Rab5c were identified similarly 
except NIH3T3 fibroblasts were used for screening. A single 
duplex was selected for each target and synthesized on a 
larger scale for use in LNP preparation.

siRNA formulation in LNPs. LNP siRNA formulations were 
prepared using either of the two recently described novel 
lipids DLin-KC2-DMA4 or C12-200.5 The novel lipids, along 
with the colipids disteroylphosphatidyl choline, choles-
terol, and PEG-DMG, were formulated with siRNA using a 
 spontaneous vesicle formation formulation procedure as 
 previously described.4 The LNPs had a component molar 
ratio of ~50/10/38.5/1.5 (DLin-KC2-DMA or C12-200/ 
disteroylphosphatidyl choline/cholesterol/PEG-DMG). The 
final lipid:siRNA weight ratio was ~12:1 and 9:1 in the case of 
DLin-KC2-DMA and C12-200 LNPs, respectively. The LNP-
siRNA formulations had mean particle diameters of ~80 nm 
with >90% entrapment efficiency.
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In vitro LNP uptake and microscopy. Primary bone marrow-
derived macrophages were isolated using standard methods 
and cultured in glass bottom 96-well plates (Greiner, Frick-
enhausen, Germany). Cells were maintained in Dulbecco’s 
modified Eagle’s medium (Life Technologies, Grand Island, 
NY) supplemented with Penicillin, Streptomycin, and fetal 
bovine serum. Cells were seeded for 5 days in the pres-
ence of macrophage colony-stimulating factor (8 ng/ml;  
Peprotech, Rocky Hill, NJ), then media was completely 
renewed for the last overnight culture and KC2 or C12-200 
liposome formulations of Alexa-647 tagged GFP-targeting 
siRNA (Alnylam Pharmaceuticals), were added for the indi-
cated time points. Cells were counterstained with Hoechst 
without fixation and imaged live. All images were acquired 
using an Opera automated spinning disc confocal system 
(Perkin Elmer, Waltham, MA) and data analyzed using Aca-
pella Software (Perkin Elmer). Quantification of Alexa-647 
labeled siRNA uptake was determined by identifying the 
number and border of each cell and calculating the number 
of intracellular siRNA positive spots above a predetermined 
minimum intensity threshold. The average number of these 
spots per cell was multiplied by the average intensity value of 
the indentified spots to determine the average siRNA content 
per cell. The average content per cell was averaged across 
20 fields from three replicate wells. In some experiments, pri-
mary macrophages were copulsed with a 1 to 500 dilution 
of a 2% solution of Alexa-488 latex beads (Invitrogen). Per-
centage of colocalization of Alexa-647 siRNA and Alexa-488 
beads was determined by identifying regions of intracellular 
siRNA signal similar to above using Acapella software and 
determining the percent of the total area overlapping with 
AF488 latex bead signal. Similarly, the colocalization percent-
age values were an average of % colocalization of siRNA and 
beads across 20 fields from three replicate wells.

Isolation of lymphocytes from spleen, blood, bone marrow, 
lymph nodes, peritoneal cavity and liver. Spleens or lymph 
nodes were minced through a nylon mesh (Cell Strainer; BD 
Falcon; BD Biosciences, Franklin Lakes, NJ) to obtain single 
cell suspensions in DMEM, 5% fetal calf serum, and 2 mmol/l 
l-glutamine. Single-cell suspensions were prepared from bone 
marrow by flushing femurs with DMEM (containing 5% fetal 
calf serum).  Erythrocytes were lysed by incubating in lysis buf-
fer (140 mmol/l NH4Cl, 17 mmol/l Tris–HCl, pH 7.65) for 3 min-
utes on ice. Blood was collected in EDTA-containing tubes (BD 
Biosciences – Pharmingen, San Diego, CA). To isolate blood 
lymphocytes, 200 µl of blood was underlaid with Ficoll-Paque 
(GE Healthcare, Piscataway, NJ) and centrifuged at 1,000g at 
room temperature for 20 minutes. Lymphocytes were collected 
from the interface. The peritoneal cavity was washed with 3 
ml of DMEM, 5% fetal calf serum, and 2 mmol/l l-glutamine 
to collect peritoneal leukocytes. Following these procedures, 
lymphocytes were washed twice in DMEM, 5% fetal calf serum 
by 300g centrifugation at 4 °C and resuspended in PBS/BSA/
azide for flow cytometric analysis. Liver lymphocyte isolation 
was done as described earlier.37

Flow cytometry. Fluorescence staining was performed as 
previously described.38 Antibodies specific for mouse CD45, 
CD19, CD11b, CD86, B220, MHCII, TCRb  (eBioscience, 

San Diego, CA), or CD11c (BD Biosciences – Pharmingen) 
were used. Antibodies specific for NHP or human (h) hCD31, 
hCD11b, CD45, hCD20, hCD3 (BD Biosciences – Pharmingen) 
or for CD11c (Abcam, Cambridge, MA) were used. Antibodies 
were conjugated to fluorescein isothiocyanate, phycoeryth-
rin, allophycocyanin (APC), phycoerythrin-Cy7, or biotin. 
Biotinylated antibodies were detected with streptavidin con-
jugated to fluorescein  isothiocyanate, phycoerythrin, or APC. 
For intracellular staining cells were resuspended in fixation/
permeabilization solution (BD Biosciences – Pharmingen), 
incubated for 20 minute at 4 °C, washed twice with permea-
bilization/wash buffer (BD Biosciences – Pharmingen) and 
stained with TNFα or isotype control Ab (BD Biosciences –  
Pharmingen) diluted in permeabilization/wash buffer for 
30 minutes at 4 °C. Stained cells were analyzed using BD 
LSRII (BD  Biosciences – Pharmingen). Analysis was done 
using FlowJo software (Tree Star, Ashland, OR).

Animals. All experiments followed institutional, federal, state and 
local guidelines and were approved by Institutional  Animal Care 
and Use Committee. All the animals were kept in a conventional 
barrier animal facility with a climate-controlled environment hav-
ing 12-hour light/dark cycles in polystyrene cages containing 
wood shavings, fed standard rodent chow and water. Nude mice 
were purchased from COX-7 (Massachusetts General Hospital, 
Boston, MA), C57/BL6 mice from Jackson Labs (Bar Harbor, 
ME). N5RAGE-GFP transgenic mice39 were bred in house as 
homozygous X C57BL/6, heterozygous animals were used for 
experiments. For silencing and distribution experiments mice 
were i.v. bolus injected and sacrificed by CO2 overdose before 
tissue harvest.

NHP experiments were performed with male cynomolgus 
monkeys originating from China, 3–6 years of age, weighing 
4–8 kg. Treatment of the NHPs was conducted by a Charles 
River Laboratories (Wilmington, MA). in accordance with the 
testing facility’s standard operating procedure, which adheres 
to the regulations outlined in the United States Department 
of Agriculture Animal Welfare Act (9 CFR, Parts 1–3) and 
the conditions specified in the Guide for the Care and Use of 
Laboratory  Animals (ILAR publication, 1996, National Acad-
emy Press). On the day of dosing, all monkeys were given 
a single  15-minute i.v. infusion of LNP-formulated siRNAs. 
Blood samples were collected 1 hour predose and 1 hour 
post the end of the infusion and reached Alnylam Pharma-
ceuticals by courier within <2 hours post-collection. In the 
nonterminal study animals were returned to the colony after 
sample collection. In the terminal study, animals were bled 
pre- and post-15 minute i.v. infusion, bone marrow and peri-
toneal lavage samples were collected while the animal is 
anesthetized with Nembutal; splenic and liver samples were 
collected post humane sacrifice.

FMT-CT imaging. FMT-CT imaging is a fully quantitative 
hybrid technique that combines whole body noninvasive fluo-
rescence tomography to determine tissue concentration of 
AF647-tethered siRNA with high-resolution CT imaging for 
exact anatomic location of the siRNA.These imaging stud-
ies provide the biodistribution of LNP siRNA. Please see 
 Supplementary Materials and Methods for a detailed 
description of the FMT-CT methods.
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Anti-collagen mAb-induced arthritis. Arthrogen-collagen– 
induced arthritis antibody kits were purchased from  Chondrex 
LLC (Redmond, WA), and arthritis was induced using an 
established protocol.40,41 Groups of 10 BALB/c mice (CRL) 
were injected intraperitoneally with a cocktail of five anticol-
lagen type II mAb’s (0.75 mg/animal total, Chondrex, cata-
log #53100) on day 0, followed by intraperitoneal injection 
of 25 µg lipopolysaccharide on day 3. After 3–4 days, the 
mice developed swollen wrists, ankles, and digits. 0.5 mg/ kg 
of siRNA in C12-200 formulation was administered i.v. to 
appropriate groups of mice on day −3, day 0, day +4, and 
day+7. Anti-VLA1 mAb (100 µg; BD Biosciences Pharmin-
gen; catalog #555000) was administered intraperitoneally 
on day 0, 4 hours before arthritogenic Ab cocktail. Severity 
of arthritis in each limb was scored as follows: 0 = normal; 
1 = mild redness, slight  swelling of ankle or wrist; 2 = mod-
erate swelling of ankle or wrist; 3 = severe swelling includ-
ing some digits, ankle, and foot; 4 = maximally inflamed. 
For FMT-CT imaging of  arthritis, animals were injected with 
2 nmol of the pan-cathepsin  protease sensor Prosense-750 
(Perkin Elmer) 24 hours prior FMT imaging.36 FMT imaging 
was done at excitation/emission 750/780 nm for quantitation 
of protease activity. Please see  Supplementary  Materials 
and Methods for a detailed description of the FMT-CT 
imaging method.
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