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Activation Complexity: A Cognitive 
Impairment Tool for Characterizing 
Neuro-isolation
Nicholas J. Napoli   1,4,5*, Matthew Demas2, Chad L. Stephens3,6, Kellie D. Kennedy3,6, 
Angela R. Harrivel3,6, Laura E. Barnes2 & Alan T. Pope3,6

Electroencephalography (EEG) is a method for recording electrical activity, indicative of cortical brain 
activity from the scalp. EEG has been used to diagnose neurological diseases and to characterize 
impaired cognitive states. When the electrical activity of neurons are temporally synchronized, the 
likelihood to reach their threshold potential for the signal to propagate to the next neuron, increases. 
This phenomenon is typically analyzed as the spectral intensity increasing from the summation of these 
neurons firing. Non-linear analysis methods (e.g., entropy) have been explored to characterize neuronal 
firings, but only analyze temporal information and not the frequency spectrum. By examining temporal 
and spectral entropic relationships simultaneously, we can better characterize how neurons are 
isolated, (the signal’s inability to propagate to adjacent neurons), an indicator of impairment. A novel 
time-frequency entropic analysis method, referred to as Activation Complexity (AC), was designed 
to quantify these dynamics from key EEG frequency bands. The data was collected during a cognitive 
impairment study at NASA Langley Research Center, involving hypoxia induction in 49 human test 
subjects. AC demonstrated significant changes in EEG firing patterns characterize within explanatory (p 
< 0.05) and predictive models (10% increase in accuracy). The proposed work sets the methodological 
foundation for quantifying neuronal isolation and introduces new potential technique to understand 
human cognitive impairment for a range of neurological diseases and insults.

Electroencephalography (EEG) detects the electrical activity of the brain and analysis of EEG permits tracking 
variations in brain wave patterns. EEG analysis provides information about a person’s cognitive state such as 
response inhibition, level of concentration, arousal, and even diagnostic information regarding diseases such as 
Alzheimer’s, post-cardiac arrest syndrome (hypoxic encephalopathies), and epilepsy1–6. There are many types of 
analyses designed to extract features from EEG signals that examine coherence, intensity of frequency bands, 
signal entropy, coupling, and source localization to acquire information about cognitive states2,7. These extracted 
EEG features are then used as the foundation for explanatory and predictive modeling. Typically, two or more of 
these features are utilized to generate a feature space for predictive models that can predict epilepsy, hypoxia, etc.2. 
Thus, capturing these new EEG features is paramount to uncovering nascent patterns that provide further insight 
into the complexities of the human brain and distinguishing impairments.

Literature has demonstrated that conditions like hypoxia, Alzheimer’s, epilepsy, and other neurological issues 
cause neuronal impairments that change firing patterns. Modification of firing can potentially occur at the intra-
cellular level of an individual neuron or at the intercellular level in how neurons propagate information to each 
other (neuronal interactions). However, the non-linearity of the processes at both the intracellular and intercellu-
lar level are caused by dynamic behavior7, making it difficult to capture explanatory responses. At the intracellular 
level, neuronal firing, or the generation of an action potential, demonstrates non-linearities in how thresholding 
and saturation phenomenon are governed7. At the intercellular level, neuronal interactions occur spatially giving 
a second dimension to these non-linearities7. These combined neuronal interactions are summed, potentially 
enabling subsequent neurons to meet their threshold criteria and thus fire as well8,9. These dynamic behaviors that 
demonstrate changes in threshold criteria and signal propagation can be modeled mathematically9,10. However, 

1Industrial and Systems Engineering, University of Florida, Gainesville, FL, 32611, United States. 2Systems and Information 
Engineering, University of Virginia, Charlottesville, VA, 22904, United States. 3NASA Langley Research Center, Hampton, 
VA, 23681, United States. 4National Institute of Aerospace, Hampton, VA, 23681, United States. 5University of Florida, 
Dept. of Electrical and Computer Engineering, Gainesville, FL, 32611, United States. 6These authors contributed equally: 
Chad L. Stephens, Kellie D. Kennedy, Angela Harrivel and Alan T. Pope. *email: n.napoli@ufl.edu

OPEN

https://doi.org/10.1038/s41598-020-60354-2
http://orcid.org/0000-0002-9071-3965
mailto:n.napoli@ufl.edu


2Scientific Reports |         (2020) 10:3909  | https://doi.org/10.1038/s41598-020-60354-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

if a neuron is impaired, it has the potential to impede transmission and prevent subsequent neurons from firing, 
causing neurons to be functionally and electro-physiologically isolated11. A single, simulated EEG oscillation that 
would be produced by functional and impaired networks of neurons has been created to provide insight into the 
development of the novel methods presented in this paper.

Prior work.  EEG signals are characterized as non-linear time series because of complexities in cellular pro-
cesses and signal propagation7,11,12. Though these complexities in neuronal firing occur even in the case of sim-
ple cognitive changes (e.g., sleeping), signal propagation is altered, which ultimately affects whether a neuron’s 
threshold criteria is met or not13. Collectively, changes in neuronal signal propagation affect global measurements 
of electrical activity as measured by the changing intensity/power of EEG band-limited waveforms (e.g., alpha, 
delta, theta). Based on this rudimentary and fundamental point, this relationship between cognitive states and 
EEG patterns was first documented by Berger14, who noted an attenuation in alpha waves (8–12 Hz) when com-
paring conscious waking states with rest/sleep15.

These observations became visibly apparent because the EEG alpha frequency is band-limited (8–12 Hz) and 
its intensity is more dominant during specific conditions (such as sleep). Thus, spectral intensity analysis methods 
have been the hallmark approaches for EEG analysis7,12, and Fourier methods have been the typical method for 
analyzing the intensity of specific frequency bands (i.e., delta δ, theta θ, alpha α)16,17. However, EEG signals are 
non-stationary12, making Fourier approaches problematic since they assume that the signal is infinitely long and 
stationary18. We are required to make this assumption about the signal being analyzed because Fourier uses sine 
and cosine waves as its basis function in order to decompose the signal into its appropriate frequency compo-
nents. To overcome the issue of non-stationarity, Short-Time Fourier Analysis (STFT) is applied17. STFT permits 
the assumption of signal stationarity by applying windowing (typically into segments of 5–30 second windows)19. 
This type of analysis prevents one from examining how and when frequencies and intensities change within a 
windowed time segment. This dilemma has been previously identified as it relates to physiological signals18 and 
is known as the signal processing uncertainty principle20, which is related to Heisenberg’s uncertainty principle 
in physics21. This leads to the Heisenberg uncertainty principle’s fundamental trade-offs related to signal process-
ing18: In order to obtain an increased time resolution, one loses frequency resolution. Likewise, in order to gain 
better frequency resolution, one loses time resolution18. Furthermore, strictly examining the raw intensity leads to 
high variability between subjects because variability is inevitably imposed by electrode conductance. Additional 
methodologies are required to combat this issue.

More current literature aims to determine more suitable non-linear analyses for examining EEG complexity 
using various types of entropy measurements to obtain informative features that can detect cognitive states and 
diseases2,7,12,22. The general underlying concept of these entropy measurements is based on examining complex 
sequences for similarities in patterns to quantify the predictability of the sequence. If the entropy is low, there are 
many patterns that are similar and the sequence is highly predictable. On the other hand, if the entropy is high, 
the sequence has fewer similar patterns and is less predictable.

There are numerous ways one can quantify similarity, and hence, various methods for calculating entropy23. 
Sleigh and Abasolo both discuss two possible families of entropy estimators with regard to EEG entropy signal 
analysis7,24. The first family consists of “phase-space embedding entropies”, which are designed to estimate the 
signal in the time domain. Popular methods within this family consist of approximate, Shannon, phase, sample, 
Kolmogorov, fuzzy, and permutation entropy2. As depicted in Table 1, these frequency-specific EEG waveforms 
(e.g., alpha, gamma) have been shown to indicate certain cognitive states and to have contextual meaning associ-
ated with brain damage and disease based on decades of supporting literature25–27. Even high gamma frequencies 
are now being related to motor and cognitive tasks28. However, this “phase-space” family of entropy methods 
does not examine similarity with regard to the frequency content of the signal. Thus, these temporal entropy 
approaches overlook a large part of the classical concepts of EEG analysis.

The second family of entropy estimators is referred to as “spectral entropy” methods, which include spec-
tral and Normalized Bispectrum Entropy methods. These methods aim to examine entropy from a frequency 
perspective, but at the cost of losing temporal information due to spectral windowing limitations (i.e., STFT). 
Furthermore, these methods typically utilize Fourier analysis methods which, as stated above, are inappropriate 
for EEG analysis due to the stationarity assumptions Fourier analysis imposes and the lack of granularity in 
changes signal frequencies and intensities18. Furthermore, these methods typically utilize Fourier analysis meth-
ods which, as stated above, are inappropriate for EEG analysis due to the assumption of stationarity imposed by 
Fourier analysis and the inability to detect granular changes in signal frequencies and intensities18.

EEG Waveform Frequency Interpretation

Delta 0-3.5 Hz Sleep

Theta 4-7 Hz Idling, Inhibition

Alpha 8-12 Hz Relaxed/Reflecting

Low Beta 13-15 Hz Slight Concentration

Mid Beta 15-18 Hz Active Thinking

High Beta 18-40 Hz Over-Arousal

Gamma 32-100 Hz Sensory & Motor & Cognitive

Table 1.  EEG Waveform Interpretation.
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From an analytical standpoint, none of these entropy methods used to characterize the non-linearities of EEG 
signals capture the intensity of specific EEG waveform spectral properties continuously over time, nor do they 
attempt to calculate precise dynamic temporal changes. Thus, there is no complexity method that can explain 
both the temporal and spectral complexity relationships. An analysis method that identifies intensity changes 
over time would provide a new understanding of the non-linear dynamics present in EEG signals.

Motivation.  From a physiological standpoint, the complex neuronal dynamics resulting from a method that 
would measure both temporal and spectral complexity relationships in firing patterns could potentially provide 
new information. The notion of complex neuronal networks, which generate these fundamental neuronal oscil-
lations, has been backed by a vast amount of literature8,15,29. In order to capture the complexity of these dynamics, 
we propose the use of a rudimentary example with a simulated EEG that examines a simplistic network to ena-
ble the development of these methods (see Fig. 1). Figure 1 presents two cases: column one depicts a standard 
band-limited neuronal oscillation; and column two depicts a band-limited neuronal oscillation where a subset 
of neurons are functionally isolated (i.e., a neuron is impaired and has the potential to impede transmission and 
prevent subsequent neurons from firing). As previously discussed, we can observe these EEG oscillatory patterns 
through global field potentials at localized recording sites on the scalp, which are generated by the summation 
of large populations of neuronal action potentials. These populations of synchronized neuronal action potentials 
(in black) are shown in Fig. 1 in row two. In column two, the action potentials that did not fire are shown in red. 

Figure 1.  A rudimentary depiction of a standard neural oscillation in column 1 and a neural oscillation 
where functional neuronal isolation occurs, altering the local field potential in column 2. These two local field 
potentials in black are demonstrated in columns 1 and 2 in the first row. The characterized intensity of the signal 
over time is in blue. The second row of figures are the simulated spikes of individual neurons, where each dot 
represents an action potential in space and time. The red dots in the second column are the neurons that were 
suppressed and did not fire. The third row is the power spectrum using the Fourier transform of the local field 
potential neuronal oscillation. Intensity of the waveforms in the time domain and frequency domain are both 
highlighted in blue in rows 1 and 3.
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These action potentials are summated at the macroscopic level and are viewed at the level of global field potentials 
shown in Fig. 1, row 1, in black, with the intensity in blue. It is worth noting that the intensity is attenuated via the 
analysis of the power spectrum (in row 3) and the characterized intensity over time, both in blue.

Moreover, the chaotic nature of the intensity over time is increased. Currently, the non-linear dynamics of 
how and when these intensities are altered over time are not captured with these methods (seen in blue in Fig. 1 
of the first row). Note how a band-limited frequency and its intensity can change over time and become more 
unpredictable. The temporal intensity dynamics can potentially be altered at higher rates, where the ranks of the 
different spectral bands can alter in dominance. Outside this simulation, higher rates of change within tempo-
ral dynamics during hypoxia-ischemia has been reported in sheep30 and epilepsy31. However, current entropy 
measurement windowing techniques do not pinpoint instantaneous changes with regard to intensity, frequency, 
and time. This limitation calls for development of techniques capable of assessing whether there is additional 
information that could provide explanatory responses induced by neurological impairments (e.g., stroke, cancer).

Therefore, this work raises four relevant research questions: (1) Can we specifically measure EEG spectral 
waveforms (e.g., alpha) continuously over time to better capture changes in events? (2) How does the complexity 
of the intensity change for specific EEG spectral waveforms over time? (3) How do the proposed EEG entropy 
signal analysis methods compare to other standard measurements?

Challenges.  In order to detect instantaneous changes in intensity and relate them to the specified 
band-limited EEG waveforms in Table 1, a unique signal processing method must be developed. This method 
would share similarities to the DDWT method in order to capture intensity continuously over time. However, 
each filter would have to strictly capture the specified EEG waveforms and the adjacent filters would have to be 
considered in the method design to prevent redundant analysis of frequency content. If there is no redundancy, 
full reconstruction of the original signal can be achieved (plateau value of zero). This would mean that each filter 
is properly capturing only its specific intended EEG waveform. This requires intensive optimization since adjacent 
filter designs have dependencies on each other and are constrained by their cut-off frequencies with regard to spe-
cific EEG waveform bands. The second major consideration is how to formally apply these entropy measurements 
to the proposed signal processing methodologies. Although the wavelet entropy method analyzes the signal in 
a multi-resolution approach, it does not analyze instantaneous changes in the signal (granular time resolution). 
Instead, it examines entropy within the windowed time segment as a normalized sum of energy across the entire 
window. Thus, the resolution of any changes in the signal are generalized to the size of the window and do not 
examine these instantaneous changes in signals, which can inform granular, complex changes in firing. Finally, 
one must consider how to demonstrate that the new proposed approaches provide significant explanatory features 
when capturing these minuscule granular intensity changes from global field potentials.

Insights.  First, we test the feasibility of the proposed EEG algorithms using hypoxia data. Hypoxia is a state 
in which the body is unable to provide adequate levels of oxygen to its tissue. When oxygen levels are adequate, 
proper signal propagation between neurons can occur11,32. However, when oxygen deprivation occurs, the energy 
substrate supplied for neurons, Adenosine Triphosphate (ATP), is depleted, preventing synaptic transmission to 
other neurons11,33. The reduction of oxygen to tissue leads to neuronal electrophysiological isolation because of 
the inability to continue signal propagation33,34, thus altering the global measurements of the EEG recordings11,34.

Von Tscharner developed a signal processing intensity analysis method designed for Electromyography (EMG) 
signals using a wavelet-based analysis35. The design of these filters not only overcomes these time-frequency 
trade-offs, but the filters were designed in the frequency domain in order to minimize the plateau value of the 
filters to fully reconstruct the EEG signal35. The filter’s center frequencies and bandwidths were not chosen to 
capture any specific frequency ranges but designed to minimize the plateau value of the filter bank. Using optimi-
zation methods and these core concepts that von Tscharner presents, we can argue that the current design to fit 
appropriate optimal bandwidths specifically for continuous EEG analysis.

Contributions.  We propose a filter bank approach that addresses both the aforementioned challenges by 
examining the intensity of band-limited frequencies relevant to EEG in continuous time. Utilizing this developed 
intensity approach allows one to analyze entropy as a function of both time and frequency, unlike any current 
method available. We coin the term “EEG Activation Complexity” to refer to the calculation of entropy as the 
timing between a frequency band’s peak intensities. The contributions of this paper are: 

	 1.	 Utilizing synthetic stationary and non-stationary signals, we capture a one-to-one mapping of intensity for 
the designed filters as a function of time.

	 2.	 We demonstrate that the timing of intensity peaks over a band-limited frequency is significantly less com-
plex during normal oxygen conditions as compared to hypoxia conditions.

	 3.	 We demonstrate that the proposed method provide more information and add another dimension to the 
analysis of EEG signal processing.

	 4.	 We demonstrate activation complexity is a stronger predictor of cognitive impairment.

Method
The methods section is partitioned into four sections. The first and second sections discuss the data, filter design, 
and optimization methods applied to produce the time-frequency intensity analysis. The third and fourth sections 
describe how we apply entropy calculations to the proposed time-frequency intensity analysis methods, where we 
introduce the EEG Activation Complexity.

https://doi.org/10.1038/s41598-020-60354-2
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Hypoxia data set.  The dataset was collected by a research team at NASA Langley Research Center (LaRC), 
who subjected 49 volunteers with current hypoxia training certificates to normobaric hypoxia to study the impact 
of hypoxia on aircraft pilot performance36,37. All participants consented to take part of the study as approved by 
the Institutional Review Board of NASA LaRC.

The goal of the study was to understand cognitive impairment resulting from exposure to mild hypoxia in 
order to develop and test psychophysiologically-based adaptive automation/autonomous systems. Subjects in the 
study experienced simulated altitudes of sea level (21% O2) and 15,000 feet (11.2% O2) induced by an Environics, 
Inc. Reduced Oxygen Breathing Device (ROBD-2). During non-hypoxic (i.e., sea level) and hypoxic exposures, 
each subject experienced three 10-minute bouts performing three different tasks consisting of a battery of writ-
ten tests, Multiple Attribute Task Battery (MATB)38, and flight simulation tasks. In each exposure, the research 
team collected task performance measures, a subjective self-reported workload (NASA Task Load Index TLX)39, 
and multiple physiological responses (including EEG). This article discusses only the EEG data collected dur-
ing hypoxic and non-hypoxic exposures for the MATB, where the electrode configuration is provided in Fig. 2. 
As literature historically has shown, hypoxia induces cognitive performance deficits and changes within the 
EEG11,30. This has shown within this dataset’s past analyzes, were we demonstrated that during the hypoxic phase 
of the experiment subjects experienced statistically higher levels of perceived workload difficulty (NASA TLX)36, 
decreases to task performance (MATB)40, and changes in EEG power37. The specified electrode placement was 
used to avoid complications with the aviator’s oxygen mask component of the ROBD-2 breathing device which 
was worn using straps around the subject’s head.

Filter bank intensity method.  The goal of the filter bank design discussed in this paper is to develop a 
time-frequency intensity analysis for EEG-specific frequency bands. The general underlying concept of the filter 
design, which was motivated by von Tscharner35, is to extract the intensity of the signal as a function of time. In 
the proposed method, the filter bank comprises a collection of filters which, when summed, result in a relatively 
low plateau value across a range of frequencies (i.e., no one particular frequency dominates over any other).

Basis Function Definition.  The spectral topology of a filter bank’s basis function is important because adjacent 
filters in the frequency domain must be summed to obtain a reasonably stable plateau value. Von Tscharner 
implemented a derivative of the Paul wavelet, where the filter bank design had arbitrary cutoff frequencies for 
the filters. Von Tscharner’s design was acceptable for analysis of EMG signals since it was only concerned with 
covering the entire range of possible frequencies and maintaining a low plateau value. However, this design choice 
is not suitable for our application, where individual EEG bands need to be extracted. Additionally, we found that 
the Paul wavelet could not handle the additional constraints required to capture the specific EEG waveform fre-
quencies defined in Table 1. We adopt a pragmatic approach in this paper whereby optimization routines are used 
to find filter parameters that produce a reasonably optimal plateau value, EEG cutoff frequencies, and avoid the 
time-consuming process of manually adjusting filter bank parameters for each filter bank component.

For our filter bank, we selected the “flattened” Gaussian41 basis function topology to balance the extraction of 
frequency bands of the EEG spectrum while maintaining an acceptable filter bank plateau value. In the filter bank, 
the ith filter (i = 1, …, K, where K is the total number of filters) within the frequency space is defined as 

ψ = ⋅ Θ− − − −f fc a b e f( ; , , ) ( ) (1)i i i i
a f fc b f fc( ) ( )i i i i

2 4

Figure 2.  The electrode placement for the study is highlighted in blue.
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which is parameterized by the center frequency fci, and the tuning parameters ai, and bi. The Heaviside function, 
Θ(f), constrains the design to only positive frequencies (f ≥ 0). The filter bank is constructed using non-linear 
scaling to the basis function (ψ) in the time domain by shifting each center frequency and tuning the parameters 
to achieve a better filter bank design. Since these tuning parameters are not constant and altered for each ith filter, 
we refrain from referring to this design as a wavelet implementation and instead refer to it simply as a filter bank 
design. However, these filters maintain the same generalized basis function (a “flattened” Gaussian) and the core 
concepts of design followed by von Tscharner35 while still fulfilling a wavelet’s admissibility criterion.

Filter bank optimization.  The ultimate goal for our filter bank design was to find a set of filters with an acceptable 
(near optimal) plateau value. We attempted fitting filter parameters fci, ai, and bi by hand, but acceptable results 
were time-consuming to achieve. We also tried optimizing the entire filter bank, but the results were not accept-
able and were found to be computationally complex. We modified our approach to optimize sets of three filters 
at a time. We were able to achieve better results in less time with this approach, but we encountered difficulties 
in seeding the optimization routines with reasonable center frequencies. We attempted to solve this problem by 
optimizing only the placement of center frequencies such that the center frequencies were uniformly spaced with 
considerations for the boundaries imposed by EEG band cutoffs. We then used these center frequencies to seed 
the optimization of sets of three filters. After iterating through all filters in the filter bank, slight manual adjust-
ments to the parameters ai and bi were made to better adjust for the plateau value.

We introduced the following generalized optimization approach for developing the proposed filter bank for 
the constraints of this particular EEG. A general overview of the method is as follows: 

	Step 1:	� Select a number of wavelets to represent each band of the EEG spectrum and estimate the spacing 
of wavelet center frequencies by minimizing the sum of differences between separations of adjacent 
wavelet center frequencies.

	Step 2:	� Use the set of center frequencies from Step 1 to approximate the optimal plateau value for the entire 
wavelet filter bank by optimizing sets of three wavelets.

The details of each of these steps is outlined in the following sections.
Step 1: Estimated Optimal Spacing
The goal of the Step 1 is to find a set of center frequencies (fc ∈ RK, where K is the total number of wave-

lets selected) to seed the optimization routine in Step 2. This set is found by minimizing the sum of differences 
between separations of adjacent wavelet center frequencies as defined in the following optimization problem 

∑ − − −
=

−

+ + +fc fc fc fcminimize (( ) ( ))
fc

i

K

i i i i
1

2

1 2 1
2

fc fc fc i Ksubject to , 1, , ,i
lb

i i
ub≤ ≤ = …

where fci
lb and fci

ub are the lower and upper constraint boundaries on the center frequencies. These boundaries 
can be considered either “hard” – set by the halfway point between the minimum lower and upper boundaries of 
the EEG band and the halfway point between the maximum lower and upper boundaries of the EEG band (as 
found in 1), or “soft” – given by the approximate acceptable regions of center frequencies that are not fully deter-
mined by the EEG band ranges in Table 1.

An example of a “hard” boundary exists for a single wavelet occupying the δ band (fc1; starting between 0.5 Hz 
to 1 Hz and ending between 3 Hz to 4 Hz; see Fig. 3). This constraint is considered “hard” because it is imposed 
by the adjacent θ band to the right and the undefined region of negative frequency to the left. This wavelet should 
have a center frequency that is between 1.75 Hz ( fc lb

1 ; halfway between 0.5 Hz to 3 Hz) and 2.5 Hz ( fc ub
1 ; halfway 

between 1 Hz to 4 Hz; see Fig. 3).
An example of a “soft” boundary exists for two wavelets occupying the α EEG band, which contains frequen-

cies starting between 7 Hz to 8 Hz and ending between 12 Hz to 13 Hz (see Fig. 4). The constraints on these two 
center frequencies are considered “soft” because the single EEG band (α in this case) is represented by two wave-
lets, and at least one of the boundaries for each wavelet is “artificially” imposed. For the case of the first filter in the 
α band, the θ EEG band is to the left (ending between 7 Hz to 8 Hz) for the first wavelet, but the upper bound is 
not well-defined since we have some choice as to the next α band filter.

These constraints help ensure that the cutoff frequency (fcoi) of each filter would take the value of 1/e (i.e., 
ψ = =f fco e( ) 1/i i ) between the frequency range specified by the boundaries of certain EEG bands during Step 2. 
Furthermore, center frequencies that are spaced evenly were found to produce more stable plateau values in Step 
2. The aforementioned optimization problem was solved using the non-linear constrained optimization routine 
(“fmincon”) in MATLAB.

Step 2: Optimize Basis Function Parameter Values The goal of Step 2 is to produce a filter bank that equally 
represents all EEG frequencies within the range of interest while providing reasonable separability of different 
EEG bands as defined in the scientific literature (see Table 1). One possible way to achieve such a filter bank is to 
find the set of filter parameters that minimize the path length integral of the sum of all filters in the filter bank. 
Colloquially, this amounts to finding the shortest distance between two points (a straight line in Euclidean geom-
etry). Any deviations from a straight line result in having to “walk” a greater distance between the starting and 
ending frequencies. For an entire set of K filters, this objective can be operationalized as the path length integral 
between the first and last center frequencies, written as

https://doi.org/10.1038/s41598-020-60354-2
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ub≤ ≤
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j j
ub≤ ≤

b b b (2d)j
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ub≤ ≤
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H
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U
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H
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Figure 3.  Figure depicting the calculation of the center frequency’s acceptable range for the δ EEG band (i.e., 
δ δfc fc,lb ub).

Figure 4.  Figure depicting the calculation of multiple center frequency acceptable ranges for the α EEG band 
(i.e., α αfc fc,lb ub).
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ψ = ≤−( )f fc fc a b; , , (2g)j j j j1 

( )f fc fc a b; , , (2h)j j j j1ψ = ≤+
 

j Kwhere 1, , (2i)= …

where fc, a, b ∈ RK and L is the arc length of the sum of all filters between the center frequency of the first and last 
filter in frequency space 
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
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As in Step 1, the possible ranges of center frequencies are constrained (Eq. 2b) as well as the parameters a and b 
(Eqs. 2c and 2d). Additionally, Eq. 2e and Eq. 2f ensure that the lower and upper cutoff frequencies ( )fco fc a b, ,j

L
j j j  

and ( )fco fc a b, ,j
U

j j j  for the jth filter given by 
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b
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U
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j

2

fall within the acceptable ranges for the associated EEG band. Finally, in order to produce a reasonably biorthog-
onal filter bank, the value of the jth filter at the center frequencies of the (j−1)th and (j+1)st filters are constrained 
to be less than or equal to ϵ = 0.0005 through constraints Eqs. 2g and 2h.

Unfortunately, our attempts at directly optimizing Eq. 2a were met with poor results. However, we were able 
to approximate the global optimum by sequentially considering only three filters at a time until all K filters’ 
parameters were determined (see Fig. 5). As such, Eq. 2a was modified to account for three filters (ψi, i 1ψ + , and 
ψ +i 2
 ) at a time as described in the following optimization problem 

∫ − −

−

+

+

+ df L fc fc

fc fc
minimize

[ ( )]

( ) (6a)fc a b

fc

fc
i i

i i, ,

2

2

i

i 2

≤ ≤fc fc fcsubject to (6b)j
lb

j j
ub

Figure 5.  Diagram showing filter parameters optimized during each round of Step 2. Each row corresponds to 
an optimization round. Boxes shaded gray represent filters whose parameters were fixed during an optimization 
round.
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j j j j
H
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1 1≤ ≤+ +
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= + +j i i iwhere , 1, 2 (6i)

where the arc length along the three consecutive filters L is given by 

ψ ψ ψ= +



 + +




+ +L f fc a b d

df
( ; , , ) 1 ( ) ,

(7)
i i i1 2

2
  

and the constraints given in Eq. 6b to Eq. 6h serve the same functions as with the optimization problem in Eq. 2a.
For the first three filters, fc1, a1, b1, fc2, a2, b2, fc3, a3, and b3 are found such that Eq. 6a is minimized. The optimal 

values of filter 3 are then used in the next round to find fc4, a4, b4, fc5, a5, b5 such that Eq. 6a is minimized. This 
process is repeated until all K filter parameters have been optimized (see Fig. 5).

As with Step 1, the method in Step 2 was implemented using the non-linear constrained optimization (fmin-
con) routine in MATLAB.

Optimized filter parameters.  Utilizing the proposed methodology in which the constraints of the filtering para-
digm are accounted for and optimized, we obtain Table 2. These parameters are then applied to Eq. 8 and shown 
in Fig. 6, where we can note the plateau vector, PV(f), is defined as 

f e fPV( ) ( ),
(8)i

K
a f fc b f fc

1

( ) ( )i i i i
2 4

∑= ⋅ Θ
=

− − − −

where ∀ ∈f S1, , S = Fs∕2, and Fs is the sampling frequency. The plateau value, Pv, is obtained by calculating the 
standard deviation of the vector PV.

EEG Filter Implementation.  This discussed method deviates from Von Tscharner’s classical approach of the filter 
implementation because of the valid concerns presented by Gabriel42. This discussion in42, points out how apply-
ing the designed filters to the EEG’s source signal in the frequency domain, Xs(f), is inappropriate since we are 
applying the Fourier transform to a non-stationary signal, thus defeating one of the major purposes of the novel 
signal processing approach. As Borg highlights43, Von Tscharner’s implementation shares similarities to a basic 

Filter i Cfi (Hz) ai bi Fp1 (Hz) Fp2 (Hz)

1 2.349 0.072 0.095 0.6 4.0

2 5.605 0.001 0.077 3.8 7.6

3 8.759 0.101 0.119 7.2 10.4

4 11.400 0.219 0.161 10.0 12.8

5 13.859 0.170 0.180 12.4 15.2

6 16.608 0.007 0.135 15.0 18.2

7 19.627 0.001 0.127 18.0 21.4

8 22.792 0.001 0.095 21.0 24.6

9 26.094 0.001 0.090 24.2 28.0

10 29.432 0.001 0.088 27.6 31.2

11 32.820 0.003 0.078 31.0 34.8

12 36.307 0.001 0.070 34.4 38.2

Table 2.  Filter Bank Parameters (Pv = 0.0091).
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equalizer which decomposes the EEG time domain’s source signal, xs(n), into its associated intensity components, 
ρi(n), with respect to each filtering process, κi, shown in Fig. 7.

The presented filtering process utilizes the EEG signal in the time domain, xs(n), where we obtain a frequency 
band-limit intensity, ρi(n), over time by applying convolution with the designed filters, ψ n( )i  and Gaussian 
smoothing methods. We define this entire process as, iκ , where i ∈ {1, …, K} filters.

In order to obtain n( )iψ , we transfer the designed respective frequency domain filter, ψ fc a b( , , )i i i i
 , to the time 

domain by, 

 C FLn fc a b( ) { { ( , , )}}, (9)i i i i i
1ψ ψ= −

where −1F  is the inverse Fourier transform and CL is the circular shift of the numeric output of the function, 
where =L N

2
 and N is the length of the filter in the time domain. The CL operation with =L N

2
 is equivalent to 

performing a FFT shift, which adjusts the mirroring image in the frequency domain. However, this sequence 
happens to be in the time domain. Thus, the sequence {x(0), …, x(N − 1)} is cyclically shifted to {x(N∕2), x(N − 1), 
0, …, x(N∕2 − 1)}. By applying Equation 9, we are able to move the filter designed in the frequency domain to the 
time domain described with real and imaginary components, shown in Fig. 8.

Utilizing the filter in time domain, ψ n( )i , we obtain the intensity of the signal xs(n) by, 

∑ρ ψ= −
−∞

∞

n n m x m( ) 2 ( ) ( ) ,
(10)

i i s

ρ ψ= ∗n x( ) 2 , (11)i i s

which is defined by the convolution of xs(n) with ψ n( )i
 . The intensity sequence, ρi(n), is then smoothed using a 

Gaussian filter, 

Figure 6.  An optimized filter bank design defined by the parameters provided in Table 2.

Figure 7.  A Generalized Filter Bank design that mimics an equalizer in which the input signal, xs(n), is 
decomposed into its respective intensity components, ρ


n( )i , via the filtering paradigm, iκ .
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where F
2

sσ = , Fs is the sampling frequency and = ∈ …−{ }x , ,F F3
2

3
2

s s . The intensity signal is convolved with the 
Gaussian filter to obtain the smoothed filtered EEG intensity: 


ρ ρ= ∗ .n n G n( ) ( ) ( ) (13)i i f

Activation complexity.  We used Activation Complexity to examine the predictability of the intensity, n( )iρ


, of specific 
EEG frequency ranges (e.g., α, δ) as a function of time. We calculate Activation Complexity using the proposed filter 
bank design, a peak detector, and a temporal entropy measurement (e.g., sample entropy). The peak detector imple-
mented in this work utilized the function “findpeaks” from MATLAB version 2017a, where the function will produce 
a vector of indices for the locations in time where the peaks occur, Ai(k). In the upper part of Fig. 9, we depict instances 
in time for the peaks of the intensity of the delta waveform frequencies. In the lower part of Fig. 9 is the vector ΔA1, the 
sequence of the timing differences between all the peaks of the intensity waveform calculated simply by 

Δ = − … − − .A A A n A nA [ (2) (1), , ( ) ( 1)] (14)i i i i i

Following this, we computed the sample entropy of the new sequence, ΔAi
23 to produce the Activation 

Complexity measurement Aci for each EEG lead.
It is important to note that the type of entropy measurement applied to the sequence will be sensitive to the 

number of data points in the sequence, thus limiting the window size that can be analyzed. Typically, sample 
entropy and permutation entropy require a minimum of 100 samples, whereas approximate entropy requires a 
minimum of 1000 samples23.

Evaluation and Discussion
In this section, we address the following research questions regarding the filter design intensity method and 
entropy approaches to distinguish changes in EEG firing patterns during hypoxic conditions at 15,000 feet of 
altitude versus non-hypoxic conditions at sea level: 

	RQ1	    �Can we accurately depict the intensity of the stationary and non-stationary signals proportional to the 
original time-series?

	RQ2	    �Does the proposed Activation Complexity method demonstrate the ability to extract complexity EEG 
dynamic trends to distinguish brain activity under hypoxia?

	RQ3	    �How do classical methods perform in distinguishing differences between hypoxia and sea level changes 
in the brain?

	RQ4	    �How do classical spectral intensity compare to activation complexity for distinguishing cognitive 
impairment?

Figure 8.  Visual representation ψ n( )i  and ψ n( )i  in the time domain.
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RQ1: simulated continuous EEG intensity measurement.  We hypothesize that by using the pro-
posed filter bank methodology, we will be able to extract pertinent EEG frequency band intensity continuously 
over time. Utilizing the designed filter bank methodology, we simulate various stationary and non-stationary 
waveforms to evaluate intensity as a function of time. In Fig. 10a, we first modeled four stationary waveforms 
at frequencies of 2.3 Hz, 5.6 Hz, 8.75 Hz, and 11.4 Hz with amplitudes of 7.5, 4, 5.5, and 8, respectively. The fifth 
component is a non-stationary signal model using a chirp in which the frequency linearly increases from 0 to 15 
Hz with an amplitude of 6. We then provide an example of a linear combination of two stationary signals at 2.3 
Hz and 16.6 Hz with amplitudes of 2.3 and 6.5, respectively. All of these waveforms were concatenated together as 
a single time series. Thus, the transitions between waveforms were abrupt and discontinuous, causing mild per-
turbations in irrelevant filters to activate. Through visual inspection in Fig. 10, we can obtain an equivalent pro-
portionality to the simulated waveform generated in Fig. 10a. Figure 10b can be represented in a two-dimension 
fashion, similar to how continuous wavelet transforms are presented using contour plots shown in Fig. 10c. This 
allows a clearer depiction of time, frequency (i.e., filter number), and intensity.

RQ2: activation complexity.  Activation Complexity (AC) is applied to a hypoxia data set, where we 
hypothesize that this novel method can extract irregular neuronal firing patterns from global EEG recordings. 
This method was applied to EEG data collected from 49 subjects exposed to three 10 minute bouts of normobaric 
hypoxic (12% O2/15k ft) and non-hypoxic conditions (22% O2/sea-level) at NASA Langley Research Center. 
One-sample t-tests and bootstrapped t-tests for multiple comparisons were used between the two cohorts for 
the computerized MATB task bout of hypoxic and sea level conditions. The AC analysis using sample entropy 
used a template length of m = 2 and a threshold value of r = 0.25, producing 26 different statistically significant 
AC measurements across filters and EEG recording sites for when no multiple comparison correction (NMCC) 
as applied. When a bootstrap multiple comparison correction (MCC) was applied, 13 different statistically sig-
nificant AC measurements across filters and EEG recording sites was demonstrated. The visual changes of AC 
between conditions are shown in Figs. 11, 12, 13 and 14. We explored various other threshold values of .15, .2, and 
.3, which produced 17, 19, and 25 statistically different activation complexities, respectively (For the NMCC case). 
The AC measurements that demonstrated significant changes utilizing the other threshold values demonstrated 
similar patterns with regard to EEG leads and frequency bands. The calculated AC complexity was normalized 
across all EEG leads, incorporating both the hypoxia and sea level cohorts associated with each filter bank’s inten-
sity analysis. This was done to highlight the differences in complexity, as depicted in the colored contour map in 
Figs. 11, 12, 13 and 14. The details of the results regarding EEG site location and p-value for the one-sample test 
(for α ≤ 0.05 with N = 47) are provided in the comments below the figure. Additionally, Table 3, is provided for 
more details regarding the means and standard errors for instances of α ≤ 0.1.

Utilizing this novel AC approach, we demonstrate that there is a significant increase in complexity during hypoxia 
across numerous EEG sites in the theta, alpha, and beta EEG frequency regions. The only significant decrease in 
complexity exists in the high frequencies of the gamma region. The sites that demonstrated this significant decrease 
in complexity never overlapped with the reported higher complexity EEG sites in the lower frequency regions. The 
rear left side of the brain, P7, P3, and C1 had the most consistent amount of significant activation complexities across 
frequency bands having 5, 3, and 4, respectively. In the introduction, we discussed how hypoxia has been hypothe-
sized to cause neuronal isolation in past literature11. This concept was pictorially demonstrated in Fig. 1, where the 
time-frequency intensity peaks were more prominent for the functional isolation case.

Figure 9.  This figure represents the process for calculating Activation Complexity. The upper part of the figure 
shows the intensity of the designed delta waveform band, ρ1(n) in red, with the indicated peaks on the intensity 
band, ρ1(n) circled in blue. The differences in time between those peaks are calculated to form ΔAi(k), shown in 
the bottom image. A standard entropy measurement method can then be applied to this sequence.
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We found that this AC method is not ideal, however, for small windowed segments of data. It is ideal for 
long-term trend analysis applications and has the potential to indicate small, subtle, anomalous patterns within 
the EEG spectral bands. Sample entropy and other temporal entropy measurements typically require a minimum 
of 100 data points or more44. The 10-minute segments that were analyzed only produced a mean of 431.2 peaks 
for each intensity frequency band, n( )iρ



. When analyzing the number of peaks in each ρ


n( )i , for each EEG lead 
against the hypoxia and sea level cohorts, the one-sample t-test produced 18 significant p-values. The informative 
value in measuring how intensity is maximized and fluctuates is further supported. However, only 5 of the 18 
significant p-values intersected with the 26 different statistically significant AC measurements. This alludes to the 
fact that it is not simply the amount of peaks but the timing of these peaks, and intensity may hold a very different 
meaning when it comes to analysis of complex brain dynamics. Therefore, how a band-limited intensity is sus-
tained may provide valuable information regarding neuronal firing and indicators for disease.

RQ3: classical methods.  We hypothesize that classical EEG methods such as intensity (i.e., power) analysis 
can still produce valuable information, but that they provide an incomplete picture. Moreover, we specifically use 
spectral intensity analysis (SIA) since this method is the only approach in which we can compare effects on time, 
spectral bands, and intensity.

Figure 10.  The synthetic time series consists of various stationary and non-stationary frequencies (a chirp from 
20–30 seconds). We demonstrate two visual representations of the filter bank output. The 1-D representation 
allows for an enhanced comparison of an accurate depiction of intensity to the synthesized time series. The 
contour plot allows for a better global visualization of which filters are activated and their timing.
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We discuss this hypothesis by first analyzing the changes in EEG intensity caused by hypoxia. Utilizing the 
filter banks’ summed intensity values for each 10-minute segment, we performed statistical one-sample t-tests. 
Due to the fact that electrical conductance can change from subject to subject and thereby alter the intensity 
values, each subject’s individual filter intensity values were normalized. When individual subject normalization 
was not applied, no significant difference was found. However, with proper normalization to account for electrical 
conductance changes, we found 26 filter intensity values across the 16 leads that were significantly different with 
one-sample t-tests when no multiple comparison correction (NMCC) was performed. A bootstrap t-test method 
was utilized to correct for multiple comparison correction (MCC) within the EEG analysis, which no single filter 
demonstrated significance between the hypoxic and non-hypoxic conditions. However, various correct methods 
could have been applied to adjust for multiple comparisons in which more conservative methods could greatly 

Figure 11.  AC Analysis, Aci, is shown between the hypoxia and sea level cohorts for the first three intensity 
filter designs (delta [0.6–4.0 Hz], theta [3.8–7.6 Hz], low alpha [7.2–10.4 Hz]), where i is the applied filter. Ac1 
demonstrated no significant changes across any of the EEG sites. Ac2 demonstrated a significant increase in 
entropy (i.e., complexity) at the POz EEG site with a p-value of 0.033. Ac3 produced an increase in complexity at 
the P7, F2, and C1 with p-values of 0.046, 0.004, 0.0001, respectively.

Figure 12.  Ac4 demonstrated no significant changes across any of the EEG sites. For hypoxia, Ac5 demonstrated 
a significant increase entropy (i.e., complexity) at P7, Pz, Oz, O2, F1, F2, C2 with p-values of 0.049, 0.021, 0.006, 
0.007, 0.033, 0.018, and 0.028, respectively. During hypoxia Ac6 produced a significant increase in complexity at 
the P7, O1, F2, C1, P3 with p-values of 0.0003, 0.049, 0.017, 0.0464, and 0.033, respectively. It is also worth noting 
that O1 had p-values of 0.065 and 0.060 for Ac4 and Ac5, respectively.
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impact the significance and more liberal methods could potentially not impact initial result at all. Thus, we felt 
that the non-correction t-test still provides information on the trajectory of some leads that were close to being 
significant and still provides value to the reader.

Since our aim is not to directly discuss the effects of intensity and its relationship to hypoxia, but rather to 
determine the significant indicators that an intensity analysis provides, for brevity, we will only provide the results 
of significant EEG sites and their filters rather than the 768 means and standard errors associated with the inten-
sity data (16 leads × 12 filters × 2 Conditions × 2 mean/SD).

Spectra of No Change (Using NMCC): The filters 3, 4, 10, and 11, which are associated to frequency bands 
(7.2–10.4 Hz), (10.0–12.8 Hz), (27.6–31.2 Hz), and (31.0–34.8 Hz), demonstrated no significant intensity change 
across any of the EEG electrodes for SIA. However, AC demonstrated significance for all four frequency bands, 
shown in Table 3. This demonstrates additional features that AC has extracted from the EEG signal.

Figure 13.  The hypoxia cohort for Ac7 produced an increase in complexity for EEG sites P7, Poz, Pz, 02, C1, P3 
with p-values 0.036, 0.048, 0.026, 0.040, 0.045, 0.035, respectively. The hypoxia cohort for Ac8 produced an 
increase in complexity for EEG sites P7, and P3 with p-values 0.031 and 0.035, respectively. Ac9 demonstrated no 
significant changes across any of the EEG sites.

Figure 14.  The hypoxia cohort for Ac10 produced a decrease in complexity for EEG sites AF4 with a p-value of 
0.019. Ac11 also produced a significant decrease in complexity at C2 with a p-value of 0.047. Ac12 demonstrated 
no significant changes across any of the EEG sites.
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Spectra of Significant Increases (Using NMCC): SIA did demonstrate significant increases in intensity only for 
Filters 1, 5, 6, 7, and 12 for the hypoxia cohort for a variety of EEG leads. More specifically, Filter 1 showed a sig-
nificant increase in intensity for the O2 EEG site. Filters 1 and 5 showed an significant increase in intensity during 

EEG Hypoxia Sea Level p-value p-value

Site MeanH SEH MeanSL SESL NMCC MCC

Ac2: Frequency Range (3.8–7.6 Hz)

P0z 1.87 0.011 1.832 0.013 0.034 0.048

Ac3: Frequency Range (7.2–10.4)

P7 1.844 0.018 1.801 0.025 0.046 x

O1 1.861 0.017 1.830 0.020 0.061 x

Oz 1.865 0.012 1.836 0.013 0.083 x

F2 1.888 0.010 1.848 0.009 0.004 0.004

C1 1.855 0.020 1.791 0.025 0.0001 0.047

Ac4: Frequency Range (10.0–12.8)

P7 1.846 0.0154 1.812 0.024 0.065 x

Cz 1.885 0.0089 1.860 0.013 0.098 x

O1 1.864 0.012 1.836 0.017 0.064 x

Ac5: Frequency Range (12.4–15.2)

P7 1.837 0.018 1.801 0.024 0.049 x

Pz 1.890 0.008 1.855 0.013 0.021 0.028

O1 1.854 0.015 1.823 0.020 0.060 x

Oz 1.865 0.012 1.818 0.019 0.006 0.035

O2 1.868 0.009 1.823 0.016 0.007 0.017

F1 1.883 0.011 1.851 0.010 0.033 0.034

F2 1.884 0.010 1.842 0.012 0.018 0.008

C1 1.850 0.020 1.809 0.028 0.028 x

Ac6: Frequency Range (15.0–18.2)

P7 1.849 0.016 1.794 0.022 0.0003 0.045

P8 1.867 0.014 1.839 0.017 0.084 x

O1 1.854 0.018 1.818 0.021 0.049 x

F2 1.881 0.011 1.844 0.012 0.017 0.023

C1 1.832 0.023 1.798 0.030 0.046 x

P3 1.872 0.013 1.837 0.017 0.033 x

Ac7: Frequency Range (18.0–21.4)

P7 1.850 0.017 1.814 0.025 0.022 x

Cz 1.858 0.010 1.832 0.014 0.068 x

POz 1.883 0.008 1.835 0.013 0.001 0.001

Pz 1.867 0.010 1.841 0.013 0.027 x

Oz 1.861 0.012 1.829 0.016 0.067 x

O2 1.867 0.012 1.828 0.019 0.032 x

C1 1.843 0.022 1.798 0.030 0.041 x

P3 1.867 0.011 1.832 0.018 0.049 x

Ac8: Frequency Range (21.0–24.6)

P7 1.859 0.016 1.827 0.021 0.037 x

P8 1.868 0.011 1.846 0.011 0.094 x

P3 1.873 0.012 1.838 0.013 0.029 x

P4 1.877 0.009 1.854 0.010 0.052 0.040

Ac9: Frequency Range (24.2–28.0)

C1 1.866 0.014 1.834 0.020 0.061 x

Ac10: Frequency Range (27.6–31.2)

AF4 1.867 0.009 1.895 0.009 0.019 0.021

Ac11: Frequency Range (31.0–34.8)

C2 1.874 0.009 1.90 0.010 0.047 x

Ac12: Frequency Range (34.4–38.2)

P7 1.857 0.009 1.882 0.010 0.072 x

Table 3.  Activation Complexity.
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Hypoxia for the O2 EEG site with p-values of 0.020 and 0.038, respectively. AC demonstrated no significance for 
Filter 1. However, for Filter 5, AC demonstrated increases for all the occipital recording sites (O1, Oz, and O2) 
as well as other EEG sites. For Filter 6, SIA showed the largest change across EEG leads, exhibiting a significant 
increase in intensity during hypoxia for POz, Pz, P8, O1, Oz, O2, AF4, F2, C1, and P4, with p-values of 0.0006, 0.007, 
0.018, 0.015, 0.002, 0.024, 0.040, 0.039, 0.041, and 0.009, respectively. All of these sites, except for O1 and C1 are 
located on the right hemisphere. On the other hand, the AC measurement only reports significant increases on 
the left hemisphere (6 significant sites), demonstrating divergent findings across methods. For Filter 7, SIA also 
demonstrates significant increases in intensity for hypoxia for POz, F1, F2, and P4, with p-values of 0.045, 0.030, 
0.024, and 0.027. These recording sites are essentially the frontal lobe and left parietal lead. AC provided 8 signif-
icant sites, but only overlaps with POz. The majority of AC are located in the posterior right part of the brain in 
the parietal and occipital recording sites for the 10–20 montage. For Filter 12, SIA exhibits a significant increase 
during hypoxia for Oz, with a p-value of 0.035, and AC reports an increase for P7 during hypoxia. Overall, we can 
note that although both methods unanimously demonstrate significant increases with their respective method, 
there is very little to no overlap with regard to EEG recording sites.

Spectra of Significant Decreases (Using NMCC): Filters 2, 8, and 9 showed a decrease in intensity during 
hypoxia across various EEG locations. Filter 2 showed a decrease in intensity for POz, Pz, Oz, and Pz with p-values 
of 0.038, 0.013, 0.0009, and 0.018, respectively. AC only reports POz as increased intensity during hypoxia. Filter 8 
demonstrated a significant decrease during hypoxia for O2, AF3, and AF4, with respective p-values of 0.035, 0.047, 
and 0.018. We can also note an increased AC for the parietal recording site during hypoxia. Filter 9 also has AF3, 
and AF4, which exhibited a decrease in intensity with p-values of 0.029 and 0.026, respectively. AC only reported 
C1 as an increase during hypoxia.

Results Summary: In summary, we note that when comparing AC to SIA for NMCC the two methods are very 
divergent in their reported findings, specifically on the direction of the measurement (increasing vs decreasing), 
recording site of the brain, and spectral properties. These divergent results support the hypothesis that AC adds an 
additional dimensionality to the analysis. These SIA results share a resemblance to Papedelis’s work with hypoxia, 
where they reported an increase in spectral power11. One caveat was that the majority of the spectral intensity 
findings were on the right hemisphere, whereas Papadelis reported left hemisphere dominance11. However, our 
subjects utilized their left hands for the MATB tracking tasks whereas the subjects in Papadelis’s study used their 
right hands11. EEG asymmetries and cerebral lateralization in literature is well known and may explain the dis-
crepancy between our results11,45. However, from the perspective of implementing MCC, the AC methodology 
demonstrates significant changes within the EEG signal during mild induction of hypoxia, unlike the standard 
spectral analysis.

RQ4: comparing EEG methods for cognitive impairment.  In order to formally compare spectral 
intensity and the new proposed approach coined, “activation complexity”, we compare the two approaches 
through evaluating it’s predictability to detect cognitive impairment. Literature has already shown that as the 
level of hypoxia becomes increasingly critical, a human’s cognitive impairment increases as well46,47. For this 
comparison, segmented instances of induced hypoxia were annotated into four different levels: H1) Completely 
non-hypoxic state (100–95% O2); H2) Indifferent hypoxia (95–85% O2); H3) Compensatory Hypoxia (75–85% 
O2) ;H4) Critical (Disturbance) (Less than 75% O2). Both methods share the exactly same dimensionality, sample 
size and predictive model (K-Nearest Neighbour approach), allowing for a fair comparative analysis to gauge 
how a specific feature set provides better predictive discriminators for cognitive impairment. The predictive per-
formance for detecting the four levels of hypoxia using activation complexity (Table 4) verse spectral intensity 
(Table 5) are highlighted using confusion matrices with an accuracy (Ac) of 80.2 vs 71.3 %, respectively. These 
results demonstrate that Activation Complexity features covers more informative variance in the data and pro-
vides a superior predictive lift with KNN modeling. Thus, this comparison highlights that activation complexity 
provides information in characterizing cognitive impairment in which classical spectral intensity analysis can 
not provide.

Conclusions
Our new complexity method for non-linear dynamic analysis for isolated EEG frequency bands and intensity 
analysis. This work added to the philosophy for decoding the amplitude and temporal dynamics has embedded 
information48 and how amplitude of the instantaneous frequency is related to unconsciousness49. However, our 
work demonstrates an elegant method that combines these philosophies to extract embedded information of 
the instantaneous frequency’s intensity (not amplitude) temporal dynamics and this relationships to impaired 
neuronal firing/neuronal isolation. This works supports the case for a new predictive EEG feature for hypoxia and 
opens up a novel avenue for analysis of diseases and physiological sensory changes.

Predicted

H1 H2 H3 H4

Actual

H1 679 32 29 2

H2 47 93 25 1

H3 62 29 247 11

H4 8 2 11 32

Table 4.  Confusion Matrix: Activation Complexity (Ac = 80.2%).
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More specifically, this method shows significant differences in hypoxic vs. non-hypoxic states, facilitating 
future analyses (specifically for diseases related to stroke, ischemia, and cognitive changes). We hypothesized that 
these methods are extracting features which manifest due to various forms of neuro-isolation, but to fully support 
this hypothesis, we require additional study designs. While EEG more directly measures the electrical activation 
of neurons, functional near infrared spectroscopy (fNIRS) can be used to detect local activity by measuring the 
hemodynamic response in the brain. As with functional magnetic resonance imaging (fMRI), measuring the 
hemodynamic response is a standard technique for quantifying brain activity based on neurovascular coupling. 
However unlike fMRI, fNIRS can be used passively while operationally-relevant, cognitively-engaging tasks are 
performed and without running costly trials50. Additionally, fNIRS can be used without the data acquisition 
and processing burdens of performing EEG source localization. The hemodynamic response, as measured by 
fNIRS, is heavily influenced by local activity in the capillary bed51 and vessels of diameter <1 mm52. Further, 
the neurovascular coupling relationship holds true where there is suppression of, or interference with, neuronal 
activity53. Thus, the use of fNIRS can supplement the newly proposed Activation Complexity measurements by 
quantifying local hemodynamic activity changes in the face of interference due to hypoxia. Further, the quantifi-
cation of Activation Complexity as a more general measure of neuronal isolation in the brain would be supported 
by demonstrating a link between a decrease of blood oxygenation and an increase in Activation Complexity. If 
these global electrical and hemodynamic measurements are coupled, Activation Complexity has the potential of 
being a critical, fast, and low cost surrogate measurement for characterizing, and possibly detecting, numerous 
diseases such as mild localized strokes, cerebral ischemia, or brain trauma in which neuronal isolation plays an 
important part.

This work ultimately contributes an additional dimension of spectral and complexity analysis, opening the 
exploration of EEG signal for further explanatory analysis in the area of neurology and cognitive science. The 
ability to isolate the intensity of neuro-oscillations as a function of time allows for further explorations into not 
only the timing of peak intensity, but additional multi-variate features such as their trough and width dimen-
sions. These additional complexity analyses can potentially address how these band-limited neuro-oscillations 
are sustained.
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