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ABSTRACT
Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies 
showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in 
the ICU is less clear than their benefit on course of infection in the absence of organ 
dysfunction. We characterized here the compositional and metabolic changes of the gut 
microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in con-
junction with 2,180 gut microbiome samples representing 16 different diseases. We revealed 
an “infection-vulnerable” gut microbiome environment present only in critically ill treated with 
antibiotics (ICU+). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and 
Lactobacillus crispatus, species that expanded in ICU+ patients, revealed a significant negative 
impact of these microbes on host viability and developmental homeostasis. These results 
suggest that antibiotic administration can dramatically impact essential functional activities in 
the gut related to immune responses more than critical illness itself, which might explain in 
part untoward effects of antibiotics in the critically ill.
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Introduction

Critical illness leads to the admission of more than 
5 million patients per year to intensive care units 
(ICUs) in the United States alone. Intensive or 
invasive monitoring of ICU patients accounts for 
approximately 20% of the total US hospital cost, 
while the worldwide death rates for critically ill 
patients are increasing at a higher rate than any 
other common cause of death 1. Almost half of 
ICU patients show symptoms related to an initial 
systemic inflammatory response syndrome (SIRS).2 

However, besides inflammation, signs of im- 
mune exhaustion or ‘paralysis’ might occur 
simultaneously.3 A disbalance of pro- and anti- 
inflammatory responses can lead to an increased 
risk of infection 4 and related sepsis, which 

are responsible for nearly 60% of deaths 
in ICUs and account for approximately 40% of 
ICU costs.5

Vincent et al. 6 reported that while only 54% of ICU 
patients had suspected or proven infection, as many as 
70% received at least one antibiotic, reflecting a rather 
“liberal use” within contemporary ICUs. This reflects 
an early antibiotic treatment – in order to avoid the 
deleterious impact of a missed or delayed antibiotic 
therapy if infection triggers organ dysfunction.7 

However, several studies showed that the benefits of 
antibiotics for prevention of infection, multi-organ 
failure, and death in the ICU are unclear.8 Evidence 
suggests that approximately 37% of antibiotic treat-
ments are unnecessary or not compliant with 
guidelines.9 Infections and antibiotics can cause 
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a rapid loss of commensal gastrointestinal 
microbiota,10 which can result in metabolic and 
immune disturbances in the critically ill. An impor-
tant role of gut bacteria is the fermentation of dietary 
fiber into short-chain fatty acids (SCFAs), which play 
an important role in preserving gut integrity.11 

A decrease in SCFAs concentrations may result in 
colonization by pathogenic species. For example, sev-
eral Bacteroides and Bifidobacteria species secrete 
SCFAs inhibiting pathogen growth.12,13 Similarly, 
Clostridium scindens and Ruminococcus obeum pro-
duce secondary bile acids (BAs) that prevent the 
growth of Clostridium difficile 14 and Vibrio 
cholerae,15 respectively. Gut bacteria also play an 
important role in the activation of host immunity 
against infections, both through innate and adaptive 
mechanisms.16

With advent of the concept of the human being as 
a “holobiont” and the perception of the gut micro-
biome as being highly relevant in the regulation of the 
immune system, attention to interventions affecting 
the microbiome is now given also in critical illness. 
Previous studies have focused predominantly on taxo-
nomic information using 16S rRNA gene sequencing 
to identify differences between health and disease.17,18

Fungal constituents of the microbiome represent 
an overlooked but very important kingdom. 
Research is beginning to show that fungi are critical 
for maintaining systemic immunity and intestinal 
homeostasis.19 The mycobiome of skin,20 gut,21 

oral cavity,22 and lungs,23 among other anatomical 
sites, in healthy individuals has been characterized 
in previous studies. Based on these studies, it seems 
that between individuals and anatomic sites there is 
high variability in the human mycobiome 
diversity,24 which is consistent with what we know 
from the Human Microbiome Project (HMP, 2012) 
for the bacterial microbiome. Most of the anatomic 
sites in humans are dominated by members of the 
Basidiomycota phylum, such as Cryptococcus spp., 
Malassezia spp. and Filobasidium spp., and the 
Ascomycota phylum including Saccharomyces cere-
visiae, Candida spp., and Cladosporium spp.25,26 

Despite the recent findings showcasing the fungal 
role on host health, host–microbe and microbe– 
microbe interactions, only less than 0.5% of the 
published microbiome papers investigate or refer 
to the fungal population.19 The mycobiota is 
increasingly recognized as a critical player in the 

development of human diseases, including inflam-
matory bowel disease, allergic airway diseases, skin 
disease, alcoholic liver disease, autoimmunity, neu-
rological disorders, and metabolic syndrome.27–30 

In relation to microbe–microbe interactions, exist-
ing studies indicate that a competitive association 
between bacteria and fungi exists in the human gut. 
This was shown in antibiotic-treated subjects and 
germ-free mice, where an overgrowth of particular 
fungi in the gut and/or susceptibility to fungal 
infection was observed.31 In addition, overgrowth 
of fungi due to antibiotics treatment has been asso-
ciated with the development of allergic airway 
responses to Aspergillus fumigatus mold spores.32 

Part of the chemical warfare between bacteria and 
fungi is also the secretion of antifungal peptides 
from epithelial cells, which can be induced by com-
mensal bacteria such as Blautia producta and 
Bacteroides thetaiotaomicron.33 Previous research 
related to critically ill patients and mycobiome is 
very limited.34–39 One recent study characterized 
the mycobiome of the lower respiratory tract of 
patients in ICU showing that Candida spp. domi-
nated the fungal community in both with and with-
out antibiotic therapy patient groups.34 Another 
prospective pilot study showed an increase of 
C. albicans in the oral mycobiome after an admis-
sion to the ICU.38 However, systematic investiga-
tion of the interactions between the gut mycobiome 
of critically ill patients and the bacteria functional 
activity is currently lacking.

Here, by a comprehensive characterization of the 
microbiome, mycobiome, and functional potential 
of the gut community and individual species, we 
demonstrate that even though antibiotics do not 
significantly disturb the bacterial and fungal com-
position of critically ill patients, as observed in 
healthy individuals,40 they cause abundance 
changes in a handful of species that are highly 
connected with the production of SCFAs and BAs, 
allowing the expansion of pathogenic species.

Results

Highly distinct microbiome in ICU patients

To investigate the gut microbiome composition of 
critically ill patients, we initially included 70 criti-
cally ill patients. Of these, 54 were diagnosed with 
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probable or microbiologically confirmed infection 
as defined by Calandra et al. 41 (respiratory tract 
(n = 37), abdominal (n = 6), bones/soft tissue 
(n = 3), chest (n = 2), catheter associated (n = 1), 
urogenital (n = 1), and unknown (n = 4)). These 54 
received antibiotic treatment, whereas 16 did not 
presented an infection and did not receive antibio-
tic treatment. Of those, we collected stool samples 
from 49 patients receiving antibiotic treatment 
(broad spectrum beta-lactam antibiotics; n = 19 
meropenem and n = 30 piperacillin/tazobactam) 
and 14 patients without antibiotic treatment, as 
well as from 12 healthy human volunteers. Basic 
anthropometric and clinical characteristics of the 
participants are displayed in Supplementary File 1. 
There were no significant differences between the 
two ICU groups in gender, age, BMI, type of admis-
sion or surgery and length of ICU or hospital stay 
(continuous data were compared by the Student’s 
t-test, dichotomous variables by the chi-squared 
test, a p-value < 0.05 was considered significant). 
Similarly, there were no significant differences 
between the healthy volunteers and ICU patients 
in the basic demographic characteristics.

We assessed the structure of the gut microbiome 
via shotgun metagenomics generating 39 million 
high-quality reads per sample on average 
(Supplementary Table 1). We used MetaPhlan2 42 

for taxonomic profiling, and we identified 428 spe-
cies in total. Alpha-diversity measured as Shannon, 
Simpson, and Chao1 index dropped significantly in 
both antibiotics treated (ICU+) (Wilcoxon rank- 
sum test, P = 8.6e-6, P = 5.3e-6, P = 3.8e-5, 
Shannon, Simpson and Chao1 indices, respectively) 
and untreated subjects (ICU–) (Wilcoxon rank- 
sum test, P = .0037, P = .0025, P = .0054, 
Shannon, Simpson and Chao1 indices, respectively) 
compared to healthy individuals (Figure 1(a)). In 
contrast to what has been observed in healthy 
volunteers,44,45 antibiotics administration had no 
significant impact on the alpha diversity when com-
paring the ICU+ against the ICU– patients 
(Wilcoxon rank-sum test, P = .79, P = .79, P = .64, 
Shannon, Simpson and Chao1 indices, respec-
tively). The type of beta-lactam used had no sig-
nificant impact either (Supplementary Figure 1).

We subsequently investigated the variation in 
the microbiome structure of the three groups by 
calculating the distance to centroid (Figure 1(b)). 

The gut microbiome of the ICU+ group had sig-
nificantly higher structural variation compared to 
both healthy individuals (Wilcoxon rank-sum test, 
P = 1.1e-12) and the ICU– group even though it did 
not reach statistical significance (Wilcoxon rank- 
sum test, P = .056). Next, we calculated the beta- 
diversity (Bray–Curtis distance) of the three 
groups, which showed that although there was 
a high community dissimilarity between ICU+ and 
Healthy (PERMANOVA, P = .001) and between 
ICU– and Healthy (PERMANOVA, P = .001), the 
ICU+ and ICU– groups did not show significant 
differences (PERMANOVA, P = .104) (Figure 1 
(c), Supplementary Figure 9(a)). Similarly, to 
alpha diversity, when we examined the two beta- 
lactam groups (meropenem and piperacillin/tazo-
bactam) separately, we did not observe any signifi-
cant difference (Supplementary Figure 1, 
Supplementary Figure 9(b)). To further evaluate 
our findings, we repeated the taxonomic analysis 
using the Metagenomic Species method (MGS) 46 

and we observed the same patterns as above 
(Supplementary Figure 2, Supplementary 
Figure 9(c)).

As evident from both, the alpha- and beta- 
diversity comparisons, the similarities in the 
structure of the gut microbiome of the ICU+ 

compared to the ICU– group triggered our inter-
est to examine our cohort in relation to another, 
small publicly available dataset of critically ill 
patients.10 In that study, the authors performed 
a longitudinal sampling of critically ill patients 
with and without antibiotics administration to 
study abundance changes in the resistome profile 
of known pathogens. For the comparative analy-
sis, we applied a microbial source tracking algo-
rithm, namely FEAST.43 When using our cohort 
as a sink we noticed how progressively the public 
ICU+ group becomes more taxonomically similar 
with our ICU+ group, as well as the composi-
tional similarities between the two ICU– groups 
(Figure 1(d)). From the methodological point of 
view, this analysis confirms that FEAST 43 is 
a relatively sensitive method but also that despite 
the non-significant overall differences between 
ICU+ and ICU– groups there is still 
a characteristic microbiome signature due to the 
antibiotic administration. Considering the rela-
tively small differences between the ICU+ and 
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Figure 1. Distinct gut microbiota signatures in ICU patients. (a – b, d) Box plots showing the median (centerlines), first and third 
quartiles (box limits) and 1.5x interquartile range (whiskers) measurements. A comparison was considered significant if P < .05.(a) 
Alpha diversity of bacterial species using Shannon (left), Simpson (middle), and Chao1 (right) indices. Significant differences were 
determined using Wilcoxon rank-sum test.(b) Beta dispersion of bacterial species measured as the distance of the samples from one 
group to the group centroid in multivariate space. Significant differences were determined using Wilcoxon rank-sum test.(c) Principal 
component analysis (PCoA) of Bray-Curtis dissimilarity between bacterial species abundance profiles. Significant differences were 
determined using PERMANOVA and were considered significant if P < .05.(d) FEAST 43 estimation of microbial source contribution for 
each “sink”. Here, sinks are species level relative abundances from samples from a publicly available ICU cohort.10 For sources, we used 
species level relative abundances of our Healthy, ICU– and ICU+ groups. Significant differences were determined using Kruskal-Wallis 
test (*P < .05; **P < .01, ***P < .001, ****P < .0001).(e) Receiver operating characteristic curve (ROC) of a cross-validated random forest 
classifier. The model was trained on taxonomic and functional profiles from 63 samples from the ICU– and ICU+ groups. Model 
performance was summarized as area under ROC (AUC). The average AUC value and confusion matrix (threshold 0.5) are calculated 
based on a 5-fold cross validation results.
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ICU– groups, we next investigated whether these 
subtle differences in microbial signatures could be 
integrated into an algorithm to correctly classify 
the patients. To this end, a random forest classi-
fier integrating species and pathways was devel-
oped and achieved an area under the receiver 
operating characteristic (ROC) curve (AUC) of 
0.934 (Figure 1(e)) using 20 features 
(Supplementary Figure 3). Enterococcus faecalis, 
a known pathogen48 whose abundance has been 
associated to an increase in susceptibility to 
V. cholerae infection,15 and several amino acid 
pathways that can serve as precursors for the 
synthesis of short-chain fatty acids (SCFAs) were 
among the selected features.

Critically ill patients treated with antibiotics show 
an “infection-vulnerable” gut microbiome

We subsequently used HUMAnN2 49 for functional 
profiling of the microbial communities and identi-
fied 483 pathways in total. To further evaluate the 
community taxonomic and functional characteris-
tics of the critically ill patients, we compared our 
cohort with a panel of publicly available datasets. 
For that, we retrieved 2,180 taxonomically and 
functionally annotated samples from 16 human 
diseases using the curatedMetagenomicData 50 

package in R and we applied FEAST,43 treating 
our samples as sources and the disease panel as 
sinks. In these settings, FEAST 43 revealed that 
there is a significantly lower similarity 

Figure 2. Comparative analysis of the microbiome of critically ill patients with other diseases. (a – b) FEAST 43 estimation of microbial 
source contribution for each “sink”. Here, sinks are taxonomic and functional compositions from a panel of diseases. Source are 
taxonomic and functional compositions of samples from our Healthy, ICU– and ICU+ groups. Box plots show the median (centerlines), 
first and third quartiles (box limits) and 1.5x interquartile range (whiskers), source contributions to sinks. (a) cancer, inflammatory and 
metabolic diseases and (b) infectious diseases. (a – b) Significant differences were determined using Kruskal-Wallis test (*P < .05; 
**P < .01, ***P < .001, ****P < .0001).
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Figure 3. Differential abundance analysis reveals changes in bacteria with important functional properties in critically ill. (a) Taxonomic trees 
visualized using R package metacoder.47 Only taxa differentially abundant between Healthy, ICU+ or ICU– (P < .05, Wilcoxon rank-sum 
test) are highlighted in the tree by color. Color of the taxa reflects the group with higher abundance. Bar plots show the relative 
abundances of significantly different (FDR<0.05, Wilcoxon rank-sum test) short-chain fatty acid producers (green circles), bile acid 
producers (red circles), disease-associated species (purple circles) or differentially abundant species identified in all pairwise compar-
isons (yellow circles).(b) Co-abundance networks of differentially abundant bacterial species (P < .05, Wilcoxon rank-sum test) between 
Healthy and ICU+ and between ICU+ and ICU–. Only significant correlations (P < .05) with absolute correlation coefficient >0.4 were 
used for network construction. Nodes are colored based on their affiliated phyla. Node sizes reflect the mean abundance of the species. 
Edge colors reflect either negative correlation (blue) or positive correlation (red). Edge widths reflect the strength of the correlation. 
(c-d) Germ-free L1 larval stage C. elegans worms were populated with depicted bacterial strains in the anoxic chamber for indicated
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(Kruskal–Wallis, P < .0001) between the micro-
biome structure and function of individuals in the 
critically ill patients group with patients with cancer 
(colorectal cancer,51–56 melanoma57,58), inflamma-
tory (ankylosing spondylitis,59 atherosclerosis,60 

Behcet’s disease,61 hypertension,62 inflammatory 
bowel disease46), and metabolic diseases 
(cirrhosis,63 metabolic syndrome,64 nonalcoholic 
fatty-liver disease,65 obesity,66,67 Type-1-Diabetes,-
68,69 Type-2-Diabetes70,71) compared to Healthy 
individuals (Figure 2(a)). Due to this unexpected 
association, we expanded the range of diseases as 
sinks using infectious diseases and specifically 66 
samples from patients with acute diarrhea,72 

C. difficile infection73 and V. cholerae infection.74 

In contrast to what we observed with noninfectious 
diseases, the taxonomic composition of the criti-
cally ill patients is significantly more similar 
(Kruskal–Wallis, P < .0001) to infectious diseases 
than the gut composition of healthy individuals 
(Figure 2(b)). At the functional level, this difference 
is even more profound with the ICU+ group having 
the highest similarity (Kruskal–Wallis, P < .0001) 
with all three infectious diseases, suggesting that 
critically ill patients may be at a risk of severe 
infections by gut pathogens and that antibiotic 
treatment increases significantly that risk.

Immunomodulatory metabolites and their microbial 
producers are depleted from critically ill patients 
exposed to antibiotics

We subsequently focused on the impact of antibiotic 
administration in the ICU in relation to abundance 
changes in microbes with a potential role in immune 
regulation and host-immune homeostasis. Significant 
differences were observed at the phylum level among 
the three groups. The Healthy group had, on average, 
higher abundance of Bacteroidetes (17.9%, Kruskal– 
Wallis, P = .0063), Actinobacteria (9.9%, Kruskal– 
Wallis, P = .035), and Verrucomicrobia (4.7%, 
Kruskal–Wallis, P = .0098) (Supplementary 
Figure 4(a)). At the genus level, a striking difference 

in the abundance of Enterococcus was found, with the 
ICU+ group having the highest abundance compared 
to the other two groups (Kruskal–Wallis, P = 3.6e-6). 
In contrast, the relative abundance of Blautia was 
significantly higher in ICU– (Kruskal–Wallis, 
P = .029) (Supplementary Figure 4(a)).

At the species level, we found 106 and 80 
species significantly differentially abundant 
(Wilcoxon rank-sum test, P < .05) between the 
Healthy and ICU+ and Healthy and ICU– 

groups, respectively. The species enriched in 
the Healthy group include known SCFAs and 
BAs producers, such as Ruminococcus bromii,76 

Faecalibacterium prausnitzii,77 Eubacterium 
eligens,78 Eubacterium hallii 78 and Eubacterium 
rectale,77,78 among others (Figure 3(a) and 
Supplementary Figure 4(b)). On the contrary, 
species enriched in ICU+ and ICU– included 
known pathogens such as Klebsiella 
pneumoniae,79 Klebsiella oxytoca,79 E. faecalis,48 

and Enterococcus faecium 48 (Figure 3(a) and 
Supplementary Figure 4(b)). Comparing ICU+ 

and ICU– groups, we found 12 species signifi-
cantly differentially abundant (8 enriched in 
ICU– and 4 in the ICU+). R. gnavus, 
Clostridium symbiosum, and Veillonella parvula, 
known SCFAs and BAs producers,80–83 were 
enriched in ICU–, whereas from the species 
enriched in ICU+ (Figure 3(a)) Bifidobacterium 
animalis has been indicated as a SCFAs 
producer.84 Since B. animalis was the only 
SCFA producer enriched in ICU+, we retrieved 
the genome-scale metabolic model of B. animalis 
from the AGORA repository 85 and we simu-
lated growth on an ICU media using flux bal-
ance analysis. We monitored the potential of 
B. animalis to produce SCFAs, including acetate, 
propionate, and butyrate; however, none of 
these compounds was predicted to be produced 
in our in silico simulations (data not shown).

We used the enriched species to reconstruct the 
species co-abundance network using all samples 
from our cohort. We observed a much more 

times, followed by transfer to normoxia and UV-killed OP50 E. coli diet. In (C) host survival was measured after 24 h of normoxic culture 
and in (D – left panel) the timely development was assessed after 48 h of normoxic culture; (D – right panel) depicts reproductive aging 
of nematodes following anoxic reconstitution with B. animalis.
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intense within group communication between the 
Healthy-enriched species (vs. ICU+) with 162 posi-
tive and 19 negative correlations (absolute correla-
tion coefficient >0.4) compared to the species 
enriched in ICU+ (vs Healthy and/or ICU–) that 
showed 43 positive and no negative correlations 
(Figure 3(b) and Supplementary Table 2). Alistipes 
putredinis, F. prausnitzii, and Bacteroides uniformis 
were interconnected healthy-enriched species 
showing negative correlations with Klebsiella and 
Staphylococcus species, common sources of serious 
infections in ICU.86 From the species enriched in 
ICU+ compared to Healthy, E. faecium, 
Staphylococcus epidermidis, and Lactobacillus 
rhamnosus showed the highest number of correla-
tions, suggesting that these may be important spe-
cies to maintain the community structure. From 
the species enriched in ICU+ compared to ICU–, 
Lactobacillus crispatus showed positive correlations 
with known pathogens such as Enterococcus and 
Klebsiella species, as well as negative correlations 
with Healthy-enriched SCFAs and BAs producers 
including F. prausnitzii, E. rectale, and A. shahii.

To examine in vivo host effects of the species 
enriched in ICU+ patients compared to ICU–, we 
utilized nematode C. elegans as a model host. 
C. elegans recently emerged as a suitable simple 
model for discovering conserved host–microbiome 
interactions.87 The experiments were conducted by 
reconstituting germ free L1 nematodes with the 
two, sufficiently annotated, bacterial strains 
enriched in ICU+ (B. animalis and L. crispatus). 
We found that both strains had a strong negative 
impact on the host homeostasis: L. crispatus exerted 
direct toxicity in the model host (Figure 3(c)), and 
B. animalis instigated a delay in the C. elegans 
development indicative of the physiological stress 
(Figure 3(d)). By including heat-killed bacteria as 
an additional control and performing OD normal-
ization across conditions, we found that host toxi-
city of L. crispatus requires live bacteria, while 
B. animalis rather acts as a passive stressor 
(Supplementary Figure 5). Interestingly, the nema-
todes, which overcame the developmental hin-
drance by B. animalis, displayed a delay in 
reproductive aging (Figure 3(d)) consistent with 
the putative probiotic effect of B. animalis in the 
animals that were able to conquer the initial stress 
caused by this bacterium. To probe the potential 

probiotic effect of B. animalis at the mechanistic 
level, we tested its ability to induce nuclear translo-
cation of DAF-16/FOXO transcription factor – 
a conserved mediator of stress resistance and long-
evity extension.90–92 We found that live B. animalis 
indeed had the strongest capacity to induce DAF- 
16 activation among all conditions tested 
(Supplementary Figure 6). Our results are thus in 
line with the previously reported ability of 
B. animalis to cause disease in immunocompro-
mised human patients, while it acts as a probiotic 
in healthy humans,93 demonstrating the physiolo-
gical relevance of our nematode findings. 
Collectively, our in vivo tests indicate that the rar-
efication of the microbiome, which is exacerbated 
by antibiotics exposure in ICU+ patients, facilitates 
the enrichment of microbes with potential of exert-
ing direct detrimental effects on the host.

Functional shifts in the microbiome

Next, we compared MetaCyc pathway abundance 
to explore the gut microbiome functionality in the 
three groups. As shown in the ordination plot 
(Figure 4(a)), the differences between ICU+ com-
pared to the other 2 groups at the functional level 
are driven by SCFA biosynthesis, AA biosynthesis, 
and fermentation to SCFA, whereas the abundance 
of pathways related to nucleotide and nucleoside 
degradation and vitamin biosynthesis are the main 
drivers in the comparison of Healthy vs ICU–. 
Therefore, we then focused on AAs, SCFAs, and 
BAs due to their important role in the regulation of 
the immune system and their influence in diseases 
associated with dysbiosis.11 In total, we identified 
117 significantly differentially abundant pathways 
related to the metabolism of AAs, SCFAs, and BAs 
(Wilcoxon rank-sum test, P < .05). Even though the 
majority of these pathways had a higher relative 
abundance in the Healthy compared with ICU– 

group, only a few pathways reached statistical sig-
nificance. On the contrary, the differences in the 
relative abundances between the ICU+ with the 
Healthy group were striking (Figure 4(b)). The 
relative abundance of 98 of the 117 unique path-
ways was significantly lower in ICU+. Despite the 
small number of significantly differentially abun-
dant species between ICU+ and ICU–, there were 
more differences in the metabolic pathways 
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Figure 4. Functional shifts contributed by the microbiome. (a) Multidimensional scaling (MDS) plot of the samples based on the 
pathway abundances. The top 15 pathways with the strongest significant correlation with the overall ordination (FDR<0.05 with 
function envfit from the R package vegan 75) are highlighted with arrows where the length of the arrows reflects the strength of the 
association.(b) Numbered heatmaps showing the relative abundances of differentially abundant bacterial MetaCyc pathways. 
Additional heatmaps indicate significance (blue tiles, P < .05, Wilcoxon rank-sum test). Only pathways related to short-chain fatty 
acid, bile acid and amino acid metabolism, as identified by manual curation, are shown.
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between the two groups than between Healthy and 
ICU–, suggesting that antibiotic treatment has 
a stronger effect in the metabolism of AAs, 
SCFAs, and BAs than critical illness. Several of 
these pathways were selected in the random forest 
model to classify the two groups of ICU patients 
(Figure 1(e) and Supplementary Figure 3).

Metabolomics analysis

We then performed targeted metabolomic analysis 
and quantified the levels of 10 SCFAs and 27 BAs in 
38 stool samples (see Methods). Consistently with 
the results from the MetaCyc pathway analysis, we 
observed a significant decrease in the abundance of 
SCFAs and BAs in the ICU+ group compared to the 
Healthy and ICU– groups (Figure 5(a)). Of 10 iden-
tified SCFAs, 6 were significantly different between 
the groups (Figure 5(a)). Acetic acid, propionic acid, 
butyric acid, and valeric acid were significantly lower 
in the ICU+ group compared to both the Healthy 
and ICU– groups (Wilcoxon rank-sum test, P < .05). 
The levels of these SCFAs were not found to differ 
significantly between the ICU– and Healthy groups. 
A similar pattern was observed with the BAs; keto-
lithocholic acid, deoxycholic acid, glycolithocholic 
acid, hyodeoxycholic acid, isolithocholic acid, litho-
cholic acid, and ursodeoxycholic acid were all found 
significantly lower in abundance in ICU+ patients 
(Wilcoxon rank-sum test, P < .05) compared to 
both Healthy and ICU– patients (Figure 5(a)). 
Among them, ursodeoxycholic acid is increasingly 
used in the clinical setting for a treatment of a variety 
of conditions.94,95 Ketolithocholic acid, lithocholic 
acid, and ursodeoxycholic acid have been also 
found to provide resistance against C. difficile infec-
tions and to modulate the host inflammatory 
response during the infection.96 The BA profiling 
of ICU+ patients may also explain the high similarity 
at the functional level revealed by FEAST with the 
C. difficile cohort (Figure 2(b)).

To identify which species were mainly responsible 
for the differences in the levels of the measured 
SCFAs and BAs in ICU+ compared to the other 
two groups, we performed growth rate analysis 89 

and Spearman’s correlation between the 13 metabo-
lites and 38 species. The species selected were either 
having (i) significantly higher abundance in the 
Healthy group compared to ICU+ but not compared 

to the ICU– group or (ii) significantly higher abun-
dance in the ICU– compared to the ICU+ group 
(Figure 5(b)). As shown in Figure 5b, A. putredinis, 
Lachnospiraceae bacterium 2 1 58FAA and 
Lachnospiraceae bacterium 1 1 57FAA showed posi-
tive correlations with SCFAs and/or BAs and were 
predicted through Flux Variability Analysis (FVA) 88 

to secrete SCFAs. Several Bacteroides species, includ-
ing B. uniformis, were actively growing (GRiD 
89 > 1), they showed positive correlations with the 
measured SCFAs and they were predicted through 
FVA 88 to secrete SCFAs supporting the identified 
correlation (Figure 5(b)). Since BA metabolism is 
not included in these metabolic models, we analyzed 
the BA biosynthesis potential of the species showing 
high correlation with BAs using differential analysis 
of enzymes involved in the BA biosynthesis pathway. 
The enzymes cbh and baiN were found in the gen-
omes of Bacteroides xylanisolvens, L. bacterium 2 1 
58FAA, R. obeum, and R. gnavus. The abundance 
levels of B. xylanisolvens and R. obeum cbh and the 
abundance levels of R. obeum baiN were found sig-
nificantly higher in the Healthy group compared to 
the ICU+ (Wilcoxon rank-sum test, P < .05, data not 
shown). R. obeum has been previously shown to have 
an inhibitory effect on V. cholerae due to its capacity 
to degrade virulence-activating signals in the gut 
through the synthesis of bile salt hydrolases.15

Candida species and resistant genes flourish in 
critically ill patients

Since the microbiome composition and functional 
profile of critically ill patients appeared to be dys-
biotic, we investigated next if this leads to systema-
tic changes in the structure of the fungal 
community, with emphasis on Candida species 
and the antibiotic resistance gene (ARG) levels in 
the three groups. We built high-quality libraries for 
ITS2 sequencing of 74 available stool samples from 
the Healthy, ICU+ and ICU– groups. We estimated 
the fungal relative abundance using the DADA2 
pipeline.97 The taxonomic profiling revealed that 
Ascomycota (85.63%) was the most abundant fun-
gal phyla, followed by Basidiomycota (9.84%) and 
Muromycota (3.44%) (Figure 6(a)). There was no 
significant difference in the alpha diversity 
(Shannon, Simpson, Chao1) between any of the 
two groups and the type of beta-lactam 
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Figure 5. Associations between gut microbiome and short-chain fatty acids and bile acids. (a) Content of SCFAs and BAs (loge) in three 
groups are plotted as bar plots. Wilcoxon rank-sum test, *P < .05, **P < .01, ***P < .001, ****P < .0001, ns: not significant.(b) Heatmap 
showing Spearman’s correlations between significantly different metabolites and previously identified significant species. The species 
selected were either having (i) significantly higher abundance in the Healthy group compared to ICU+ or (ii) significantly higher 
abundance in the ICU– compared to the ICU+ group. Metabolites category is shown with row annotation and the origin of enriched 
species is shown with column annotation. Correlations with FDR<0.05 are marked with a circle. Heatmap in the lower panel shows the 
secretion of short-chain fatty acids obtained by flux variability analysis (FVA) 88 of available bacterial metabolic models. Unavailable 
models of corresponding species are shown in gray. Bottom boxplots show the results from the Growth Rate Analysis (GRiD).89 The red 
dashed line indicates GRiD 89 value 1.
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administrated in the ICU+ group did not appear to 
influence this pattern (Wilcoxon rank-sum test, 
P > .05) (Supplementary Figure 7). However, 
when we calculated the Bray–Curtis distance of 
the three groups we observed a high community 
dissimilarity between ICU+ and Healthy 
(PERMANOVA, P = .001) and between ICU– and 
Healthy (PERMANOVA, P = .001), whereas the 
ICU+ and ICU– groups did not show significant 
differences (PERMANOVA, P = .703) (Figure 6 
(a), Supplementary Figure 10(a)). We subsequently 
investigated differences in fungal species relative 
abundance between the three groups. In total 19, 
11, and 3 fungal species were found significantly 
different (Wilcoxon rank-sum test, P < .05) in the 
comparisons between Healthy vs ICU+, Healthy vs 
ICU–, ICU+ vs ICU–, respectively (Figure 6(b)). The 
Candida genus, which includes species that are 
opportunistic pathogens, was found to have the 
greatest number of differentially abundant species 
between the three groups. Candida albicans, 
Candida glabrata, Candida pseudolambica, and 
Candida tropicalis were all found to have the high-
est abundance in ICU+ patients (Figure 6(b)).

To determine whether antibiotic treatment exerts 
selective pressure on the resistome as a whole, we 
analyzed the change in Pfams related to the resistome 
and mobilome, as well as the abundance differences 
of ARGs between the three groups. In the abundance 
comparison between the Healthy and the ICU+ 

groups, there were 71 statistically significant Pfams 
(Wilcoxon rank-sum test, P < .05) related to the 
resistome and/or mobilome, with 48 of them being 
more abundant in the ICU+ and 23 in the Healthy 
group (Supplementary Figure 8(a)). Interestingly, the 
differences between ICU– and Healthy groups were 
also large with 30 and 16 Pfams being more abundant 
in the ICU– and the Healthy group, respectively 
(Supplementary Figure 8(a)). In the comparison 
between ICU+ and ICU– there were 19 significant 
Pfams with 14 being more abundant in the ICU+ 

and 5 in the ICU– group (Supplementary 
Figure 8(a)).

Subsequently, we annotated the ARGs in the 
three groups using deepARG.98 The overall ARG 
abundance profile of the ICU+ and ICU– groups 
using the Bray–Curtis distances indicates that there 
is no substantial perturbation during antibiotic 
treatment (PERMANOVA, P = .261), but there 

are significant differences between ICU+ and 
Healthy (PERMANOVA, P = .001) and between 
ICU– and Healthy (PERMANOVA, P = .001) 
(Supplementary Figure 8(b), Supplementary 
Figure 10(b)). Comparing the total accumulative 
relative ARGs abundance led to the same conclu-
sion; critically ill patients have already a unique 
resistome profile compared to healthy individuals, 
which is only marginally disturbed by antibiotics 
administration (Wilcoxon rank-sum test, 
P = 5.97e-8, Supplementary Figure 8(c)). 
Considering the polypharmacology approaches 
often applied in ICU, our observation is in agree-
ment to recent studies suggesting that human tar-
geted drugs can significantly impact on the gut 
resistome profile.99 Nevertheless, an abundance 
comparison of the individual ARGs revealed 24 
ARGs, including 3 beta-lactams (SHV, PENA, 
AMPC), significantly higher in the ICU+ group 
and only 1 in the ICU– group (dabestr, 
Confidence Interval (CI) = 95%, Supplementary 
Table 3). Among the ARGs that exhibit the highest 
abundance differences (dabestr, 95%) between the 
ICU+ and ICU– groups were AAC(6ʹ)-I (aminogly-
coside), ADEC (multidrug), ERMB (macrolide, lin-
cosamide and streptogramin), VANS 
(glycopeptide), and MSRC (macrolide, lincosamide 
and streptogramin) (Supplementary Figure 8(d)).

Discussion

Sepsis, acute respiratory distress syndrome (ARDS), 
and multi-organ failure represent common condi-
tions most frequently driven by an inappropriate 
host response to pathogens of the critically ill. 
These conditions are responsible for immense global 
mortality accompanied by a tremendous economic 
burden 1. While breakthroughs of molecular medi-
cine have revolutionized treatment in oncology and 
rheumatology, in critical illness research endeavors 
of decades have not resulted in any targeted thera-
pies. In practice, intensive care can be considered 
mostly as supportive and antibiotics are 
a cornerstone of care for patients with sepsis, i.e. 
infection-driven organ dysfunction.7

The off-target effects of antibiotics on the micro-
biome are, however, also particularly obvious in the 
ICU population. Antibiotics often fail to resolve 
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Figure 6. ICU patients have distinct mycobiome profiles. (a) Upper – PCoA plots of the gut mycobiome based on species-level Bray- 
Curtis distances. Color indicates the groups. Significant differences were determined using PERMANOVA (P < .05). Lower – the same 
PCoA plots as upper panel highlighting the top 3 most abundant fungal phyla (Ascomycota, Basidiomycota and Mortierellomycotina). 
Color scale indicates the relative abundance of each phylum. Groups are defined by shapes.(b) Heatmap showing the normalized 
abundances of significantly differentially abundant species in Healthy vs ICU+, Healthy vs ICU–, ICU+ vs ICU– comparisons (P < .05, 
Wilcoxon rank-sum test). Cumulative Sum Scaling (CSS) was used for species abundances normalization. The annotation bars on the 
left indicate the comparisons in which the species was found to be significant. The names of species are colored according to their 
affiliated genera. Differentially abundant species in ICU+ vs Healthy comparison after FDR correction (FDR<0.25) are marked with *.(c) 
Boxplots comparing the normalized abundances of specific Candida species (Wilcoxon rank-sum test).
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organ failure despite evidence of infection and, 
even more concerning, are frequently administered 
not to miss an occult infection. While the resulting 
increase of multi-resistant bacteria is an obvious 
problem, the negative impact on the “holobiont” 
in the ICU have largely been ignored. More to the 
point, considerations in intensive care are more 
dwelling around the early days of introduction of 
antimicrobial therapy when Paul Ehrlich propa-
gated the concept of “therapia sterilisans magna” 
where only “parasitotropic“ effects in the absence of 
“organotropic“ effects of drugs were envisioned.100 

Thus, molecular therapies for these common and 
lethal diseases are desperately needed and depend 
on a better understanding of systems biology of the 
host metabolome–microbiome interplay.101 Up to 
now, the downstream consequences, such as host 
inflammation and cellular damage, and not the 
upstream sources, in particular the complex micro-
bial ecosystems that reside in and on the human 
body, have been the priority of research. 
Nevertheless, two recent studies in mice 102,103 indi-
cate that Fecal Material Transplantation (FMT) and 
specific species in the gut microbiome could pre-
vent sepsis opening up new clinical research 
avenues.

Here, we present evidence from a human study 
that the selective pressures to which critically ill 
patients are exposed (parenteral nutrition, poly-
pharmacy, including e.g., proton pump inhibitors, 
shock states requiring invasive life support mea-
sures, such as catecholamine treatment) shape the 
microbiome of these patients in a unique way with 
highly distinct characteristics compared to healthy 
or other disease states, including metabolic, inflam-
matory, or malignant diseases. As we have shown, 
the microbiome structure and function of critically 
ill patients resembles signatures mainly observed in 
severe infections such as C. difficile and V. cholerae. 
This already “infection-vulnerable” microbiome 
structure in critical illness becomes severely dysbio-
tic after antibiotic treatment with an observed 
depletion of SCFAs, including propionate, butyrate, 
and acetate, and BAs. Similarly, in an elegant mice 
study Kim et al., 102 demonstrated using FMT from 
healthy littermates that high levels of butyrate (and 
potentially also propionate), provided mainly by 
Bacteroidetes, can rescue from lethal sepsis caused 
by a pathogenic mixture of K. oxytoca, E. faecalis, 

Serratia marcescens and C. albicans isolated from 
a septic patient. Three of these pathogenic species, 
K. oxytoca, E. faecalis and C. albicans, were found 
in significantly higher abundance in our critically ill 
patients compared to healthy individuals. However, 
the poor similarity in gut microbial taxonomic 
abundances between human and mice 104 high-
lights the importance of investigating the relation-
ship between critical illness and gut microbiota in 
human clinical samples. For example, while Kim 
et al., 102 hypothesized that critical illness itself may 
result in the depletion of gut butyrate. In our 
human study, this was not the case and only after 
antibiotics administration we observed a dramatic 
decrease in the SCFA levels. Nevertheless, we 
observed a significant change in taxonomy also in 
ICU– compared to Healthy related to inflamma-
tion, such as a significant increase in the abundance 
of Staphylococcus and Enterococcus, which have 
been reported as key factors for the development 
of signs of systemic inflammation, nosocomial 
infection and complications in the ICU course.48,86

Our study has several limitations. Critically ill 
patients represent a heterogeneous patient group 
characterized by comorbidities, past infections 
and age, leakage of alveolar, and intestinal barriers 
as well as impaired defense and repair 
mechanisms.105,106 Low flow states up to overt 
shock, autonomic dysfunction, and lack of suffi-
cient options for enteral feeding, e.g., due to dys-
phagia or impaired consciousness affect gut 
function, transit time, and defecation.107 Many 
drugs that are applied routinely in addition to anti-
biotics, such as proton pump inhibitors or catecho-
lamines can affect gut function substantially.99 

Nevertheless, while rodent studies allow to control 
many of the aforementioned confounders, only 
clinical studies allow to address the impact of anti-
biotics on the gut microbiome as it relates to clini-
cally meaningful outcomes. Thus, we aimed at 
control of confounders through inclusion of patient 
cohorts requiring critical care but not receiving 
antibiotics.

Patients in ICUs represent a relatively small sub-
group of hospitalized patients, but they reflect 
a specific at-risk population that accounts for 
approximately 25% of all hospital-acquired 
infections.108 Infection as a typical complication 
of critical illness increases length of ICU stay, 
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morbidity, mortality, and costs.109 Moreover, the 
rise in multidrug-resistant strains prompts atten-
tion on nonantibiotic strategies in the prevention 
and treatment of nosocomial infections, such as 
pro- or synbiotics. However, mechanisms of action 
in the vulnerable population of critically ill patients 
requires further investigation into the mechanisms 
that shape the gut microbiome. From our study we 
suggest that the loss of a handful of species, that are 
highly connected with the production of SCFAs 
and BAs, during antibiotic administration in the 
ICU allows the expansion of pathogenic species, 
which exhibit potential to cause direct hindrance 
of host homeostasis. Despite the availability of 
more advanced antibiotics in ICUs death rates 
from sepsis following nosocomial infections keep 
increasing, indicating that these antibiotics do not 
increase survival but instead they produce a highly 
dysbiotic gut ecosystem that allows more aggres-
sively resistant and lethal pathogens to thrive.1 

These changes are likely associated with or even 
to promote a state of “protracted critical illness”, 
a frequent observation in patients discharged after 
prolonged intensive care and characterized by per-
sistent systemic infection. It seems warranted to 
design studies that aim to restore the gut micro-
biome or replace key metabolites, such as SCFAs or 
BAs, in this vulnerable patient population to restore 
homeostasis of the “metaorganism” after discharge 
from intensive care.

Materials and methods

Study design

A prospective observational study was undertaken 
from May 2018 until January 2019 at the Jena 
University Hospital. Adult critically ill patients 
either treated with systemic antimicrobial therapy 
(piperacillin/tazobactam or meropenem) for at 
least 2 days or without any systemic antimicrobial 
therapy within the last 7 days were eligible for this 
study. Patients with inflammatory bowel disease, 
major bowel resection, selective decontamination 
of the oral and digestive tract, oral vancomycin 
therapy, immunocompromised patients, history of 
chemotherapy during the last 6 months, or known 
travel history to areas of high antimicrobial resis-
tance within the last 4 weeks were excluded from 

this study. The need for informed consent was 
waived by the IRB, since this investigation did not 
involve any intervention at the patient. The col-
lected basic data were used only for calculating 
mean values per group and were not linked to the 
individual metagenomic profiles. Stool samples 
from healthy volunteers (>50 years old) with no 
antimicrobial therapy within the last 6 months 
served as a control group. Healthy volunteers inter-
ested in participating were invited for 
a consultation with medical doctors in the Jena 
University Hospital. Their health status and prior 
antibiotic use was self-reported. The basic demo-
graphic data for the healthy cohort is provided in 
Supplementary File 1. We collected up to 100 ml 
feces which were sampled immediately after natural 
defecation. Fecal specimens were transferred into 
two sterile containers, one that was mixed with 
liquid thioglycolate medium supplemented with 
catalase and 10% glycerol and one without buffer 
solution. Both containers were stored at –80°C. 
Each patient contributed with only one stool 
sample.

DNA extraction from stool samples
All stool samples were processed by Novogene 
(UK). DNA was extracted using the following 
protocol: Stool samples were thoroughly mixed 
with 900 μL of CTAB lysis buffer. All samples 
were incubated at 65°C for 60 min before being 
centrifuged at 12000 × g for 5 min at 4°C. 
Supernatants were transferred to fresh 2-mL 
microcentrifuge tubes and 900 μL of phenol: 
chloroform:isoamyl alcohol (25:24:1, pH = 6.7; 
Sigma-Aldrich) was added for each extraction. 
Samples were mixed thoroughly prior to being 
incubated at room temperature for 10 min. Phase 
separation occurred by centrifugation at 
12,000 × g for 15 min at 4°C, and the upper 
aqueous phase was re-extracted with a further 
900 μL of phenol:chloroform:isoamyl alcohol. 
Next, samples were centrifuged at 12,000 × g for 
10 min at 4°C, and the upper aqueous phases were 
transferred to fresh 2-mL microcentrifuge tubes. 
The final extraction was performed with 900 μL of 
chloroform:isoamyl alcohol (24:1), and layer 
separation occurred by centrifugation at 
12,000 × g for 15 min at 4°C. Precipitation of 
DNA was achieved by adding the upper phase 
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from the last extraction step to 450 μL of isopro-
panol (Sigma-Aldrich) containing 50 μL of 7.5 M 
ammonium acetate (Fisher). Samples were incu-
bated at – 20°C overnight, although shorter incu-
bations (1 h) produced lower DNA yields. Samples 
were centrifuged at 7500 × g for 10 min at 4°C, 
and supernatants were discarded. Finally, DNA 
pellets were washed three times in 1 mL of 70% 
(v/v) ethanol (Fisher). The final pellet was air- 
dried and re-suspended in 200 μL of 75 mM TE 
buffer (pH = 8.0; Sigma-Aldrich).

Library preparation and sequencing for 
metagenomics
Sequencing library was generated based on 
Illumina technologies and following manufactures’ 
recommendations. Index codes were added to each 
sample. Briefly, the genomic DNA was randomly 
fragmented to a size of 350 bp, then DNA frag-
ments were narrowly size selected with sample pur-
ification beads. The selected fragments were then 
end polished, A-tailed, and ligated with adapter. 
These fragments were filtered with beads again 
and amplified by PCR reaction. At last, the library 
was analyzed for size distribution and quantified 
using real-time PCR. The library was then to be 
sequenced on an Illumina platform Novaseq 6000 
(Novogene) with paired-end reads of 150 bp.

Internal transcribed spacer sequencing
The concentration of genomic DNA was determined 
by Qubit, and the DNA quality was checked on the 
gel. 200 ng of DNA was used as input for PCR 
reaction with corresponding primer set specifically 
binding to different hypervariable regions. Each pri-
mer set had a unique barcode. PCR product was then 
run on the gel and DNA fragment with the proper 
amplification size was cut and purified. The purified 
PCR product was then used as template for library 
preparation. The PCR products were pooled 
together with equal amount and then end polished, 
A-tailed, and ligated with the adapter. These frag-
ments were filtered with beads again. After PCR 
reaction (to make library fully double strand), the 
library was analyzed for size distribution and quan-
tified using real-time PCR. The library was then to be 
sequenced on Hiseq2500.

Metabolomics analysis
We performed targeted metabolomics analysis for 
38 of the 75 available samples. The remaining sam-
ples were destroyed during a prolonged stay in the 
customs during the COVID-19 pandemic.

Quantification of SCFAs: SCFAs were extracted 
by addition of 2 mg ultra-pure water pr. mg of 
sample. The samples were vortex mixed for 1– 
2 min until suspension is reached, and centrifuged 
at max speed for 10 min at 4°C. The supernatant 
was transferred to a spinX centrifuge filter and 
centrifuged for additional 5 min at 4°C. The filtrate 
was collected and stored at –20°C until analysis. 
Sample analysis was carried out by MS-Omics as 
follows. Samples were acidified using hydrochloric 
acid, and deuterium labeled internal standards 
where added. All samples were analyzed in 
a randomized order. Analysis was performed 
using a high polarity column (ZebronTM ZB- 
FFAP, GC Cap. Column 30 m x 0.25 mm 
x 0.25 μm) installed in a GC (7890B, Agilent) 
coupled with a quadrupole detector (5977B, 
Agilent). The system was controlled by 
ChemStation (Agilent). Raw data was converted to 
netCDF format using Chemstation (Agilent), 
before the data was imported and processed in 
Matlab R2014b (MathWorks, Inc.) using the 
PARADISe software described by Johnsen et al.110

Quantification of BAs: Bile acids were extracted 
by addition of 4 mg methanol pr. mg of sample. The 
samples were vortex mixed for 1–2 min until sus-
pension is reached, and centrifuged at max speed for 
10 min at 4°C. The supernatant was transferred to 
a spinX centrifuge filter and centrifuged for addi-
tional 5 min at 4°C. In a HPLC vial, 285 μL filtrate is 
mixed with 15 μL internal standard. The final 
volume of filtrate of CS10768 and CS10798 where 
below 285 μl. Therefore, 200 μl were combined with 
85 μl Methanol and 15 μl internal standard. Sample 
analysis was carried out by MS-Omics as follows. 
The analysis was carried out using a Thermo 
Scientific Vanquish LC coupled to Thermo 
Q Exactive HF MS. An electrospray ionization inter-
face was used as ionization source. Analysis was 
performed in negative ionization mode. The chro-
matographic separation of bile acids was carried out 
on a Waters Acquity HSS T3 1.8 μm 2.1 × 150 mm 
(Waters). The column was thermostated at 30°C. 
The mobile phases consisted of (A) ammonium 
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acetate 10 mmol/l, and (B) methanol:acetonitrile 
(1:1, v/v). Bile acids were eluted by increasing B in 
A from 45% to 100% for 16 min. Flow rate was 
0.3 min. Peak areas were extracted using 
Tracefinder 4.1 (Thermo Scientific). Identification 
of compounds were based on accurate mass and 
retention time of authentic standards.

Data processing

Quality control of sequence data
Quality control to remove low-quality reads was 
performed as described previously.111 Briefly, all 
Illumina primer/adapter/linker sequences were 
removed. Subsequently, low-quality regions (con-
secutive regions with Phred quality <20) were 
trimmed. Finally, all reads were mapped to the 
human genome with BWA version 0.7.4 112 and 
reads with >95% identity and 90% coverage were 
removed as human DNA contamination.

Taxonomic profiling
Taxonomic annotation of the high-quality reads 
was performed using MetaPhlAn242 version 2.7.7 
with default settings, generating taxonomic relative 
abundances. Bacterial community profiles were 
constructed at phylum, genus and species level for 
further analyses.

Taxonomic annotation of fungal ITS was per-
formed using the DADA2 pipeline97 version 1.14 
with default parameters including adapter removal, 
quality filtering and trimming, dereplication of iden-
tical reads, read-pair merging, ITS2 extraction and 
chimera removal. Remaining reads were binned as 
operational taxonomic units and aligned to the 
UNITE fungi database using RDP classifier.113 All 
samples were then normalized by cumulative sum 
scaling using R package metagenomeSeq.114

Functional annotation
The HUMAnN2 pipeline 49 version 0.11.2 was used 
for functional annotation of the high-quality reads 
after the quality control. The quantified pathway and 
gene family abundances in the units of RPKs (read per 
kilobase) were then normalized to copies per million 
(CPM) units by the provided HUMAnN2 script, 
resulting in transcript-per-million-like (TPM) nor-
malization. Gene families were then regrouped to 
Pfam domains for further analyses.

Abundance comparisons
Species, pathways, and Pfams were filtered by 10% 
prevalence across all samples and their relative 
abundances were used for statistical comparisons 
between the three groups. Differentially abundant 
features were identified by the Wilcoxon rank-sum 
test and were considered significantly differentially 
abundant if the P-value was less than 0.05.

Differentially abundant phyla and genera were 
identified by the Kruskal-Wallis test and were con-
sidered significantly differentially abundant if the 
P-value was less than 0.05.

Metagenomics sequences from HUMAnN2 profiles
Gene family abundances were clustered using mgs- 
canopy46 version 1.0 software with standard para-
meters. Gene family clusters were considered meta-
genomic sequences (MGS) if they had at least 700 
genes. Taxonomic annotation of MGS was done 
using species annotation information available for 
each gene family.

We calculated contributions of each species to an 
MGS. An MGS was annotated to the species with the 
largest contribution if: the gene contribution of that 
species was more than 50% and the second largest 
species was “unclassified” or contributed less 
than 10%.

Diversity analysis
Alpha diversity indices Shannon, Simpson, and 
Chao1 were calculated using the R packages 
vegan75 and fossil115 based on relative species 
abundance. Wilcoxon rank-sum test was used 
to test for significant differences in alpha diver-
sity. For estimating community dissimilarities, 
Bray–Curtis distances were calculated using the 
R package vegan75 based on the relative species 
abundance. To test for significant differences in 
the microbial composition, permutational multi-
variate analysis of variance (PERMANOVA), as 
implemented in the function adonis from 
R package vegan,75 was used to analyze beta- 
diversity.

Co-abundance networks
The relative abundance table for significantly dif-
ferent species was processed using SparCC 116 for 
co-abundance network inference. Species–species 
correlation coefficients were estimated as the 
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average of 20 inference iterations and 100 permuta-
tions were used for the pseudo P-value calculation. 
For the visualization of the co-abundance network, 
only interactions with an absolute correlation coef-
ficient >0.4 were used.

Metabolic modeling
To estimate the availability and composition of 
metabolites in ICU patients, the nutrition fed in 
ICU (https://www.fresenius-kabi.com/de/ernaeh 
rung/fresubin-original) was considered. 
Metabolic composition of complex products 
such as fish oil was described by vmh diet 
designer (https://www.vmh.life/#nutrition/dietde 
signer). The human genome-scale metabolic 
model Recon3D 3.01 117 simulated based on the 
ICU specific diet (Supplementary File 2) was used 
to predict metabolites that can potentially be 
secreted by the host. Flux Variability Analysis 
(FVA) 88 was used to determine feasible exchange 
reaction flux bounds that support metabolite 
secretion alongside optimal growth rate. 
Identified metabolites were assumed to be avail-
able for the bacterial species and strains to be 
consumed. Genome-scale metabolic models of 
the studied species and strains were collected 
from two different gut model repositories, 
AGORA 1.03 (https://www.vmh.life) 85 and 
CarveMe.118 Taking into account the availability 
of ICU diet compounds and potential host- 
secreted metabolites in the gut, the maximum 
amount of SCFAs (acetic acid, propionic acid, 
and butyric acid) production by bacterial species 
and strains were predicted by applying FVA 88 

again alongside achieving maximum ATP yield as 
objective for the available bacterial metabolic 
models.

Abundance of ARGs
The metagenomic reads were analyzed using the 
deepARG pipeline,98 which uses deep learning to 
identify and quantify ARGs. Reads were compared 
to the provided DeepARG-DB database using 
a prediction model to evaluate sequence similarities 
and predict antibiotic resistance. The pipeline was 
run in short sequence mode with a minimum prob-
ability cutoff of 0.8, an identity cutoff of 80%, an 
E-value cutoff of 1e-10 and a minimum coverage 
of 50%.

Testing for significant differences in ARG abun-
dance was performed using R package dabestr 119 

with a confidence interval of 95%.

Bacterial growth rate estimation
Bacterial growth rate was calculated using the 
growth rate index (GRiD) 89 version 1.2. The algo-
rithm first calculates the coverage of all contigs of 
a reference genome in the sample, sorts them from 
high to low, and reorders them to two groups, pla-
cing an ori-containing contig at start and a ter- 
containing contig at the mid-region of the genome. 
Next, it calculates coverage drops across a sliding 10 
Kb window, with values representing the coverage 
ratio of the peak and trough of the curve. High values 
represent faster growth rates.

Random forest model
A Random Forest classifier was built to classify ICU 
patients into ICU– and ICU+ based on bacterial taxo-
nomic profiles and pathways. The model was imple-
mented using R package caret 120 with all bacterial 
species and pathway abundances as input features. 
The model was trained after centering and scaling the 
data and removing variables with near zero variance, 
using a tune length of 10 and fivefold cross-validation 
as resampling method, the rest of the parameters 
were left as default. Feature importance were calcu-
lated using function varImp from R package caret.120 

A random forest model was then built using only the 
20 most important features. R package PRROC 121 

was used for ROC calculation and plot.

Bacterial exposure and survival assay in C. elegans
Bacterial strains used were Escherichia coli OP50, 
Lactobacillus crispatus (DSM 20356), and 
Bifidobacterium animalis (DSM 20104). All strains 
except E. coli were acquired from the German 
Collection of Microorganisms and Cell Cultures 
and cultured following the supplier guidelines. 
Bacterial stocks were kept at –80°C until use. 
C. elegans strain used was N2 wild-type isolate 
obtained from the Caenorhabditis Genetics Center.

Bacterial stocks were inoculated in anoxic broth 
(MRS for L. crispatus and BSM for B. animalis) and 
incubated at 37°C for 72 h. 150 µL of each bacterial 
culture was spread onto medium sized NGM agar 
plates (5,5 cm diameter) and incubated for 24 h at 
37°C in an anaerobic container (BD GasPak™ EZ 
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container systems) prior to worm addition. E. coli 
was grown on NGM in normoxia. UV-killed OP50 
was produced by exposing NGM plates to UV light 
(320 nm) in a Chemi-Doc XRS+ transilluminator 
(BioRad) for 10 min.

Age-synchronized germ-free worms were 
obtained by collecting eggs from gravid adults 
upon treatment with alkaline hypochlorite solution 
(composition per liter: 200 mL 1 M KOH, 250 mL 
bleach, and 500 mL ddH2O) and letting the eggs 
hatch overnight at 20°C in M9 buffer. Synchronized 
L1 larvae were seeded onto NGM plates containing 
respective bacterial strains (4 plates per strain). 
Approximately 150 worms were seeded per plate. 
Plates were incubated at 20°C in an anaerobic con-
tainer for 5 h or 24 h. After incubation worms were 
washed with M9 buffer and transferred to UV-killed 
OP50 plates. UV-killed OP50 plates were incubated 
at 20°C in normoxic conditions for 24 h prior to 
survival assessment. Heat-killed bacteria was 
obtained by submerging bacterial cultures at 80°C 
for 60 min and OD600 was normalized to 0,2 before 
placing the cultures onto NGM plates. Live bacteria 
was also subjected to OD600 normalization in all 
tests, which involved heat-killed control conditions.

Survival rate was assessed by screening all the 
worms present in each plate. A worm was regarded 
as dead if it did not respond to gentle touch with 
a platinum wire. Survival was expressed as percen-
tage of the total number worms. Each experiment 
was performed 3 times.

Developmental fitness and reproductive aging assays 
in C. elegans
Bifidobacterium animalis was grown for 72 h on 
anoxic BSM broth at 37°C. Afterward, 150 uL of 
bacterial culture was spread onto medium-sized 
NGM plates (4 plates) and incubated for 24 h at 
37°C in an anaerobic container (BD GasPak™ EZ 
container systems) prior to worm addition. E. coli 
OP50 was grown on NGM at normoxic conditions. 
C. elegans N2 population was synchronized as 
described above and approximately 150 worms 
were seeded on either B. animalis or OP50 plates. 
Plates were incubated for 24 h at 20°C in the anae-
robic container. Developmental assay was carried 
out as previously described.122 In brief, 30 worms 
per bacterium were put individually onto small 
UV-killed OP50 plates and incubated for 48 h at 

20°C before developmental stage of each worm was 
visually assessed. Reproductive aging assay was car-
ried out as described previously.123 In brief, after 
incubation with B. animalis or OP50 the worms 
were washed with M9 and let to develop until L4 
stage on UV-killed OP50 plates at 20°C, normoxia. 
At this moment 25 randomly picked worms (per 
condition) were transferred individually onto 
small-sized UV-killed OP50 plates. Every day the 
brood size of each worm was determined (sum of 
eggs and L1s) and parent worm was transferred to 
new plate until egg laying ceased. These experi-
ments were performed 3 times.

DAF-16 nuclear translocation assay
Nematodes expressing DAF-16::GFP fusion protein 
were obtained from the Caenorhabditis Genetics 
Center (strain TJ356). Bacterial strains used were 
the same as described above. Anoxic broth was 
inoculated with an aliquot of actively growing bac-
terial culture and incubated at 37°C for 48 h. 
OD600 of all living cultures was normalized to 0,1. 
150 µL of each bacterial culture was spread onto 
medium sized NGM agar plates (5,5 cm diameter) 
and incubated for 24 h at 37°C in an anaerobic 
container (BD GasPak™ EZ container systems) 
prior to worm addition. E. coli was grown on 
NGM in normoxia. Heat-killed bacteria was gener-
ated as described above and OD600 was normalized 
to 0,2 prior to seeding onto NGM plates.

Age-synchronized germ-free worms were 
obtained as described above and grown until L4 
stage on UV-killed OP50. L4 worms were washed 
with M9 buffer and transferred to NGM plates 
containing bacteria. Approximately 150 worms 
were seeded per plate. Plates were incubated at 
20°C in an anaerobic container (BD GasPak™ EZ 
container systems) on either live or heat-killed bac-
teria for 5 h. Control plates were incubated in 
normoxia on live bacteria only. After incubation, 
30 worms were picked from each condition and 
transferred to empty NGM plates for imaging. 
Imaging was carried out using a ZEISS Axio 
Zoom.V16 microscope equipped with fluorescence 
light. Imaged worms were sorted into three cate-
gories (nuclear, intermediate, cytosolic) depending 
on the localization of the GFP tagged DAF-16 tran-
scription factor. This experiment was performed 
three times.
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Statistical analysis
To determine differential abundance of taxonomic, 
functional, and metabolic features between groups 
Wilcoxon two-tailed rank-sum test was applied 
when analyzing the differences between two 
groups, whereas Kruskal–Wallis test was used 
when more than two groups were compared. 
Correlation between microbial taxa and metabo-
lites was assessed by Spearman’s correlation. The 
R package dabestr119 was used to test differential 
abundance of ARGs. Significant differences in 
source contributions to sinks using FEAST43 were 
assessed using Wilcoxon two-tailed rank sum test. 
To assess differences in alpha diversity and beta 
dispersion, Wilcoxon two-tailed rank sum test was 
used, whereas PERMANOVA was used for beta 
diversity.
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